Unverified Commit cda25fef authored by Lintang Sutawika's avatar Lintang Sutawika Committed by GitHub
Browse files

Merge branch 'main' into standardize_metrics

parents dfb41835 4d10ad56
...@@ -33,4 +33,4 @@ metric_list: ...@@ -33,4 +33,4 @@ metric_list:
aggregation: mean aggregation: mean
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 2.0 version: 2.0
...@@ -10,4 +10,4 @@ metric_list: ...@@ -10,4 +10,4 @@ metric_list:
aggregation: mean aggregation: mean
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 2.0 version: 2.0
...@@ -6,7 +6,6 @@ from rouge_score import rouge_scorer, scoring ...@@ -6,7 +6,6 @@ from rouge_score import rouge_scorer, scoring
def process_results_mc2(doc, results): def process_results_mc2(doc, results):
lls, is_greedy = zip(*results) lls, is_greedy = zip(*results)
# Split on the first `0` as everything before it is true (`1`). # Split on the first `0` as everything before it is true (`1`).
...@@ -20,7 +19,6 @@ def process_results_mc2(doc, results): ...@@ -20,7 +19,6 @@ def process_results_mc2(doc, results):
def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset: def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:
return dataset.map(preprocess_function) return dataset.map(preprocess_function)
...@@ -49,7 +47,6 @@ def preprocess_function(examples): ...@@ -49,7 +47,6 @@ def preprocess_function(examples):
def process_results_gen(doc, results): def process_results_gen(doc, results):
completion = results[0] completion = results[0]
true_refs, false_refs = doc["correct_answers"], doc["incorrect_answers"] true_refs, false_refs = doc["correct_answers"], doc["incorrect_answers"]
all_refs = true_refs + false_refs all_refs = true_refs + false_refs
......
...@@ -17,4 +17,4 @@ metric_list: ...@@ -17,4 +17,4 @@ metric_list:
ignore_case: false ignore_case: false
ignore_punctuation: false ignore_punctuation: false
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -17,4 +17,4 @@ metric_list: ...@@ -17,4 +17,4 @@ metric_list:
ignore_case: false ignore_case: false
ignore_punctuation: false ignore_punctuation: false
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -17,4 +17,4 @@ metric_list: ...@@ -17,4 +17,4 @@ metric_list:
ignore_case: false ignore_case: false
ignore_punctuation: false ignore_punctuation: false
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -17,4 +17,4 @@ metric_list: ...@@ -17,4 +17,4 @@ metric_list:
ignore_case: false ignore_case: false
ignore_punctuation: false ignore_punctuation: false
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -17,4 +17,4 @@ metric_list: ...@@ -17,4 +17,4 @@ metric_list:
ignore_case: false ignore_case: false
ignore_punctuation: false ignore_punctuation: false
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -17,4 +17,4 @@ metric_list: ...@@ -17,4 +17,4 @@ metric_list:
aggregation: mean aggregation: mean
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -15,4 +15,4 @@ metric_list: ...@@ -15,4 +15,4 @@ metric_list:
- metric: byte_perplexity - metric: byte_perplexity
- metric: bits_per_byte - metric: bits_per_byte
metadata: metadata:
- version: 2.0 version: 2.0
...@@ -14,4 +14,4 @@ metric_list: ...@@ -14,4 +14,4 @@ metric_list:
aggregation: mean aggregation: mean
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -16,4 +16,4 @@ metric_list: ...@@ -16,4 +16,4 @@ metric_list:
aggregation: !function metrics.agg_bleu aggregation: !function metrics.agg_bleu
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 0.0 version: 0.0
...@@ -14,4 +14,4 @@ metric_list: ...@@ -14,4 +14,4 @@ metric_list:
aggregation: mean aggregation: mean
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -11,4 +11,4 @@ doc_to_choice: !function utils.doc_to_choice ...@@ -11,4 +11,4 @@ doc_to_choice: !function utils.doc_to_choice
metric_list: metric_list:
- metric: acc - metric: acc
metadata: metadata:
- version: 1.0 version: 1.0
import argparse import argparse
from typing import Dict, List
import yaml import yaml
......
...@@ -16,4 +16,4 @@ metric_list: ...@@ -16,4 +16,4 @@ metric_list:
aggregation: mean aggregation: mean
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -15,4 +15,4 @@ metric_list: ...@@ -15,4 +15,4 @@ metric_list:
aggregation: mean aggregation: mean
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 1.0 version: 1.0
...@@ -17,4 +17,4 @@ metric_list: ...@@ -17,4 +17,4 @@ metric_list:
aggregation: mean aggregation: mean
higher_is_better: true higher_is_better: true
metadata: metadata:
- version: 1.0 version: 1.0
import os import collections
import re import fnmatch
import sys import functools
import yaml import gc
import importlib.util
import inspect import inspect
import logging
import os
import pathlib import pathlib
import functools import re
import subprocess import subprocess
import collections import sys
import importlib.util import time
import fnmatch from functools import wraps
from itertools import islice
from typing import Iterator, List, Literal, Union, Any, Callable from typing import (
Any,
Callable,
Iterable,
Iterator,
List,
Literal,
Optional,
Tuple,
Type,
Union,
)
import gc
import torch import torch
import transformers import transformers
import yaml
from jinja2 import BaseLoader, Environment, StrictUndefined from jinja2 import BaseLoader, Environment, StrictUndefined
from itertools import islice
import logging
logging.basicConfig( logging.basicConfig(
format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s", format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
...@@ -143,7 +154,7 @@ class MultiChoice: ...@@ -143,7 +154,7 @@ class MultiChoice:
def __contains__(self, values) -> bool: def __contains__(self, values) -> bool:
for value in values.split(","): for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0: if len(fnmatch.filter(self.choices, value)) == 0:
eval_logger.info(f"Available tasks to choose:") eval_logger.info("Available tasks to choose:")
for choice in self.choices: for choice in self.choices:
eval_logger.info(f" - {choice}") eval_logger.info(f" - {choice}")
raise ValueError("'{}' is not in task list".format(value)) raise ValueError("'{}' is not in task list".format(value))
...@@ -157,7 +168,7 @@ class MultiChoice: ...@@ -157,7 +168,7 @@ class MultiChoice:
# Returns a list containing all values of the source_list that # Returns a list containing all values of the source_list that
# match at least one of the patterns # match at least one of the patterns
def pattern_match(patterns, source_list): def pattern_match(patterns, source_list):
if type(patterns) == str: if isinstance(patterns, str):
patterns = [patterns] patterns = [patterns]
task_names = set() task_names = set()
...@@ -332,7 +343,7 @@ class Grouper: ...@@ -332,7 +343,7 @@ class Grouper:
def make_table(result_dict, column: str = "results"): def make_table(result_dict, column: str = "results"):
"""Generate table of results.""" """Generate table of results."""
from pytablewriter import MarkdownTableWriter, LatexTableWriter from pytablewriter import LatexTableWriter, MarkdownTableWriter
if column == "results": if column == "results":
column_name = "Tasks" column_name = "Tasks"
...@@ -466,7 +477,7 @@ def import_function(loader, node): ...@@ -466,7 +477,7 @@ def import_function(loader, node):
yaml_path = os.path.dirname(loader.name) yaml_path = os.path.dirname(loader.name)
*module_name, function_name = function_name.split(".") *module_name, function_name = function_name.split(".")
if type(module_name) == list: if isinstance(module_name, list):
module_name = ".".join(module_name) module_name = ".".join(module_name)
module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name))) module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
...@@ -496,7 +507,7 @@ def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None): ...@@ -496,7 +507,7 @@ def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):
include_path = yaml_config["include"] include_path = yaml_config["include"]
del yaml_config["include"] del yaml_config["include"]
if type(include_path) == str: if isinstance(include_path, str):
include_path = [include_path] include_path = [include_path]
# Load from the last one first # Load from the last one first
...@@ -671,7 +682,7 @@ def divide(iterable, n) -> List[Iterator]: ...@@ -671,7 +682,7 @@ def divide(iterable, n) -> List[Iterator]:
"""Divide the elements from *iterable* into *n* parts, maintaining """Divide the elements from *iterable* into *n* parts, maintaining
order. order.
>>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6]) >>> group_1, group_2 = divide([1, 2, 3, 4, 5, 6], 2)
>>> list(group_1) >>> list(group_1)
[1, 2, 3] [1, 2, 3]
>>> list(group_2) >>> list(group_2)
...@@ -680,14 +691,14 @@ def divide(iterable, n) -> List[Iterator]: ...@@ -680,14 +691,14 @@ def divide(iterable, n) -> List[Iterator]:
If the length of *iterable* is not evenly divisible by *n*, then the If the length of *iterable* is not evenly divisible by *n*, then the
length of the returned iterables will not be identical: length of the returned iterables will not be identical:
>>> children = divide(3, [1, 2, 3, 4, 5, 6, 7]) >>> children = divide([1, 2, 3, 4, 5, 6, 7], 3)
>>> [list(c) for c in children] >>> [list(c) for c in children]
[[1, 2, 3], [4, 5], [6, 7]] [[1, 2, 3], [4, 5], [6, 7]]
If the length of the iterable is smaller than n, then the last returned If the length of the iterable is smaller than n, then the last returned
iterables will be empty: iterables will be empty:
>>> children = divide(5, [1, 2, 3]) >>> children = divide([1, 2, 3], 5)
>>> [list(c) for c in children] >>> [list(c) for c in children]
[[1], [2], [3], [], []] [[1], [2], [3], [], []]
...@@ -716,3 +727,205 @@ def divide(iterable, n) -> List[Iterator]: ...@@ -716,3 +727,205 @@ def divide(iterable, n) -> List[Iterator]:
ret.append(iter(seq[start:stop])) ret.append(iter(seq[start:stop]))
return ret return ret
def retry_on_specific_exceptions(
on_exceptions: List[Type[Exception]],
max_retries: Optional[int] = None,
backoff_time: float = 3.0,
backoff_multiplier: float = 1.5,
on_exception_callback: Optional[Callable[[Exception, float], Any]] = None,
):
"""Retry on an LLM Provider's rate limit error with exponential backoff
For example, to use for OpenAI, do the following:
```
from openai import RateLimitError
# Recommend specifying max_retries to avoid infinite loops!
@retry_on_specific_exceptions([RateLimitError], max_retries=3)
def completion(...):
# Wrap OpenAI completion function here
...
```
"""
def decorator(func: Callable):
@wraps(func)
def wrapper(*args, **kwargs):
sleep_time = backoff_time
attempt = 0
while max_retries is None or attempt < max_retries:
try:
return func(*args, **kwargs)
except tuple(on_exceptions) as e:
if on_exception_callback is not None:
on_exception_callback(e, sleep_time)
time.sleep(sleep_time)
sleep_time *= backoff_multiplier
attempt += 1
return wrapper
return decorator
class Collator:
"""
A class for reordering and batching elements of an array.
This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data.
"""
def __init__(
self,
arr: List,
sort_fn: Callable,
group_fn: Callable = lambda x: x[1],
grouping: bool = False,
) -> None:
self.grouping = grouping
self.fn = sort_fn
self.group_fn = lambda x: group_fn(x[1]) # first index are enumerated indices
self.reorder_indices: List = []
self.size = len(arr)
self.arr_with_indices: Iterable[Any] = tuple(enumerate(arr)) # [indices, (arr)]
if self.grouping is True:
self.group_by_index()
def group_by_index(self) -> None:
self.arr_with_indices = self.group(
self.arr_with_indices, fn=self.group_fn, values=False
)
def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator:
"""
Generates and yields batches from the reordered array.
Parameters:
- n (int): The size of each batch. Defaults to 1.
- batch_fn (Optional[Callable[[int, Iterable], int]]): A function to determine the size of each batch. Defaults to None.
Yields:
Iterator: An iterator over batches of reordered elements.
"""
if self.grouping:
for (
key,
values,
) in self.arr_with_indices.items(): # type: ignore
values = self._reorder(values)
batch = self.get_chunks(values, n=n, fn=batch_fn)
yield from batch
else:
values = self._reorder(self.arr_with_indices) # type: ignore
batch = self.get_chunks(values, n=n, fn=batch_fn)
yield from batch
def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> List:
"""
Reorders the elements in the array based on the sorting function.
Parameters:
- arr (Union[List, Tuple[Tuple[int, Any], ...]]): The array or iterable to be reordered.
Yields:
List: Yields reordered elements one by one.
"""
arr = sorted(arr, key=lambda x: self.fn(x[1]))
self.reorder_indices.extend([x[0] for x in arr])
yield from [x[1] for x in arr]
def get_original(self, newarr: List) -> List:
"""
Restores the original order of elements from the reordered list.
Parameters:
- newarr (List): The reordered array.
Returns:
List: The array with elements restored to their original order.
"""
res = [None] * self.size
cov = [False] * self.size
for ind, v in zip(self.reorder_indices, newarr):
res[ind] = v
cov[ind] = True
assert all(cov)
return res
def __len__(self):
return self.size
@staticmethod
def group(arr: Iterable, fn: Callable, values: bool = False) -> Iterable:
"""
Groups elements of an iterable based on a provided function.
Parameters:
- arr (Iterable): The iterable to be grouped.
- fn (Callable): The function to determine the grouping.
- values (bool): If True, returns the values of the group. Defaults to False.
Returns:
Iterable: An iterable of grouped elements.
"""
res = collections.defaultdict(list)
for ob in arr:
try:
hashable_dict = tuple(
(
key,
tuple(value)
if isinstance(value, collections.abc.Iterable)
else value,
)
for key, value in sorted(fn(ob).items())
)
res[hashable_dict].append(ob)
except TypeError:
res[fn(ob)].append(ob)
if not values:
return res
return res.values()
@staticmethod
def get_chunks(_iter, n: int = 0, fn=None):
"""
Divides an iterable into chunks of specified size or based on a given function.
Useful for batching
Parameters:
- iter: The input iterable to be divided into chunks.
- n: An integer representing the size of each chunk. Default is 0.
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
Returns:
An iterator that yields chunks of the input iterable.
Example usage:
```
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for chunk in chunks(data, 3):
print(chunk)
```
Output:
```
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
```
"""
arr = []
_iter = tuple(_iter)
for i, x in enumerate(_iter):
arr.append(x)
if len(arr) == (fn(i, _iter) if fn else n):
yield arr
arr = []
if arr:
yield arr
...@@ -54,35 +54,48 @@ Homepage = "https://github.com/EleutherAI/lm-evaluation-harness" ...@@ -54,35 +54,48 @@ Homepage = "https://github.com/EleutherAI/lm-evaluation-harness"
Repository = "https://github.com/EleutherAI/lm-evaluation-harness" Repository = "https://github.com/EleutherAI/lm-evaluation-harness"
[project.optional-dependencies] [project.optional-dependencies]
dev = ["black", "flake8", "pre-commit", "pytest", "pytest-cov"] anthropic = ["anthropic"]
linting = [ dev = ["pytest", "pytest-cov", "pytest-xdist", "pre-commit", "mypy"]
"flake8", gptq = ["auto-gptq[triton] @ git+https://github.com/PanQiWei/AutoGPTQ"]
"pylint", ifeval = ["langdetect", "immutabledict"]
"mypy", mamba = ["mamba_ssm", "causal-conv1d==1.0.2"]
"pre-commit",
]
testing = ["pytest", "pytest-cov", "pytest-xdist"]
multilingual = ["nagisa>=0.2.7", "jieba>=0.42.1", "pycountry"]
math = ["sympy>=1.12", "antlr4-python3-runtime==4.11"] math = ["sympy>=1.12", "antlr4-python3-runtime==4.11"]
sentencepiece = ["sentencepiece>=0.1.98", "protobuf>=4.22.1"] multilingual = ["nagisa>=0.2.7", "jieba>=0.42.1", "pycountry"]
openai = ["openai==1.3.9", "tiktoken"]
promptsource = [ promptsource = [
"promptsource @ git+https://github.com/bigscience-workshop/promptsource.git#egg=promptsource" "promptsource @ git+https://github.com/bigscience-workshop/promptsource.git#egg=promptsource"
] ]
gptq = ["auto-gptq[triton] @ git+https://github.com/PanQiWei/AutoGPTQ"] sentencepiece = ["sentencepiece>=0.1.98", "protobuf>=4.22.1"]
anthropic = ["anthropic"] testing = ["pytest", "pytest-cov", "pytest-xdist"]
openai = ["openai==1.3.9", "tiktoken"] vllm = ["vllm<=0.2.5"]
vllm = ["vllm"] zeno = ["pandas", "zeno-client"]
ifeval = ["langdetect", "immutabledict"]
all = [ all = [
"lm_eval[anthropic]",
"lm_eval[dev]", "lm_eval[dev]",
"lm_eval[testing]", "lm_eval[gptq]",
"lm_eval[ifeval]",
"lm_eval[linting]", "lm_eval[linting]",
"lm_eval[mamba]",
"lm_eval[math]",
"lm_eval[multilingual]", "lm_eval[multilingual]",
"lm_eval[sentencepiece]",
"lm_eval[promptsource]",
"lm_eval[gptq]",
"lm_eval[anthropic]",
"lm_eval[openai]", "lm_eval[openai]",
"lm_eval[promptsource]",
"lm_eval[sentencepiece]",
"lm_eval[testing]",
"lm_eval[vllm]", "lm_eval[vllm]",
"lm_eval[ifeval]", "lm_eval[zeno]",
] ]
[tool.ruff]
extend-exclude = ["lm_eval/evaluator.py", "lm_eval/tasks/*.py"]
[tool.ruff.lint]
extend-select = ["I"]
[tool.ruff.isort]
lines-after-imports = 2
known-first-party = ["lm_eval"]
[tool.ruff.extend-per-file-ignores]
"__init__.py" = ["F401","F402","F403","I"]
"lm_eval/tasks/*"= ["E721"]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment