Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
b9614a3e
Commit
b9614a3e
authored
Jan 19, 2025
by
Baber
Browse files
nit
parent
352127ae
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
13 additions
and
4 deletions
+13
-4
lm_eval/tasks/ruler/cwe_utils.py
lm_eval/tasks/ruler/cwe_utils.py
+4
-1
lm_eval/tasks/ruler/fwe_utils.py
lm_eval/tasks/ruler/fwe_utils.py
+4
-1
lm_eval/tasks/ruler/qa_utils.py
lm_eval/tasks/ruler/qa_utils.py
+1
-1
lm_eval/tasks/ruler/vt_utils.py
lm_eval/tasks/ruler/vt_utils.py
+4
-1
No files found.
lm_eval/tasks/ruler/cwe_utils.py
View file @
b9614a3e
...
@@ -172,7 +172,10 @@ def get_dataset(pretrained, seq=None, **kwargs):
...
@@ -172,7 +172,10 @@ def get_dataset(pretrained, seq=None, **kwargs):
def
get_cw_dataset
(
**
kwargs
):
def
get_cw_dataset
(
**
kwargs
):
kwargs
=
kwargs
.
get
(
"metadata"
,
{})
kwargs
=
kwargs
.
get
(
"metadata"
,
{})
pretrained
=
kwargs
.
get
(
"tokenizer"
,
kwargs
.
get
(
"pretrained"
,
{}))
pretrained
=
kwargs
.
get
(
"tokenizer"
,
kwargs
.
get
(
"pretrained"
,
{}))
df
=
(
get_dataset
(
pretrained
,
seq
=
seq
)
for
seq
in
DEFAULT_SEQ_LENGTHS
)
df
=
(
get_dataset
(
pretrained
,
seq
=
seq
)
for
seq
in
kwargs
.
pop
(
"max_seq_lengths"
,
DEFAULT_SEQ_LENGTHS
)
)
return
{
return
{
"test"
:
datasets
.
Dataset
.
from_list
(
"test"
:
datasets
.
Dataset
.
from_list
(
...
...
lm_eval/tasks/ruler/fwe_utils.py
View file @
b9614a3e
...
@@ -159,7 +159,10 @@ def get_dataset(pretrained, max_seq_length=None, **kwargs):
...
@@ -159,7 +159,10 @@ def get_dataset(pretrained, max_seq_length=None, **kwargs):
def
fwe_download
(
**
kwargs
):
def
fwe_download
(
**
kwargs
):
kwargs
=
kwargs
.
get
(
"metadata"
,
{})
kwargs
=
kwargs
.
get
(
"metadata"
,
{})
pretrained
=
kwargs
.
get
(
"tokenizer"
,
kwargs
.
get
(
"pretrained"
,
{}))
pretrained
=
kwargs
.
get
(
"tokenizer"
,
kwargs
.
get
(
"pretrained"
,
{}))
df
=
(
get_dataset
(
pretrained
,
max_seq_length
=
seq
)
for
seq
in
DEFAULT_SEQ_LENGTHS
)
df
=
(
get_dataset
(
pretrained
,
max_seq_length
=
seq
)
for
seq
in
kwargs
.
pop
(
"max_seq_lengths"
,
DEFAULT_SEQ_LENGTHS
)
)
return
{
return
{
"test"
:
datasets
.
Dataset
.
from_list
(
"test"
:
datasets
.
Dataset
.
from_list
(
...
...
lm_eval/tasks/ruler/qa_utils.py
View file @
b9614a3e
...
@@ -223,7 +223,7 @@ def get_qa_dataset(ds, **kwargs) -> dict[str, datasets.Dataset]:
...
@@ -223,7 +223,7 @@ def get_qa_dataset(ds, **kwargs) -> dict[str, datasets.Dataset]:
qas
,
docs
=
read_hotpotqa
()
qas
,
docs
=
read_hotpotqa
()
df
=
(
df
=
(
get_dataset
(
pretrained
=
pretrained
,
docs
=
docs
,
qas
=
qas
,
max_seq_length
=
seq
)
get_dataset
(
pretrained
=
pretrained
,
docs
=
docs
,
qas
=
qas
,
max_seq_length
=
seq
)
for
seq
in
DEFAULT_SEQ_LENGTHS
for
seq
in
kwargs
.
pop
(
"max_seq_lengths"
,
DEFAULT_SEQ_LENGTHS
)
)
)
return
{
return
{
...
...
lm_eval/tasks/ruler/vt_utils.py
View file @
b9614a3e
...
@@ -239,7 +239,10 @@ def get_dataset(pretrained, seq=None, **kwargs) -> list[dict]:
...
@@ -239,7 +239,10 @@ def get_dataset(pretrained, seq=None, **kwargs) -> list[dict]:
def
get_vt_dataset
(
**
kwargs
)
->
dict
[
str
,
datasets
.
Dataset
]:
def
get_vt_dataset
(
**
kwargs
)
->
dict
[
str
,
datasets
.
Dataset
]:
kwargs
=
kwargs
.
get
(
"metadata"
,
{})
kwargs
=
kwargs
.
get
(
"metadata"
,
{})
pretrained
=
kwargs
.
get
(
"tokenizer"
,
kwargs
.
get
(
"pretrained"
,
{}))
pretrained
=
kwargs
.
get
(
"tokenizer"
,
kwargs
.
get
(
"pretrained"
,
{}))
df
=
(
get_dataset
(
pretrained
,
seq
=
seq
)
for
seq
in
DEFAULT_SEQ_LENGTHS
)
df
=
(
get_dataset
(
pretrained
,
seq
=
seq
)
for
seq
in
kwargs
.
pop
(
"max_seq_lengths"
,
DEFAULT_SEQ_LENGTHS
)
)
return
{
return
{
"test"
:
datasets
.
Dataset
.
from_list
(
"test"
:
datasets
.
Dataset
.
from_list
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment