"git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "8e22824eec2e35d1a926268ed694cac2d0e9f413"
Unverified Commit a6c640d3 authored by Lintang Sutawika's avatar Lintang Sutawika Committed by GitHub
Browse files

Merge branch 'big-refactor' into seq2seq-refactor

parents 55eccc29 24e3e3fa
"""
TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension
https://arxiv.org/pdf/1705.03551.pdf
TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence
triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts
and independently gathered evidence documents, six per question on average, that provide
high quality distant supervision for answering the questions.
Homepage: https://nlp.cs.washington.edu/triviaqa/
"""
import inspect
# import lm_eval.datasets.triviaqa.triviaqa
import string
from lm_eval.api.task import Task
from lm_eval.api.instance import Instance
from lm_eval.api.registry import register_task
from lm_eval.api.metrics import mean
_CITATION = """
@InProceedings{JoshiTriviaQA2017,
author = {Joshi, Mandar and Choi, Eunsol and Weld, Daniel S. and Zettlemoyer, Luke},
title = {TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension},
booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics},
month = {July},
year = {2017},
address = {Vancouver, Canada},
publisher = {Association for Computational Linguistics},
}
"""
@register_task("triviaqa")
class TriviaQA(Task):
VERSION = 1
DATASET_PATH = "trivia_qa" # inspect.getfile(lm_eval.datasets.triviaqa.triviaqa)
DATASET_NAME = "unfiltered.nocontext"
OUTPUT_TYPE = "greedy_until"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
return self.dataset["train"]
def validation_docs(self):
return self.dataset["validation"]
def test_docs(self):
raise NotImplementedError()
def doc_to_text(self, doc):
return f"Q: {doc['question']}\nA:"
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["question"]
def doc_to_target(self, doc):
return " " + doc["answer"]["value"]
def _remove_prefixes(self, aliases):
# Optimization: Remove any alias that has a strict prefix elsewhere in the list
# we can do this because if the prefix is acceptable by isgreedy, we can stop looking
aliases.sort()
ret = [aliases[0]]
for alias in aliases[1:]:
if not alias.startswith(ret[-1]):
ret.append(alias)
return ret
def construct_requests(self, doc, ctx, **kwargs):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
continuation = Instance(
request_type=self.OUTPUT_TYPE,
doc=doc,
arguments=(
ctx,
{
"until": ["\n", ".", ","],
"do_sample": False,
},
),
idx=0,
**kwargs,
)
return continuation
def process_results(self, doc, results):
continuation = (
results[0]
.strip()
.lower()
.translate(str.maketrans("", "", string.punctuation))
)
list_of_candidates = [
alias.lower().translate(str.maketrans("", "", string.punctuation))
for alias in self._remove_prefixes(doc["answer"]["aliases"])
]
return {"em": float(continuation in list_of_candidates)}
def aggregation(self):
return {
"em": mean,
}
def higher_is_better(self):
return {"em": True}
"""
Pointer Sentinel Mixture Models
https://arxiv.org/pdf/1609.07843.pdf
The WikiText language modeling dataset is a collection of over 100 million tokens
extracted from the set of verified Good and Featured articles on Wikipedia.
NOTE: This `Task` is based on WikiText-2.
Homepage: https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
"""
import re
from lm_eval.api.task import PerplexityTask
from lm_eval.api.registry import register_task, register_group
_CITATION = """
@misc{merity2016pointer,
title={Pointer Sentinel Mixture Models},
author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
year={2016},
eprint={1609.07843},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
def wikitext_detokenizer(string):
# contractions
string = string.replace("s '", "s'")
string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string)
# number separators
string = string.replace(" @-@ ", "-")
string = string.replace(" @,@ ", ",")
string = string.replace(" @.@ ", ".")
# punctuation
string = string.replace(" : ", ": ")
string = string.replace(" ; ", "; ")
string = string.replace(" . ", ". ")
string = string.replace(" ! ", "! ")
string = string.replace(" ? ", "? ")
string = string.replace(" , ", ", ")
# double brackets
string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string)
string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string)
string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string)
string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string)
string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string)
# miscellaneous
string = string.replace("= = = =", "====")
string = string.replace("= = =", "===")
string = string.replace("= =", "==")
string = string.replace(" " + chr(176) + " ", chr(176))
string = string.replace(" \n", "\n")
string = string.replace("\n ", "\n")
string = string.replace(" N ", " 1 ")
string = string.replace(" 's", "'s")
return string
@register_task("wikitext")
class WikiText(PerplexityTask):
VERSION = "2.0"
DATASET_PATH = "EleutherAI/wikitext_document_level"
DATASET_NAME = "wikitext-2-raw-v1"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def training_docs(self):
return map(self._process_doc, self.dataset["train"])
def validation_docs(self):
return map(self._process_doc, self.dataset["validation"])
def test_docs(self):
return map(self._process_doc, self.dataset["test"])
def _process_doc(self, doc):
return doc["page"]
def doc_to_target(self, doc):
return wikitext_detokenizer(doc)
def should_decontaminate(self):
return True
def count_words(self, doc):
# count number of words in *original doc before detokenization*
return len(re.split(r"\s+", doc))
...@@ -28,9 +28,16 @@ Homepage: https://www.salesforce.com/products/einstein/ai-research/the-wikitext- ...@@ -28,9 +28,16 @@ Homepage: https://www.salesforce.com/products/einstein/ai-research/the-wikitext-
### Subtasks ### Subtasks
* `wikitext`: measure perplexity on the Wikitext dataset, via rolling loglikelihoods.
### Checklist ### Checklist
- [x] Is in Eval-harness v1.0 ? * [x] Is the task an existing benchmark in the literature?
- [x] Has been checked for regression from v1.0? * [x] Have you referenced the original paper that introduced the task?
- [ ] Has been checked for equivalence with original paper methodology? * [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
- [ ] "Main" checked variant clearly denoted?
If other tasks on this dataset are already supported:
* [x] Is the "Main" variant of this task clearly denoted?
* [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group: group:
- wikitext_group - perplexity
task: default - loglikelihood_rolling
task: wikitext
dataset_path: EleutherAI/wikitext_document_level dataset_path: EleutherAI/wikitext_document_level
dataset_name: wikitext-2-raw-v1 dataset_name: wikitext-2-raw-v1
output_type: loglikelihood_rolling output_type: loglikelihood_rolling
......
...@@ -8,14 +8,20 @@ import functools ...@@ -8,14 +8,20 @@ import functools
import subprocess import subprocess
import collections import collections
import importlib.util import importlib.util
import fnmatch
from typing import List from typing import List, Union
import gc
import torch
from omegaconf import OmegaConf from omegaconf import OmegaConf
from jinja2 import BaseLoader, Environment, StrictUndefined from jinja2 import BaseLoader, Environment, StrictUndefined
from itertools import islice from itertools import islice
import torch import torch
from lm_eval.logger import eval_logger
class ExitCodeError(Exception): class ExitCodeError(Exception):
pass pass
...@@ -25,6 +31,29 @@ def sh(x): ...@@ -25,6 +31,29 @@ def sh(x):
raise ExitCodeError() raise ExitCodeError()
def escaped_split(text, sep_char, maxsplit=-1):
"""Split text into a list on occurrences of the given separation
character `sep_char`. The separation character may be escaped by a
backslash to avoid splitting at that location.
The separation character must be a string of size 1.
If `maxsplit` is given, at most `maxsplit` splits are done (thus,
the list will have at most `maxsplit + 1` elements). If `maxsplit`
is not specified or less than 0, then there is no limit on the
number of splits (all possible splits are made).
"""
assert (
len(sep_char) == 1
), "separation string must be a single character for escaped splitting"
if maxsplit == 0:
return text
maxsplit = max(0, maxsplit)
return re.split(r"(?<!\\)" + sep_char, text, maxsplit)
def simple_parse_args_string(args_string): def simple_parse_args_string(args_string):
""" """
Parses something like Parses something like
...@@ -44,11 +73,11 @@ def join_iters(iters): ...@@ -44,11 +73,11 @@ def join_iters(iters):
yield from iter yield from iter
def chunks(iter, n): def chunks(iter, n=0, fn=None):
arr = [] arr = []
for x in iter: for i, x in enumerate(iter):
arr.append(x) arr.append(x)
if len(arr) == n: if len(arr) == (fn(i) if fn else n):
yield arr yield arr
arr = [] arr = []
...@@ -65,6 +94,35 @@ def group(arr, fn): ...@@ -65,6 +94,35 @@ def group(arr, fn):
return list(res.values()) return list(res.values())
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
eval_logger.warning("{} is not in task list.".format(value))
eval_logger.info(f"Available tasks to choose:")
for choice in self.choices:
eval_logger.info(f" - {choice}")
return True
def __iter__(self):
for choice in self.choices:
yield choice
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
task_names = set()
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return sorted(list(task_names))
def general_detokenize(string): def general_detokenize(string):
string = string.replace(" n't", "n't") string = string.replace(" n't", "n't")
string = string.replace(" )", ")") string = string.replace(" )", ")")
...@@ -122,6 +180,26 @@ def make_disjoint_window(pair): ...@@ -122,6 +180,26 @@ def make_disjoint_window(pair):
return a[: len(a) - (len(b) - 1)], b return a[: len(a) - (len(b) - 1)], b
def select_continuation_from_batch_left_padding(
generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
"""Select the continuation from the batch, removing prompts of different lengths.
Args:
generations (Union[List[List[int]], torch.Tensor]):
A tensor or list-of-lists of shape [batch_size, sequence length].
max_context_size (int):
The size of the biggest context; generations will proceed from that
index.
Example:
PAD PAD Continue : The dog chased the cat [every day of the week]
Riddle me this : The dog chased the cat [yesterday] PAD PAD PAD PAD
Output:
[every day of the week]
[yesterday] PAD PAD PAD PAD
"""
return generations[:, max_context_size:]
class Reorderer: class Reorderer:
def __init__(self, arr, fn): def __init__(self, arr, fn):
self.size = len(arr) self.size = len(arr)
...@@ -174,7 +252,6 @@ def make_table(result_dict): ...@@ -174,7 +252,6 @@ def make_table(result_dict):
version = result_dict["versions"][k] version = result_dict["versions"][k]
for (mf), v in dic.items(): for (mf), v in dic.items():
m, _, f = mf.partition(",") m, _, f = mf.partition(",")
print(m, f)
if m.endswith("_stderr"): if m.endswith("_stderr"):
continue continue
...@@ -360,3 +437,8 @@ def pad_and_concat(max_length:int, tensors: List[torch.Tensor]): ...@@ -360,3 +437,8 @@ def pad_and_concat(max_length:int, tensors: List[torch.Tensor]):
tensors[i] = tensor.unsqueeze(0) tensors[i] = tensor.unsqueeze(0)
return torch.cat(tensors, dim = 0) return torch.cat(tensors, dim = 0)
def clear_torch_cache():
gc.collect()
torch.cuda.empty_cache()
import os import os
import re
import json import json
import fnmatch import fnmatch
import jsonlines
import argparse import argparse
import logging
from lm_eval import evaluator, utils from lm_eval import evaluator, utils
from lm_eval.tasks import ALL_TASKS from lm_eval.api.registry import ALL_TASKS
from lm_eval.logger import eval_logger from lm_eval.logger import eval_logger
os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["TOKENIZERS_PARALLELISM"] = "false"
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
eval_logger.warning("{} is not in task list.".format(value))
eval_logger.info(f"Available tasks to choose:")
for choice in self.choices:
eval_logger.info(f" {choice}")
return True
def __iter__(self):
for choice in self.choices:
yield choice
def parse_args(): def parse_args():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True) parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="") parser.add_argument("--model_args", default="")
parser.add_argument("--tasks", default=None, choices=MultiChoice(ALL_TASKS)) parser.add_argument(
"--tasks", default=None, choices=utils.MultiChoice(sorted(ALL_TASKS))
)
parser.add_argument("--config", default=None) parser.add_argument("--config", default=None)
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0) parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=1) parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
help="Maximal batch size to try with --batch_size auto",
)
parser.add_argument("--device", type=str, default=None) parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None) parser.add_argument("--output_path", default=None)
parser.add_argument("--limit", type=int, default=None) parser.add_argument(
"--limit",
type=float,
default=None,
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument("--data_sampling", type=float, default=None)
parser.add_argument("--no_cache", action="store_true") parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None) parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None) parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true") parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--write_out", action="store_true", default=False)
parser.add_argument("--output_base_path", type=str, default=None)
return parser.parse_args() return parser.parse_args()
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
task_names = set()
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return sorted(list(task_names))
def main(): def main():
args = parse_args() args = parse_args()
...@@ -68,7 +57,9 @@ def main(): ...@@ -68,7 +57,9 @@ def main():
"REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
) )
if args.tasks is not None: if args.tasks is None:
task_names = ALL_TASKS
else:
if os.path.isdir(args.tasks): if os.path.isdir(args.tasks):
import glob import glob
...@@ -79,7 +70,7 @@ def main(): ...@@ -79,7 +70,7 @@ def main():
task_names.append(config) task_names.append(config)
else: else:
tasks_list = args.tasks.split(",") tasks_list = args.tasks.split(",")
task_names = pattern_match(tasks_list, ALL_TASKS) task_names = utils.pattern_match(tasks_list, ALL_TASKS)
for task in [task for task in tasks_list if task not in task_names]: for task in [task for task in tasks_list if task not in task_names]:
if os.path.isfile(task): if os.path.isfile(task):
config = utils.load_yaml_config(task) config = utils.load_yaml_config(task)
...@@ -87,28 +78,60 @@ def main(): ...@@ -87,28 +78,60 @@ def main():
eval_logger.info(f"Selected Tasks: {task_names}") eval_logger.info(f"Selected Tasks: {task_names}")
# TODO: description_dict?
# description_dict = {}
# if args.description_dict_path:
# with open(args.description_dict_path, "r") as f:
# description_dict = json.load(f)
results = evaluator.simple_evaluate( results = evaluator.simple_evaluate(
model=args.model, model=args.model,
model_args=args.model_args, model_args=args.model_args,
tasks=task_names, tasks=task_names,
num_fewshot=args.num_fewshot, num_fewshot=args.num_fewshot,
batch_size=args.batch_size, batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device, device=args.device,
no_cache=args.no_cache,
limit=args.limit, limit=args.limit,
# description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path, decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity, check_integrity=args.check_integrity,
write_out=args.write_out,
output_base_path=args.output_base_path,
) )
if results is not None: if results is not None:
samples = results.pop("samples")
dumped = json.dumps(results, indent=2) dumped = json.dumps(results, indent=2)
print(dumped) print(dumped)
batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
if args.output_path: if args.output_path:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, "w") as f: with open(args.output_path, "w") as f:
f.write(dumped) f.write(dumped)
for task_name, config in results["configs"].items():
output_name = "{}_{}".format(
re.sub("/", "__", args.model_args), task_name
)
if os.path.isdir(args.output_path):
filename = f"./{args.output_path}/{output_name}.jsonl"
elif os.path.isfile(args.output_path):
filename = (
f"./{os.path.dirname(args.output_path)}/{output_name}.jsonl"
)
with jsonlines.open(filename, "w") as f:
f.write_all(samples[task_name])
print( print(
f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, " f"{args.model} ({args.model_args}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}" f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
) )
print(evaluator.make_table(results)) print(evaluator.make_table(results))
......
# bloom-1b1
## bloom-1b1_common_sense_reasoning_0-shot.json
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |23.63|± | 1.24|
| | |acc_norm|25.68|± | 1.28|
|arc_easy | 0|acc |51.47|± | 1.03|
| | |acc_norm|45.45|± | 1.02|
|boolq | 1|acc |59.08|± | 0.86|
|copa | 0|acc |68.00|± | 4.69|
|hellaswag | 0|acc |34.63|± | 0.47|
| | |acc_norm|41.77|± | 0.49|
|mc_taco | 0|em |14.49| | |
| | |f1 |32.43| | |
|openbookqa | 0|acc |19.60|± | 1.78|
| | |acc_norm|29.40|± | 2.04|
|piqa | 0|acc |67.14|± | 1.10|
| | |acc_norm|67.14|± | 1.10|
|prost | 0|acc |23.41|± | 0.31|
| | |acc_norm|30.50|± | 0.34|
|swag | 0|acc |43.43|± | 0.35|
| | |acc_norm|58.28|± | 0.35|
|winogrande | 0|acc |54.93|± | 1.40|
|wsc273 | 0|acc |68.50|± | 2.82|
## bloom-1b1_gsm8k_8-shot.json
|Task |Version|Metric|Value| |Stderr|
|-----|------:|------|----:|---|-----:|
|gsm8k| 0|acc | 0.83|± | 0.25|
## bloom-1b1_mathematical_reasoning_few_shot_5-shot.json
| Task |Version| Metric |Value| |Stderr|
|-------------------------|------:|--------|----:|---|-----:|
|drop | 1|em | 1.38|± | 0.12|
| | |f1 | 4.01|± | 0.15|
|gsm8k | 0|acc | 0.00|± | 0.00|
|math_algebra | 1|acc | 0.00|± | 0.00|
|math_counting_and_prob | 1|acc | 0.21|± | 0.21|
|math_geometry | 1|acc | 0.21|± | 0.21|
|math_intermediate_algebra| 1|acc | 0.00|± | 0.00|
|math_num_theory | 1|acc | 0.19|± | 0.19|
|math_prealgebra | 1|acc | 0.11|± | 0.11|
|math_precalc | 1|acc | 0.00|± | 0.00|
|mathqa | 0|acc |23.55|± | 0.78|
| | |acc_norm|23.62|± | 0.78|
## bloom-1b1_pawsx_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|--------|------:|------|----:|---|-----:|
|pawsx_de| 0|acc |46.95|± | 1.12|
|pawsx_en| 0|acc |52.45|± | 1.12|
|pawsx_es| 0|acc |51.50|± | 1.12|
|pawsx_fr| 0|acc |46.15|± | 1.11|
|pawsx_ja| 0|acc |48.40|± | 1.12|
|pawsx_ko| 0|acc |49.90|± | 1.12|
|pawsx_zh| 0|acc |48.95|± | 1.12|
## bloom-1b1_question_answering_0-shot.json
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|------------|----:|---|-----:|
|headqa_en | 0|acc |26.44|± | 0.84|
| | |acc_norm |30.49|± | 0.88|
|headqa_es | 0|acc |24.43|± | 0.82|
| | |acc_norm |28.30|± | 0.86|
|logiqa | 0|acc |18.89|± | 1.54|
| | |acc_norm |25.65|± | 1.71|
|squad2 | 1|exact | 4.17| | |
| | |f1 | 6.60| | |
| | |HasAns_exact| 2.19| | |
| | |HasAns_f1 | 7.05| | |
| | |NoAns_exact | 6.14| | |
| | |NoAns_f1 | 6.14| | |
| | |best_exact |50.07| | |
| | |best_f1 |50.07| | |
|triviaqa | 1|acc | 2.68|± | 0.15|
|truthfulqa_mc| 1|mc1 |25.34|± | 1.52|
| | |mc2 |41.80|± | 1.46|
|webqs | 0|acc | 1.38|± | 0.26|
## bloom-1b1_reading_comprehension_0-shot.json
|Task|Version|Metric|Value| |Stderr|
|----|------:|------|----:|---|-----:|
|coqa| 1|f1 |45.57|± | 1.88|
| | |em |32.98|± | 1.95|
|drop| 1|em | 3.31|± | 0.18|
| | |f1 | 8.63|± | 0.22|
|race| 1|acc |32.63|± | 1.45|
## bloom-1b1_xcopa_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|--------|------:|------|----:|---|-----:|
|xcopa_et| 0|acc | 50.6|± | 2.24|
|xcopa_ht| 0|acc | 53.0|± | 2.23|
|xcopa_id| 0|acc | 64.8|± | 2.14|
|xcopa_it| 0|acc | 50.8|± | 2.24|
|xcopa_qu| 0|acc | 51.2|± | 2.24|
|xcopa_sw| 0|acc | 54.4|± | 2.23|
|xcopa_ta| 0|acc | 57.0|± | 2.22|
|xcopa_th| 0|acc | 53.2|± | 2.23|
|xcopa_tr| 0|acc | 53.0|± | 2.23|
|xcopa_vi| 0|acc | 62.4|± | 2.17|
|xcopa_zh| 0|acc | 59.4|± | 2.20|
## bloom-1b1_xnli_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|-------|------:|------|----:|---|-----:|
|xnli_ar| 0|acc |33.93|± | 0.67|
|xnli_bg| 0|acc |34.13|± | 0.67|
|xnli_de| 0|acc |39.64|± | 0.69|
|xnli_el| 0|acc |34.03|± | 0.67|
|xnli_en| 0|acc |51.48|± | 0.71|
|xnli_es| 0|acc |47.98|± | 0.71|
|xnli_fr| 0|acc |47.15|± | 0.71|
|xnli_hi| 0|acc |42.32|± | 0.70|
|xnli_ru| 0|acc |40.46|± | 0.69|
|xnli_sw| 0|acc |35.29|± | 0.68|
|xnli_th| 0|acc |33.75|± | 0.67|
|xnli_tr| 0|acc |34.79|± | 0.67|
|xnli_ur| 0|acc |37.33|± | 0.68|
|xnli_vi| 0|acc |44.45|± | 0.70|
|xnli_zh| 0|acc |36.23|± | 0.68|
## bloom-1b1_xstory_cloze_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|---------------|------:|------|----:|---|-----:|
|xstory_cloze_ar| 0|acc |52.88|± | 1.28|
|xstory_cloze_en| 0|acc |62.54|± | 1.25|
|xstory_cloze_es| 0|acc |58.31|± | 1.27|
|xstory_cloze_eu| 0|acc |54.33|± | 1.28|
|xstory_cloze_hi| 0|acc |55.53|± | 1.28|
|xstory_cloze_id| 0|acc |57.91|± | 1.27|
|xstory_cloze_my| 0|acc |46.19|± | 1.28|
|xstory_cloze_ru| 0|acc |48.25|± | 1.29|
|xstory_cloze_sw| 0|acc |50.56|± | 1.29|
|xstory_cloze_te| 0|acc |56.39|± | 1.28|
|xstory_cloze_zh| 0|acc |58.04|± | 1.27|
## bloom-1b1_xwinograd_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|------------|------:|------|----:|---|-----:|
|xwinograd_en| 0|acc |69.98|± | 0.95|
|xwinograd_fr| 0|acc |66.27|± | 5.22|
|xwinograd_jp| 0|acc |52.87|± | 1.61|
|xwinograd_pt| 0|acc |63.12|± | 2.98|
|xwinograd_ru| 0|acc |54.29|± | 2.81|
|xwinograd_zh| 0|acc |69.25|± | 2.06|
{
"results": {
"boolq": {
"acc": 0.5908256880733945,
"acc_stderr": 0.008599563442397352
},
"arc_easy": {
"acc": 0.5147306397306397,
"acc_stderr": 0.010255329977562096,
"acc_norm": 0.45454545454545453,
"acc_norm_stderr": 0.010217299762709435
},
"openbookqa": {
"acc": 0.196,
"acc_stderr": 0.017770751227744862,
"acc_norm": 0.294,
"acc_norm_stderr": 0.020395095484936614
},
"hellaswag": {
"acc": 0.3463453495319657,
"acc_stderr": 0.004748324319714264,
"acc_norm": 0.4177454690300737,
"acc_norm_stderr": 0.004921798492608764
},
"swag": {
"acc": 0.43431970408877335,
"acc_stderr": 0.0035044592489844794,
"acc_norm": 0.5828251524542637,
"acc_norm_stderr": 0.0034862531772295617
},
"arc_challenge": {
"acc": 0.2363481228668942,
"acc_stderr": 0.012414960524301834,
"acc_norm": 0.2568259385665529,
"acc_norm_stderr": 0.0127669237941168
},
"mc_taco": {
"em": 0.1448948948948949,
"f1": 0.32425976796237205
},
"wsc273": {
"acc": 0.684981684981685,
"acc_stderr": 0.028165854394193602
},
"winogrande": {
"acc": 0.5493291239147593,
"acc_stderr": 0.013983928869040239
},
"prost": {
"acc": 0.23409479077711356,
"acc_stderr": 0.003093545711826552,
"acc_norm": 0.3049743808710504,
"acc_norm_stderr": 0.003363606918420179
},
"copa": {
"acc": 0.68,
"acc_stderr": 0.04688261722621504
},
"piqa": {
"acc": 0.6713819368879217,
"acc_stderr": 0.010959127105167048,
"acc_norm": 0.6713819368879217,
"acc_norm_stderr": 0.010959127105167044
}
},
"versions": {
"boolq": 1,
"arc_easy": 0,
"openbookqa": 0,
"hellaswag": 0,
"swag": 0,
"arc_challenge": 0,
"mc_taco": 0,
"wsc273": 0,
"winogrande": 0,
"prost": 0,
"copa": 0,
"piqa": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1,use_accelerate=True",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda:0",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"gsm8k": {
"acc": 0.008339651250947688,
"acc_stderr": 0.002504942226860508
}
},
"versions": {
"gsm8k": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1,use_accelerate=True",
"num_fewshot": 8,
"batch_size": "auto",
"device": "cuda",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"mathqa": {
"acc": 0.2355108877721943,
"acc_stderr": 0.007767687364650971,
"acc_norm": 0.23618090452261306,
"acc_norm_stderr": 0.0077753193787470495
},
"gsm8k": {
"acc": 0.0,
"acc_stderr": 0.0
},
"drop": {
"em": 0.013842281879194632,
"em_stderr": 0.001196510970060749,
"f1": 0.040085989932885986,
"f1_stderr": 0.0014841664758736023
},
"math_geometry": {
"acc": 0.0020876826722338203,
"acc_stderr": 0.0020876826722338315
},
"math_counting_and_prob": {
"acc": 0.002109704641350211,
"acc_stderr": 0.002109704641350211
},
"math_prealgebra": {
"acc": 0.001148105625717566,
"acc_stderr": 0.0011481056257175708
},
"math_num_theory": {
"acc": 0.001851851851851852,
"acc_stderr": 0.0018518518518518448
},
"math_precalc": {
"acc": 0.0,
"acc_stderr": 0.0
},
"math_algebra": {
"acc": 0.0,
"acc_stderr": 0.0
},
"math_intermediate_algebra": {
"acc": 0.0,
"acc_stderr": 0.0
}
},
"versions": {
"mathqa": 0,
"gsm8k": 0,
"drop": 1,
"math_geometry": 1,
"math_counting_and_prob": 1,
"math_prealgebra": 1,
"math_num_theory": 1,
"math_precalc": 1,
"math_algebra": 1,
"math_intermediate_algebra": 1
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1,use_accelerate=True",
"num_fewshot": 5,
"batch_size": "auto",
"device": "cuda:0",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"pawsx_es": {
"acc": 0.515,
"acc_stderr": 0.011178102477052804
},
"pawsx_zh": {
"acc": 0.4895,
"acc_stderr": 0.011180669867648657
},
"pawsx_fr": {
"acc": 0.4615,
"acc_stderr": 0.011149934327957058
},
"pawsx_ko": {
"acc": 0.499,
"acc_stderr": 0.01118311365477017
},
"pawsx_de": {
"acc": 0.4695,
"acc_stderr": 0.011162310405413175
},
"pawsx_ja": {
"acc": 0.484,
"acc_stderr": 0.011177408788874897
},
"pawsx_en": {
"acc": 0.5245,
"acc_stderr": 0.011169702598013186
}
},
"versions": {
"pawsx_es": 0,
"pawsx_zh": 0,
"pawsx_fr": 0,
"pawsx_ko": 0,
"pawsx_de": 0,
"pawsx_ja": 0,
"pawsx_en": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"truthfulqa_mc": {
"mc1": 0.2533659730722154,
"mc1_stderr": 0.01522589934082683,
"mc2": 0.4179977378869182,
"mc2_stderr": 0.014601549068840484
},
"webqs": {
"acc": 0.013779527559055118,
"acc_stderr": 0.002586718737195641
},
"logiqa": {
"acc": 0.1889400921658986,
"acc_stderr": 0.01535436463822078,
"acc_norm": 0.2565284178187404,
"acc_norm_stderr": 0.017129443327887562
},
"squad2": {
"exact": 4.169123220752969,
"f1": 6.5956997780058355,
"HasAns_exact": 2.192982456140351,
"HasAns_f1": 7.05309437656277,
"NoAns_exact": 6.139613120269134,
"NoAns_f1": 6.139613120269134,
"best_exact": 50.07159100480081,
"best_f1": 50.07159100480081
},
"headqa_es": {
"acc": 0.24434719183078046,
"acc_stderr": 0.008207488987159709,
"acc_norm": 0.2830051057622174,
"acc_norm_stderr": 0.008604004902114394
},
"headqa_en": {
"acc": 0.26440554339897887,
"acc_stderr": 0.008423643607316284,
"acc_norm": 0.30488694383661563,
"acc_norm_stderr": 0.008793112278191295
},
"triviaqa": {
"acc": 0.026783346592415803,
"acc_stderr": 0.001517985028991893
}
},
"versions": {
"truthfulqa_mc": 1,
"webqs": 0,
"logiqa": 0,
"squad2": 1,
"headqa_es": 0,
"headqa_en": 0,
"triviaqa": 1
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1,use_accelerate=True",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda:0",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"drop": {
"em": 0.03313758389261745,
"em_stderr": 0.0018330841858875643,
"f1": 0.08634542785234882,
"f1_stderr": 0.0022136353860709133
},
"coqa": {
"f1": 0.4557083534540516,
"f1_stderr": 0.01876948425119881,
"em": 0.3298333333333334,
"em_stderr": 0.019473215823053027
},
"race": {
"acc": 0.3263157894736842,
"acc_stderr": 0.014510987877134932
}
},
"versions": {
"drop": 1,
"coqa": 1,
"race": 1
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1,use_accelerate=True",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda:0",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"xcopa_id": {
"acc": 0.648,
"acc_stderr": 0.02138004238594605
},
"xcopa_ht": {
"acc": 0.53,
"acc_stderr": 0.022342748192502843
},
"xcopa_it": {
"acc": 0.508,
"acc_stderr": 0.02238020883492804
},
"xcopa_et": {
"acc": 0.506,
"acc_stderr": 0.022381462412439324
},
"xcopa_ta": {
"acc": 0.57,
"acc_stderr": 0.02216263442665284
},
"xcopa_th": {
"acc": 0.532,
"acc_stderr": 0.022337186479044296
},
"xcopa_sw": {
"acc": 0.544,
"acc_stderr": 0.022296238348407056
},
"xcopa_zh": {
"acc": 0.594,
"acc_stderr": 0.02198396209008634
},
"xcopa_qu": {
"acc": 0.512,
"acc_stderr": 0.02237662679792717
},
"xcopa_tr": {
"acc": 0.53,
"acc_stderr": 0.02234274819250285
},
"xcopa_vi": {
"acc": 0.624,
"acc_stderr": 0.021683827539286115
}
},
"versions": {
"xcopa_id": 0,
"xcopa_ht": 0,
"xcopa_it": 0,
"xcopa_et": 0,
"xcopa_ta": 0,
"xcopa_th": 0,
"xcopa_sw": 0,
"xcopa_zh": 0,
"xcopa_qu": 0,
"xcopa_tr": 0,
"xcopa_vi": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"xnli_sw": {
"acc": 0.3528942115768463,
"acc_stderr": 0.0067520304764183674
},
"xnli_bg": {
"acc": 0.3413173652694611,
"acc_stderr": 0.006699490620395283
},
"xnli_el": {
"acc": 0.3403193612774451,
"acc_stderr": 0.006694754901092155
},
"xnli_hi": {
"acc": 0.4231536926147705,
"acc_stderr": 0.006980774514705842
},
"xnli_th": {
"acc": 0.3375249500998004,
"acc_stderr": 0.00668131870192652
},
"xnli_ar": {
"acc": 0.3393213572854291,
"acc_stderr": 0.006689986106838006
},
"xnli_de": {
"acc": 0.3964071856287425,
"acc_stderr": 0.0069114198150005334
},
"xnli_ru": {
"acc": 0.40459081836327343,
"acc_stderr": 0.006934900899149144
},
"xnli_vi": {
"acc": 0.44451097804391215,
"acc_stderr": 0.00702107269988888
},
"xnli_tr": {
"acc": 0.34790419161676644,
"acc_stderr": 0.006729921818907745
},
"xnli_ur": {
"acc": 0.37325349301397204,
"acc_stderr": 0.0068339592620100505
},
"xnli_fr": {
"acc": 0.47145708582834334,
"acc_stderr": 0.007053191822382807
},
"xnli_en": {
"acc": 0.5147704590818363,
"acc_stderr": 0.007061629189884944
},
"xnli_es": {
"acc": 0.47984031936127747,
"acc_stderr": 0.00705896771560341
},
"xnli_zh": {
"acc": 0.36227544910179643,
"acc_stderr": 0.006791418670232308
}
},
"versions": {
"xnli_sw": 0,
"xnli_bg": 0,
"xnli_el": 0,
"xnli_hi": 0,
"xnli_th": 0,
"xnli_ar": 0,
"xnli_de": 0,
"xnli_ru": 0,
"xnli_vi": 0,
"xnli_tr": 0,
"xnli_ur": 0,
"xnli_fr": 0,
"xnli_en": 0,
"xnli_es": 0,
"xnli_zh": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"xstory_cloze_te": {
"acc": 0.5638649900727994,
"acc_stderr": 0.012761730431435764
},
"xstory_cloze_ar": {
"acc": 0.528788881535407,
"acc_stderr": 0.012845779070719484
},
"xstory_cloze_zh": {
"acc": 0.5804103242885507,
"acc_stderr": 0.01269964226820075
},
"xstory_cloze_ru": {
"acc": 0.4824619457313038,
"acc_stderr": 0.012859207453266304
},
"xstory_cloze_en": {
"acc": 0.6254136333553938,
"acc_stderr": 0.012455787254852474
},
"xstory_cloze_id": {
"acc": 0.5790866975512905,
"acc_stderr": 0.012705145598630695
},
"xstory_cloze_my": {
"acc": 0.4619457313037723,
"acc_stderr": 0.012829804720321695
},
"xstory_cloze_sw": {
"acc": 0.5056254136333554,
"acc_stderr": 0.012866310923072511
},
"xstory_cloze_es": {
"acc": 0.5830575777630708,
"acc_stderr": 0.01268835412160781
},
"xstory_cloze_hi": {
"acc": 0.5552614162806089,
"acc_stderr": 0.012788295970207786
},
"xstory_cloze_eu": {
"acc": 0.5433487756452681,
"acc_stderr": 0.012818676452481956
}
},
"versions": {
"xstory_cloze_te": 0,
"xstory_cloze_ar": 0,
"xstory_cloze_zh": 0,
"xstory_cloze_ru": 0,
"xstory_cloze_en": 0,
"xstory_cloze_id": 0,
"xstory_cloze_my": 0,
"xstory_cloze_sw": 0,
"xstory_cloze_es": 0,
"xstory_cloze_hi": 0,
"xstory_cloze_eu": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"xwinograd_ru": {
"acc": 0.5428571428571428,
"acc_stderr": 0.028112788378274862
},
"xwinograd_en": {
"acc": 0.6997849462365592,
"acc_stderr": 0.009507809437511165
},
"xwinograd_jp": {
"acc": 0.5286757038581856,
"acc_stderr": 0.016127677684108978
},
"xwinograd_fr": {
"acc": 0.6626506024096386,
"acc_stderr": 0.05221260262032129
},
"xwinograd_zh": {
"acc": 0.6924603174603174,
"acc_stderr": 0.02057614603593188
},
"xwinograd_pt": {
"acc": 0.6311787072243346,
"acc_stderr": 0.02980804663449022
}
},
"versions": {
"xwinograd_ru": 0,
"xwinograd_en": 0,
"xwinograd_jp": 0,
"xwinograd_fr": 0,
"xwinograd_zh": 0,
"xwinograd_pt": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b1",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
# bloom-1b7
## bloom-1b7_common_sense_reasoning_0-shot.json
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |23.55|± | 1.24|
| | |acc_norm|26.79|± | 1.29|
|arc_easy | 0|acc |56.31|± | 1.02|
| | |acc_norm|48.11|± | 1.03|
|boolq | 1|acc |61.77|± | 0.85|
|copa | 0|acc |70.00|± | 4.61|
|hellaswag | 0|acc |37.62|± | 0.48|
| | |acc_norm|46.56|± | 0.50|
|mc_taco | 0|em |12.54| | |
| | |f1 |47.46| | |
|openbookqa | 0|acc |21.40|± | 1.84|
| | |acc_norm|30.00|± | 2.05|
|piqa | 0|acc |68.77|± | 1.08|
| | |acc_norm|70.08|± | 1.07|
|prost | 0|acc |23.52|± | 0.31|
| | |acc_norm|26.70|± | 0.32|
|swag | 0|acc |45.32|± | 0.35|
| | |acc_norm|61.15|± | 0.34|
|winogrande | 0|acc |57.14|± | 1.39|
|wsc273 | 0|acc |72.89|± | 2.70|
## bloom-1b7_gsm8k_8-shot.json
|Task |Version|Metric|Value| |Stderr|
|-----|------:|------|----:|---|-----:|
|gsm8k| 0|acc | 1.29|± | 0.31|
## bloom-1b7_mathematical_reasoning_few_shot_5-shot.json
| Task |Version| Metric |Value| |Stderr|
|-------------------------|------:|--------|----:|---|-----:|
|drop | 1|em | 1.49|± | 0.12|
| | |f1 | 4.31|± | 0.15|
|gsm8k | 0|acc | 0.00|± | 0.00|
|math_algebra | 1|acc | 0.00|± | 0.00|
|math_counting_and_prob | 1|acc | 0.00|± | 0.00|
|math_geometry | 1|acc | 0.00|± | 0.00|
|math_intermediate_algebra| 1|acc | 0.00|± | 0.00|
|math_num_theory | 1|acc | 0.74|± | 0.37|
|math_prealgebra | 1|acc | 0.23|± | 0.16|
|math_precalc | 1|acc | 0.00|± | 0.00|
|mathqa | 0|acc |24.29|± | 0.79|
| | |acc_norm|24.62|± | 0.79|
## bloom-1b7_pawsx_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|--------|------:|------|----:|---|-----:|
|pawsx_de| 0|acc |48.75|± | 1.12|
|pawsx_en| 0|acc |48.90|± | 1.12|
|pawsx_es| 0|acc |51.30|± | 1.12|
|pawsx_fr| 0|acc |46.20|± | 1.12|
|pawsx_ja| 0|acc |44.70|± | 1.11|
|pawsx_ko| 0|acc |45.80|± | 1.11|
|pawsx_zh| 0|acc |45.40|± | 1.11|
## bloom-1b7_question_answering_0-shot.json
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|------------|----:|---|-----:|
|headqa_en | 0|acc |27.75|± | 0.86|
| | |acc_norm |32.57|± | 0.90|
|headqa_es | 0|acc |25.42|± | 0.83|
| | |acc_norm |29.58|± | 0.87|
|logiqa | 0|acc |21.66|± | 1.62|
| | |acc_norm |28.11|± | 1.76|
|squad2 | 1|exact | 1.80| | |
| | |f1 | 4.38| | |
| | |HasAns_exact| 2.40| | |
| | |HasAns_f1 | 7.56| | |
| | |NoAns_exact | 1.21| | |
| | |NoAns_f1 | 1.21| | |
| | |best_exact |50.07| | |
| | |best_f1 |50.07| | |
|triviaqa | 1|acc | 3.14|± | 0.16|
|truthfulqa_mc| 1|mc1 |24.48|± | 1.51|
| | |mc2 |41.32|± | 1.44|
|webqs | 0|acc | 1.28|± | 0.25|
## bloom-1b7_reading_comprehension_0-shot.json
|Task|Version|Metric|Value| |Stderr|
|----|------:|------|----:|---|-----:|
|coqa| 1|f1 |53.55|± | 1.89|
| | |em |40.90|± | 2.03|
|drop| 1|em | 0.69|± | 0.08|
| | |f1 | 6.89|± | 0.16|
|race| 1|acc |33.21|± | 1.46|
## bloom-1b7_xcopa_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|--------|------:|------|----:|---|-----:|
|xcopa_et| 0|acc | 47.4|± | 2.24|
|xcopa_ht| 0|acc | 50.4|± | 2.24|
|xcopa_id| 0|acc | 63.2|± | 2.16|
|xcopa_it| 0|acc | 52.6|± | 2.24|
|xcopa_qu| 0|acc | 50.6|± | 2.24|
|xcopa_sw| 0|acc | 51.8|± | 2.24|
|xcopa_ta| 0|acc | 56.6|± | 2.22|
|xcopa_th| 0|acc | 53.2|± | 2.23|
|xcopa_tr| 0|acc | 52.8|± | 2.23|
|xcopa_vi| 0|acc | 65.8|± | 2.12|
|xcopa_zh| 0|acc | 61.4|± | 2.18|
## bloom-1b7_xnli_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|-------|------:|------|----:|---|-----:|
|xnli_ar| 0|acc |33.57|± | 0.67|
|xnli_bg| 0|acc |35.43|± | 0.68|
|xnli_de| 0|acc |40.58|± | 0.69|
|xnli_el| 0|acc |33.99|± | 0.67|
|xnli_en| 0|acc |50.14|± | 0.71|
|xnli_es| 0|acc |47.82|± | 0.71|
|xnli_fr| 0|acc |48.18|± | 0.71|
|xnli_hi| 0|acc |43.95|± | 0.70|
|xnli_ru| 0|acc |39.32|± | 0.69|
|xnli_sw| 0|acc |34.51|± | 0.67|
|xnli_th| 0|acc |33.37|± | 0.67|
|xnli_tr| 0|acc |34.93|± | 0.67|
|xnli_ur| 0|acc |40.50|± | 0.69|
|xnli_vi| 0|acc |46.23|± | 0.70|
|xnli_zh| 0|acc |36.21|± | 0.68|
## bloom-1b7_xstory_cloze_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|---------------|------:|------|----:|---|-----:|
|xstory_cloze_ar| 0|acc |55.00|± | 1.28|
|xstory_cloze_en| 0|acc |64.66|± | 1.23|
|xstory_cloze_es| 0|acc |60.82|± | 1.26|
|xstory_cloze_eu| 0|acc |54.93|± | 1.28|
|xstory_cloze_hi| 0|acc |56.78|± | 1.27|
|xstory_cloze_id| 0|acc |59.76|± | 1.26|
|xstory_cloze_my| 0|acc |47.25|± | 1.28|
|xstory_cloze_ru| 0|acc |50.36|± | 1.29|
|xstory_cloze_sw| 0|acc |52.28|± | 1.29|
|xstory_cloze_te| 0|acc |56.52|± | 1.28|
|xstory_cloze_zh| 0|acc |58.24|± | 1.27|
## bloom-1b7_xwinograd_0-shot.json
| Task |Version|Metric|Value| |Stderr|
|------------|------:|------|----:|---|-----:|
|xwinograd_en| 0|acc |74.71|± | 0.90|
|xwinograd_fr| 0|acc |68.67|± | 5.12|
|xwinograd_jp| 0|acc |54.12|± | 1.61|
|xwinograd_pt| 0|acc |63.50|± | 2.97|
|xwinograd_ru| 0|acc |52.38|± | 2.82|
|xwinograd_zh| 0|acc |69.64|± | 2.05|
{
"results": {
"mc_taco": {
"em": 0.12537537537537538,
"f1": 0.47458014393437276
},
"arc_easy": {
"acc": 0.5631313131313131,
"acc_stderr": 0.010177672928157678,
"acc_norm": 0.4810606060606061,
"acc_norm_stderr": 0.010252420496894487
},
"boolq": {
"acc": 0.617737003058104,
"acc_stderr": 0.008499149690449272
},
"piqa": {
"acc": 0.6877040261153428,
"acc_stderr": 0.010812581599154424,
"acc_norm": 0.7007616974972797,
"acc_norm_stderr": 0.010684130673134581
},
"copa": {
"acc": 0.7,
"acc_stderr": 0.046056618647183814
},
"prost": {
"acc": 0.23521562766865928,
"acc_stderr": 0.003098672944164254,
"acc_norm": 0.2669726729291204,
"acc_norm_stderr": 0.00323196492387981
},
"hellaswag": {
"acc": 0.37621987651862177,
"acc_stderr": 0.004834461997944872,
"acc_norm": 0.46564429396534557,
"acc_norm_stderr": 0.004977988452502641
},
"swag": {
"acc": 0.4532140357892632,
"acc_stderr": 0.0035195819088979174,
"acc_norm": 0.6114665600319904,
"acc_norm_stderr": 0.003446127007510879
},
"openbookqa": {
"acc": 0.214,
"acc_stderr": 0.01835979750238702,
"acc_norm": 0.3,
"acc_norm_stderr": 0.020514426225628046
},
"wsc273": {
"acc": 0.7289377289377289,
"acc_stderr": 0.02695226692070332
},
"arc_challenge": {
"acc": 0.2354948805460751,
"acc_stderr": 0.012399451855004752,
"acc_norm": 0.26791808873720135,
"acc_norm_stderr": 0.012942030195136423
},
"winogrande": {
"acc": 0.5714285714285714,
"acc_stderr": 0.013908353814606709
}
},
"versions": {
"mc_taco": 0,
"arc_easy": 0,
"boolq": 1,
"piqa": 0,
"copa": 0,
"prost": 0,
"hellaswag": 0,
"swag": 0,
"openbookqa": 0,
"wsc273": 0,
"arc_challenge": 0,
"winogrande": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b7,use_accelerate=True",
"num_fewshot": 0,
"batch_size": "auto",
"device": "cuda:0",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
{
"results": {
"gsm8k": {
"acc": 0.01288855193328279,
"acc_stderr": 0.00310690126649963
}
},
"versions": {
"gsm8k": 0
},
"config": {
"model": "hf-causal-experimental",
"model_args": "pretrained=bigscience/bloom-1b7,use_accelerate=True",
"num_fewshot": 8,
"batch_size": "auto",
"device": "cuda",
"no_cache": true,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment