Commit d627333a authored by lintangsutawika's avatar lintangsutawika
Browse files

merged with latest

parents 4156a005 4cda3a1c
include: lambada_mt_en.yaml
group:
- lambada_multilingual
- loglikelihood
- perplexity
task: lambada_openai_mt_it
dataset_name: it
# LogiQA
### Paper
Title: `LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning`
Abstract: https://arxiv.org/abs/2007.08124
LogiQA is a dataset for testing human logical reasoning. It consists of 8,678 QA
instances, covering multiple types of deductive reasoning. Results show that state-
of-the-art neural models perform by far worse than human ceiling. The dataset can
also serve as a benchmark for reinvestigating logical AI under the deep learning
NLP setting.
Homepage: https://github.com/lgw863/LogiQA-dataset
### Citation
```
@misc{liu2020logiqa,
title={LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning},
author={Jian Liu and Leyang Cui and Hanmeng Liu and Dandan Huang and Yile Wang and Yue Zhang},
year={2020},
eprint={2007.08124},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Groups and Tasks
#### Groups
* Not part of a group yet
#### Tasks
* `logiqa`
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group:
- multiple_choice
task: logiqa
dataset_path: EleutherAI/logiqa
dataset_name: logiqa
......
......@@ -25,15 +25,19 @@ Homepage: https://github.com/csitfun/LogiQA2.0
doi={10.1109/TASLP.2023.3293046}}
```
### Subtasks
### Groups and Tasks
`logiqa2_zh`: The original dataset in Chinese.
#### Groups
`logiqa2_NLI`: The NLI version of the dataset converted from the MRC version.
* Not part of a group yet
`logieval`: Prompt based; https://github.com/csitfun/LogiEval
#### Tasks
The subtasks have not been verified yet.
* `logiqa2_zh`: The original dataset in Chinese.
* `logiqa2_NLI`: The NLI version of the dataset converted from the MRC version.
* `logieval`: Prompt based; https://github.com/csitfun/LogiEval
NOTE! The subtasks have not been verified yet.
### Checklist
......
group:
- greedy_until
task: logieval
dataset_path: baber/logiqa2
dataset_name: logieval
......
group:
- multiple_choice
task: logiqa2
dataset_path: baber/logiqa2
dataset_name: logiqa2
......
......@@ -25,7 +25,13 @@ Homepage: https://math-qa.github.io/math-QA/
}
```
### Subtasks
### Groups and Tasks
#### Groups
* `math_word_problems`
#### Tasks
* `mathqa`: The MathQA dataset, as a multiple choice dataset where the answer choices are not in context.
......
group:
- multiple_choice
- math_word_problems
task: mathqa
dataset_path: math_qa
......
# MC Taco
### Paper
Title: `"Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding`
Abstract: https://arxiv.org/abs/1909.03065
MC-TACO is a dataset of 13k question-answer pairs that require temporal commonsense
comprehension. The dataset contains five temporal properties, (1) duration (how long
an event takes), (2) temporal ordering (typical order of events), (3) typical time
(when an event occurs), (4) frequency (how often an event occurs), and (5) stationarity
(whether a state is maintained for a very long time or indefinitely).
WARNING: Running this task with a `--limit` arg will give misleading results! The
corresponding dataset is structured such that each multiple-choice-question gathered
by the authors is split into question-option pairs, where each such pair gets
siloed into an individual document for plausibility testing. Because the harness
shuffles these documents, setting `--limit` will likely "cut off" certain candidate
answers. This is a problem because the task's metrics require an exhaustive evaluation
of a question's options. See section 4 of the paper for details.
Homepage: https://leaderboard.allenai.org/mctaco/submissions/public
### Citation
```
BibTeX-formatted citation goes here
```
### Groups and Tasks
#### Groups
* Not part of a group yet.
#### Tasks
* `mc_taco`
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
task: mc_taco
dataset_path: mc_taco
output_type: multiple_choice
validation_split: validation
test_split: test
doc_to_text: "{{sentence}}\nQuestion: {{question}}\nAnswer: {{answer}}\nPlausible:"
doc_to_target: label
doc_to_choice: ["no", "yes"]
should_decontaminate: true
doc_to_decontamination_query: "{{question}} {{sentence}}"
metric_list:
- metric: acc
- metric: f1
# Task-name
### Paper
Title: `Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering`
Abstract: https://arxiv.org/abs/1809.02789
OpenBookQA is a question-answering dataset modeled after open book exams for
assessing human understanding of a subject. It consists of 5,957 multiple-choice
elementary-level science questions (4,957 train, 500 dev, 500 test), which probe
the understanding of a small “book” of 1,326 core science facts and the application
of these facts to novel situations. For training, the dataset includes a mapping
from each question to the core science fact it was designed to probe. Answering
OpenBookQA questions requires additional broad common knowledge, not contained
in the book. The questions, by design, are answered incorrectly by both a retrieval-
based algorithm and a word co-occurrence algorithm.
Homepage: https://allenai.org/data/open-book-qa
### Citation
```
@inproceedings{OpenBookQA2018,
title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
booktitle={EMNLP},
year={2018}
}
```
### Groups and Tasks
#### Groups
* Not part of a group yet
#### Tasks
* `openbookqa`
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group:
- multiple_choice
task: openbookqa
dataset_path: openbookqa
dataset_name: main
......
# The Pile
### Paper
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
https://arxiv.org/pdf/2101.00027.pdf
Title: The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Abstract: https://arxiv.org/abs/2101.00027
The Pile is a 825 GiB diverse, open source language modelling data set that consists
of 22 smaller, high-quality datasets combined together. To score well on Pile
......@@ -21,3 +22,47 @@ Homepage: https://pile.eleuther.ai/
year={2020}
}
```
### Groups and Tasks
#### Groups
* `pile`
#### Tasks
* `pile_arxiv`
* `pile_bookcorpus2`
* `pile_books3`
* `pile_dm-mathematics`
* `pile_enron`
* `pile_europarl`
* `pile_freelaw`
* `pile_github`
* `pile_gutenberg`
* `pile_hackernews`
* `pile_nih-exporter`
* `pile_opensubtitles`
* `pile_openwebtext2`
* `pile_philpapers`
* `pile_pile-cc`
* `pile_pubmed-abstracts`
* `pile_pubmed-central`
* `pile_stackexchange`
* `pile_ubuntu-irc`
* `pile_uspto`
* `pile_wikipedia`
* `pile_youtubesubtitles`
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group:
- pile
- perplexity
- loglikelihood_rolling
task: pile_arxiv
dataset_path: EleutherAI/pile
dataset_name: pile_arxiv
......
# PIQA
### Paper
Title: `PIQA: Reasoning about Physical Commonsense in Natural Language`
Abstract: https://arxiv.org/abs/1911.11641
Physical Interaction: Question Answering (PIQA) is a physical commonsense
reasoning and a corresponding benchmark dataset. PIQA was designed to investigate
the physical knowledge of existing models. To what extent are current approaches
actually learning about the world?
Homepage: https://yonatanbisk.com/piqa/
### Citation
```
@inproceedings{Bisk2020,
author = {Yonatan Bisk and Rowan Zellers and
Ronan Le Bras and Jianfeng Gao
and Yejin Choi},
title = {PIQA: Reasoning about Physical Commonsense in
Natural Language},
booktitle = {Thirty-Fourth AAAI Conference on
Artificial Intelligence},
year = {2020},
}
```
### Groups and Tasks
#### Groups
* Not part of a group yet.
#### Tasks
* `piqa`
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group:
- multiple_choice
task: piqa
dataset_path: piqa
dataset_name: null
......
# PROST
### Paper
Title: `PROST: Physical Reasoning about Objects Through Space and Time`
Abstract: https://arxiv.org/abs/2106.03634
PROST, Physical Reasoning about Objects Through Space and Time, is a dataset
consisting of 18,736 multiple-choice questions made from 14 manually curated
templates, covering 10 physical reasoning concepts. All questions are designed
to probe both causal and masked language models in a zero-shot setting.
NOTE: PROST is limited to the zero-shot setting to adhere to authors' intentions
as discussed in section 7 of the paper: "We hope that the community will use
this dataset in the intended way: in a zero-shot setting to probe models which
have been trained on data not specifically collected to succeed on PROST."
Homepage: https://github.com/nala-cub/prost
### Citation
```
@inproceedings{aroca-ouellette-etal-2021-prost,
title = "{PROST}: {P}hysical Reasoning about Objects through Space and Time",
author = "Aroca-Ouellette, St{\'e}phane and
Paik, Cory and
Roncone, Alessandro and
Kann, Katharina",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.404",
pages = "4597--4608",
}
```
### Groups and Tasks
#### Groups
* Not part of a group yet.
#### Tasks
* `prost`
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group:
- multiple_choice
task: prost
dataset_path: corypaik/prost
dataset_name: null
......
# PubMedQA
### Paper
Title: `PubMedQA: A Dataset for Biomedical Research Question Answering`
Abstract: https://arxiv.org/abs/1909.06146
PubMedQA is a novel biomedical question answering (QA) dataset collected from
PubMed abstracts. The task of PubMedQA is to answer research questions with
yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after
coronary artery bypass grafting?) using the corresponding abstracts. PubMedQA
has 1k expert-annotated, 61.2k unlabeled and 211.3k artificially generated QA
instances. Each PubMedQA instance is composed of (1) a question which is either
an existing research article title or derived from one, (2) a context which is
the corresponding abstract without its conclusion, (3) a long answer, which is
the conclusion of the abstract and, presumably, answers the research question,
and (4) a yes/no/maybe answer which summarizes the conclusion.
Homepage: https://pubmedqa.github.io/
### Citation
```
@inproceedings{jin2019pubmedqa,
title={PubMedQA: A Dataset for Biomedical Research Question Answering},
author={Jin, Qiao and Dhingra, Bhuwan and Liu, Zhengping and Cohen, William and Lu, Xinghua},
booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
pages={2567--2577},
year={2019}
}
```
### Groups and Tasks
#### Groups
* Not part of a group yet
#### Tasks
* `pubmed_qa`
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group:
- multiple_choice
task: pubmed_qa
dataset_path: pubmed_qa
dataset_name: pqa_labeled
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment