Unverified Commit a2af2101 authored by Yen-Ting Lin's avatar Yen-Ting Lin Committed by GitHub
Browse files

Merge branch 'EleutherAI:main' into main

parents 82cb25c1 d5f39bf8
"dataset_name": "nutrition"
"description": "فم بعملية التقييم في مجال علوم أخرى \n\n"
"description": "以下是关于营养学的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_nutrition"
"task": "cmmlu_nutrition"
"dataset_name": "philosophy"
"description": "فم بعملية التقييم في مجال العلوم الانسانية \n\n"
"description": "以下是关于哲学的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_philosophy"
"task": "cmmlu_philosophy"
"dataset_name": "professional_accounting"
"description": "فم بعملية التقييم في مجال علوم أخرى \n\n"
"description": "以下是关于专业会计的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_professional_accounting"
"task": "cmmlu_professional_accounting"
"dataset_name": "professional_law"
"description": "فم بعملية التقييم في مجال العلوم الانسانية \n\n"
"description": "以下是关于专业法学的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_professional_law"
"task": "cmmlu_professional_law"
"dataset_name": "professional_medicine"
"description": "فم بعملية التقييم في مجال علوم أخرى \n\n"
"description": "以下是关于专业医学的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_professional_medicine"
"task": "cmmlu_professional_medicine"
"dataset_name": "professional_psychology"
"description": "فم بعملية التقييم في مجال العلوم الإجتماعية \n\n"
"description": "以下是关于专业心理学的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_professional_psychology"
"task": "cmmlu_professional_psychology"
"dataset_name": "public_relations"
"description": "فم بعملية التقييم في مجال العلوم الإجتماعية \n\n"
"description": "以下是关于公共关系的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_public_relations"
"task": "cmmlu_public_relations"
"dataset_name": "security_study"
"description": "以下是关于安全研究的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "cmmlu_security_study"
"dataset_name": "sociology"
"description": "فم بعملية التقييم في مجال العلوم الإجتماعية \n\n"
"description": "以下是关于社会学的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_sociology"
"task": "cmmlu_sociology"
"dataset_name": "sports_science"
"description": "以下是关于体育学的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "cmmlu_sports_science"
"dataset_name": "traditional_chinese_medicine"
"description": "以下是关于中医中药的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "cmmlu_traditional_chinese_medicine"
"dataset_name": "virology"
"description": "فم بعملية التقييم في مجال علوم أخرى \n\n"
"description": "以下是关于病毒学的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_virology"
"task": "cmmlu_virology"
"dataset_name": "world_history"
"description": "以下是关于世界历史的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "cmmlu_world_history"
"dataset_name": "world_religions"
"description": "فم بعملية التقييم في مجال العلوم الانسانية \n\n"
"description": "以下是关于世界宗教的单项选择题,请直接给出正确答案的选项。\n\n"
"include": "_default_template_yaml"
"task": "ammlu_world_religions"
"task": "cmmlu_world_religions"
# Task-name
### Paper
Title: `COMMONSENSEQA: A Question Answering Challenge Targeting
Commonsense Knowledge`
Abstract: https://arxiv.org/pdf/1811.00937.pdf
CommonsenseQA is a multiple-choice question answering dataset that requires different types of commonsense knowledge to predict the correct answers.
It contains 12,102 questions with one correct answer and four distractor answers.
Homepage: https://www.tau-nlp.org/commonsenseqa
### Citation
```
@inproceedings{talmor-etal-2019-commonsenseqa,
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
author = "Talmor, Alon and
Herzig, Jonathan and
Lourie, Nicholas and
Berant, Jonathan",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1421",
doi = "10.18653/v1/N19-1421",
pages = "4149--4158",
archivePrefix = "arXiv",
eprint = "1811.00937",
primaryClass = "cs",
}
```
### Groups and Tasks
#### Groups
* Not part of a group yet.
#### Tasks
* `commonsense_qa`: Represents the "random" split from the paper. Uses an MMLU-style prompt, as (presumably) used by Llama evaluations.
### Checklist
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [x] Have you referenced the original paper that introduced the task?
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
task: commonsense_qa
dataset_path: tau/commonsense_qa
training_split: train
validation_split: validation
output_type: multiple_choice
doc_to_text: "Question: {{ question.strip() }}\nA. {{choices['text'][0]}}\nB. {{choices['text'][1]}}\nC. {{choices['text'][2]}}\nD. {{choices['text'][3]}}\nE. {{choices['text'][4]}}\nAnswer:"
doc_to_target: answerKey
doc_to_choice: ['A', 'B', 'C', 'D', 'E']
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
# COPAL
### Paper
Title: `COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances`
Abstract: `https://arxiv.org/abs/2311.01012`
`COPAL-ID is an Indonesian causal commonsense reasoning dataset that captures local nuances. It provides a more natural portrayal of day-to-day causal reasoning within the Indonesian (especially Jakartan) cultural sphere. Professionally written and validatid from scratch by natives, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID.`
Homepage: `https://github.com/haryoa/copal-id`
### Citation
```
@article{wibowo2023copal,
title={COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances},
author={Wibowo, Haryo Akbarianto and Fuadi, Erland Hilman and Nityasya, Made Nindyatama and Prasojo, Radityo Eko and Aji, Alham Fikri},
journal={arXiv preprint arXiv:2311.01012},
year={2023}
}
```
### Groups and Tasks
#### Groups
* `copal_id`
#### Tasks
* `copal_id_standard`: `Standard version of COPAL dataset, use formal language and less local nuances`
* `copal_id_colloquial`: `Colloquial version of COPAL dataset, use informal language and more local nuances`
### Checklist
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [x] Have you referenced the original paper that introduced the task?
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
include: standard.yaml
task: copal_id_colloquial
task_alias: colloquial
test_split: test_colloquial
tag: copal_id
task: copal_id_standard
task_alias: standard
dataset_path: haryoaw/COPAL
dataset_name: id
output_type: multiple_choice
test_split: test
doc_to_text: !function utils.doc_to_text_id
doc_to_target: label
doc_to_choice: !function utils.doc_to_choice
metric_list:
- metric: acc
metadata:
version: 1.0
from functools import partial
def convert_choice(choice):
return choice[0].lower() + choice[1:]
def doc_to_text(doc, connector):
conn = connector[doc["question"]]
return doc["premise"].strip()[:-1] + f" {conn}"
def doc_to_choice(doc):
return [convert_choice(doc["choice1"]), convert_choice(doc["choice2"])]
doc_to_text_id = partial(
doc_to_text,
connector={
"cause": "karena",
"effect": "maka",
},
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment