Unverified Commit de71ad92 authored by Lintang Sutawika's avatar Lintang Sutawika Committed by GitHub
Browse files

Merge branch 'big-refactor' into fix-unittests

parents 09d20bfa 73c80915
......@@ -5,7 +5,7 @@ dataset_path: CM/codexglue_code2text_python
training_split: train
validation_split: validation
test_split: test
output_type: greedy_until
output_type: generate_until
generation_kwargs:
num_beams: 10
max_length: 128
......
......@@ -5,7 +5,7 @@ dataset_path: CM/codexglue_code2text_ruby
training_split: train
validation_split: validation
test_split: test
output_type: greedy_until
output_type: generate_until
generation_kwargs:
num_beams: 10
max_length: 128
......
task: coqa
dataset_path: EleutherAI/coqa
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
doc_to_text: !function utils.doc_to_text
......
task: drop
dataset_path: EleutherAI/drop
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
process_docs: !function utils.process_docs
......
......@@ -3,7 +3,7 @@ group:
task: gsm8k_cot
dataset_path: gsm8k
dataset_name: main
output_type: greedy_until
output_type: generate_until
test_split: test
doc_to_text: "Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?\n\nA: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21 - 15 = 6. The answer is 6.\n\n\
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?\n\nA: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.\n\n\
......
......@@ -3,7 +3,7 @@ group:
task: gsm8k_yaml
dataset_path: gsm8k
dataset_name: main
output_type: greedy_until
output_type: generate_until
training_split: train
fewshot_split: train
test_split: test
......
task: logieval
dataset_path: baber/logiqa2
dataset_name: logieval
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
# Instructions + {content}
......
......@@ -4,7 +4,7 @@
group: mgsm_direct
dataset_path: juletxara/mgsm
dataset_name: null # Overridden by language-specific config.
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
target_delimiter: ""
......
......@@ -4,7 +4,7 @@
group: mgsm_cot_native
dataset_path: juletxara/mgsm
dataset_name: null # Overridden by language-specific config.
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
target_delimiter: ""
......
......@@ -4,7 +4,7 @@
group: mgsm_cot_native
dataset_path: juletxara/mgsm
dataset_name: null # Overridden by language-specific config.
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
target_delimiter: ""
......
......@@ -37,7 +37,7 @@ Eprint = {arXiv:2206.14858},
#### Groups
- `math_word_problems`
- `greedy_until`
- `generate_until`
#### Tasks
......
......@@ -4,7 +4,7 @@ task: minerva_math_algebra
dataset_path: EleutherAI/hendrycks_math
process_docs: !function utils.process_docs
dataset_name: algebra
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
doc_to_text: !function utils.doc_to_text
......
......@@ -2,7 +2,7 @@ group: mmlu_flan_cot_fewshot
dataset_path: cais/mmlu
validation_split: validation
fewshot_split: dev
output_type: greedy_until
output_type: generate_until
doc_to_text: "Q: {{question.strip()}}\n(A) {{choices[0]}} (B) {{choices[1]}} (C) {{choices[2]}} (D) {{choices[3]}}\nA: Let's think step by step."
doc_to_target: "{{['(A)', '(B)', '(C)', '(D)'][answer]}}"
filter_list:
......
......@@ -2,7 +2,7 @@ group: mmlu_flan_cot_zeroshot
dataset_path: cais/mmlu
validation_split: validation
fewshot_split: dev
output_type: greedy_until
output_type: generate_until
doc_to_text: "Q: {{question.strip()}}\n(A) {{choices[0]}} (B) {{choices[1]}} (C) {{choices[2]}} (D) {{choices[3]}}\nA: Let's think step by step."
doc_to_target: "{{['(A)', '(B)', '(C)', '(D)'][answer]}}"
filter_list:
......
......@@ -2,7 +2,7 @@ group: mmlu_flan_n_shot_generative
dataset_path: cais/mmlu
test_split: test
fewshot_split: dev
output_type: greedy_until
output_type: generate_until
doc_to_text: "Q: {{question.strip()}}\n(A) {{choices[0]}} (B) {{choices[1]}} (C) {{choices[2]}} (D) {{choices[3]}}\nA: "
doc_to_target: "{{['(A)', '(B)', '(C)', '(D)'][answer]}}"
generation_kwargs:
......
task: nq_open
dataset_path: nq_open
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
description: "Answer these questions:\n"
......
......@@ -3,7 +3,7 @@ group:
task: polemo2_in
dataset_path: allegro/klej-polemo2-in
dataset_name: klej-polemo2-in
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
test_split: test
......
group: qasper
task: qasper_freeform
dataset_path: qasper
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
process_docs: !function utils.process_docs_freeform
......
......@@ -2,25 +2,44 @@
### Paper
Title: `paper title goes here`
Abstract: `link to paper PDF or arXiv abstract goes here`
Title: `Know What You Don’t Know: Unanswerable Questions for SQuAD`
Abstract: https://arxiv.org/abs/1806.03822
`Short description of paper / benchmark goes here:`
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset,
consisting of questions posed by crowdworkers on a set of Wikipedia articles,
where the answer to every question is a segment of text, or span, from the
corresponding reading passage, or the question might be unanswerable.
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable
questions written adversarially by crowdworkers to look similar to answerable ones.
To do well on SQuAD2.0, systems must not only answer questions when possible, but
also determine when no answer is supported by the paragraph and abstain from answering.
Homepage: `homepage to the benchmark's website goes here, if applicable`
Homepage: https://rajpurkar.github.io/SQuAD-explorer/
### Citation
```
BibTeX-formatted citation goes here
@misc{rajpurkar2018know,
title={Know What You Don't Know: Unanswerable Questions for SQuAD},
author={Pranav Rajpurkar and Robin Jia and Percy Liang},
year={2018},
eprint={1806.03822},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Subtasks
### Groups and Tasks
List or describe tasks defined in this folder, and their names here:
* `task_name`: `1-sentence description of what this particular task does`
* `task_name2`: .....
#### Groups
* `squadv2_complete`: Runs both `squadv2` and `squadv2_noans_loglikelihood`
#### Tasks
* `squadv2`: `Default squadv2 task`
* `squadv2_noans_loglikelihood`: `Additional task to acquire the probability of model predicting there is no answer`
### Checklist
......
dataset_path: squad_v2
training_split: train
validation_split: validation
doc_to_text: "Title: {{title}}\n\nBackground: {{context}}\n\nQuestion: {{question}}\n\n Answer:"
doc_to_target: "{% if answers.text| length > 0 %}{{answers.text}}{% else %}{{['']}}{% endif %}"
target_delimiter: ""
should_decontaminate: true
doc_to_decontamination_query: context
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment