Unverified Commit 98fba5f3 authored by Baber Abbasi's avatar Baber Abbasi Committed by GitHub
Browse files

Merge branch 'big-refactor' into big-refactor_dp

parents d4093886 7afae7b5
......@@ -39,7 +39,7 @@ repos:
- id: codespell
exclude: >
(?x)^(
.*\.json|ignore.txt|lm_eval/tasks/.*|.*yaml
.*\.json|ignore.txt|lm_eval/tasks/.*|.*yaml|.*\.ipynb
)$
args: [--check-filenames, --check-hidden, --ignore-words=ignore.txt]
- repo: https://github.com/pre-commit/mirrors-mypy
......
......@@ -13,7 +13,7 @@ This project provides a unified framework to test generative language models on
- Evaluation with publicly available prompts ensures reproducibility and comparability between papers.
- Easy support for custom prompts and evaluation metrics.
The Language Model Evaluation Harness is the backend for 🤗 Hugging Face's popular [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), has been used in [hundreds of papers](https://scholar.google.com/scholar?oi=bibs&hl=en&authuser=2&cites=15052937328817631261,4097184744846514103,17476825572045927382,18443729326628441434,12854182577605049984) is used internally by dozens of companies including NVIDIA, Cohere, Booz Allen Hamilton, and Mosaic ML.
The Language Model Evaluation Harness is the backend for 🤗 Hugging Face's popular [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), has been used in [hundreds of papers](https://scholar.google.com/scholar?oi=bibs&hl=en&authuser=2&cites=15052937328817631261,4097184744846514103,17476825572045927382,18443729326628441434,12854182577605049984) is used internally by dozens of companies including NVIDIA, Cohere, Nous Research, Booz Allen Hamilton, and Mosaic ML.
## Install
......@@ -40,10 +40,6 @@ We also provide a number of optional dependencies for extended functionality. Ex
| vllm | For loading models with vLLM |
| all | Loads all extras |
### Support
The best way to get support is to open an issue on this repo or join the EleutherAI discord server](discord.gg/eleutherai). The `#lm-thunderdome` channel is dedicated to developing this project and the `#release-discussion` channel is for receiving support for our releases.
## Basic Usage
### Hugging Face `transformers`
......@@ -51,8 +47,7 @@ The best way to get support is to open an issue on this repo or join the Eleuthe
To evaluate a model hosted on the [HuggingFace Hub](https://huggingface.co/models) (e.g. GPT-J-6B) on `hellaswag` you can use the following command:
```bash
python -m lm_eval \
--model hf \
lm_eval --model hf \
--model_args pretrained=EleutherAI/gpt-j-6B \
--tasks hellaswag \
--device cuda:0 \
......@@ -62,8 +57,7 @@ python -m lm_eval \
Additional arguments can be provided to the model constructor using the `--model_args` flag. Most notably, this supports the common practice of using the `revisions` feature on the Hub to store partially trained checkpoints, or to specify the datatype for running a model:
```bash
python -m lm_eval \
--model hf \
lm_eval --model hf \
--model_args pretrained=EleutherAI/pythia-160m,revision=step100000,dtype="float" \
--tasks lambada_openai,hellaswag \
--device cuda:0 \
......@@ -75,25 +69,26 @@ Models that are loaded via both `transformers.AutoModelForCausalLM` (autoregress
Batch size selection can be automated by setting the ```--batch_size``` flag to ```auto```. This will perform automatic detection of the largest batch size that will fit on your device. On tasks where there is a large difference between the longest and shortest example, it can be helpful to periodically recompute the largest batch size, to gain a further speedup. To do this, append ```:N``` to above flag to automatically recompute the largest batch size ```N``` times. For example, to recompute the batch size 4 times, the command would be:
```bash
python -m lm_eval \
--model hf \
lm_eval --model hf \
--model_args pretrained=EleutherAI/pythia-160m,revision=step100000,dtype="float" \
--tasks lambada_openai,hellaswag \
--device cuda:0 \
--batch_size auto:4
```
Alternatively, you can use `lm-eval` or `lm_eval` instead of `python -m lm_eval` to call lm eval from anywhere.
Alternatively, you can use `lm-eval` instead of `lm_eval`.
> [!Note]
> Just like you can provide a local path to `transformers.AutoModel`, you can also provide a local path to `lm_eval` via `--model_args pretrained=/path/to/model`
### Multi-GPU Evaluation with Hugging Face `accelerate`
#### Multi-GPU Evaluation with Hugging Face `accelerate`
To parallelize evaluation of HuggingFace models across multiple GPUs, we leverage the [accelerate 🚀](https://github.com/huggingface/accelerate) library as follows:
```
accelerate launch -m lm_eval \
--model hf \
accelerate launch -m lm_eval --model hf \
--tasks lambada_openai,arc_easy \
--batch_size 16 \
--batch_size 16
```
This will perform *data-parallel evaluation*: that is, placing a **single full copy** of your model onto each available GPU and *splitting batches across GPUs* to evaluate on K GPUs K times faster than on one.
......@@ -111,32 +106,34 @@ To use `accelerate` with the `lm-eval` command, use
accelerate launch --no_python lm-eval --model ...
```
#### Tensor + Data Parallel and Optimized Inference with `vLLM`
We also support vLLM for faster inference on [supported model types](https://docs.vllm.ai/en/latest/models/supported_models.html).
To run with vLLM, first install the vllm library, externally or via the lm_eval[vllm] extra:
```bash
pip install -e .[vllm]
```
### Tensor + Data Parallel and Optimized Inference with `vLLM`
Then, you can run the library as normal. For single-GPU or multi-GPU — tensor parallel, data parallel, or a combination of both — inference, for example:
We also support vLLM for faster inference on [supported model types](https://docs.vllm.ai/en/latest/models/supported_models.html). For single-GPU or multi-GPU — tensor parallel, data parallel, or a combination of both — inference, for example:
```bash
python -m lm_eval \
--model vllm \
--model_args pretrained={model_name},tensor_parallel_size={number of GPUs per model},data_parallel={number of model replicas},dtype=auto,gpu_memory_utilization=0.8
--tasks lambada_openai
lm_eval --model vllm \
--model_args pretrained={model_name},tensor_parallel_size={number of GPUs to use},dtype=auto,gpu_memory_utilization=0.8 \
--tasks lambada_openai \
--batch_size auto
```
For a full list of supported vLLM configurations, please reference our vLLM integration and the vLLM documentation.
### Supported APIs and Inference Libraries
### Model APIs and Inference Servers
Our library also supports the evaluation of models served via several commercial APIs, and we hope to implement support for the most commonly used performant local/self-hosted inference servers.
A full accounting of the supported and planned libraries + APIs can be seen below:
To call a hosted model, use:
```bash
export OPENAI_API_SECRET_KEY=YOUR_KEY_HERE
lm_eval --model openai-completions \
--model_args engine=davinci \
--tasks lambada_openai,hellaswag
```
Note that for externally hosted models, configs such as `--device` and `--batch_size` should not be used and do not function. Just like you can use `--model_args` to pass arbitrary arguments to the model constructor for local models, you can use it to pass arbitrary arguments to the model API for hosted models. See the documentation of the hosting service for information on what arguments they support.
| API or Inference Server | Implemented? | `--model <xxx>` name | Models supported: | Request Types: |
|-----------------------------|---------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|
......@@ -144,51 +141,39 @@ A full accounting of the supported and planned libraries + APIs can be seen belo
| OpenAI ChatCompletions | :x: Not yet - needs testing! | N/A | [All ChatCompletions API models](https://platform.openai.com/docs/guides/gpt) | `generate_until` (no logprobs) |
| Anthropic | :heavy_check_mark: | `anthropic` | [Supported Anthropic Engines](https://docs.anthropic.com/claude/reference/selecting-a-model) | `generate_until` (no logprobs) |
| GooseAI | :heavy_check_mark: (not separately maintained) | `openai`, `openai-completions`, `gooseai` (same interface as OpenAI Completions) | | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| Textsynth | Needs testing | `textsynth` | ??? | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| Textsynth | :heavy_check_mark: | `textsynth` | [All supported engines](https://textsynth.com/documentation.html#engines) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| Cohere | [:hourglass: - blocked on Cohere API bug](https://github.com/EleutherAI/lm-evaluation-harness/pull/395) | N/A | [All `cohere.generate()` engines](https://docs.cohere.com/docs/models) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| GGML/[Llama.cpp](https://github.com/ggerganov/llama.cpp) (via [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)) | :heavy_check_mark: | `gguf`, `ggml` | Llama-architecture models (Llama, Llama 2, Llemma, Mistral(?), Llama finetunes) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| [Llama.cpp](https://github.com/ggerganov/llama.cpp) (via [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)) | :heavy_check_mark: | `gguf`, `ggml` | [All models supported by llama.cpp](https://github.com/ggerganov/llama.cpp) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| vLLM | :heavy_check_mark: | `vllm` | [Most HF Causal Language Models](https://docs.vllm.ai/en/latest/models/supported_models.html) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| Your inference server here! | ... | ... | ... | ... | | ... |
It is on our roadmap to create task variants designed to enable models which do not serve logprobs/loglikelihoods to be compared with generation performance of open-source models.
Our library supports language models served via the OpenAI Completions API as follows:
```bash
export OPENAI_API_SECRET_KEY=YOUR_KEY_HERE
python -m lm_eval \
--model openai-completions \
--model_args engine=davinci \
--tasks lambada_openai,hellaswag
```
While this functionality is only officially maintained for the official OpenAI API, it tends to also work for other hosting services that use the same API such as [goose.ai](goose.ai) with minor modification. We also have an implementation for the [TextSynth](https://textsynth.com/index.html) API, using `--model textsynth`.
### Other Frameworks
A number of other libraries contain scripts for calling the eval harness through their library. These include [GPT-NeoX](https://github.com/EleutherAI/gpt-neox/blob/main/eval_tasks/eval_adapter.py), [Megatron-DeepSpeed](https://github.com/microsoft/Megatron-DeepSpeed/blob/main/examples/MoE/readme_evalharness.md), and [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/blob/master/eval_harness.py).
A number of other libraries contain scripts for calling the eval harness through their library. These include [GPT-NeoX](https://github.com/EleutherAI/gpt-neox/blob/main/eval_tasks/eval_adapter.py), [Megatron-DeepSpeed](https://github.com/microsoft/Megatron-DeepSpeed/blob/main/examples/MoE/readme_evalharness.md), and [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/blob/master/eval_harness.py).
### Additional Features
If you have a CUDA-compatible Mac GPU, you can run the eval harness using the MPS back-end by replaicng `--device cuda:0` with `--device mps:0`. PyTorch does not currently support automatic mixed precision (AMP) for MPS, so we forcibly cast all weights to fp32 regardless of how they're stored. This is slower and has a larger memory footprint than we can achieve on Linux systems, but as PyTorch continues to improve its MPS support we hope to continue to improve it.
💡 **Tip**: You can inspect what the LM inputs look like by running the following command:
```bash
python write_out.py \
--tasks all_tasks \
--num_fewshot 5 \
--num_examples 10 \
--output_base_path /path/to/output/folder
```
This will write out one text file for each task.
If you have a Metal compatible Mac, you can run the eval harness using the MPS back-end by replacing `--device cuda:0` with `--device mps` (requires PyTorch version 2.1 or higher).
> [!Note]
> You can inspect what the LM inputs look like by running the following command:
>
> ```bash
> python write_out.py \
> --tasks all_tasks \
> --num_fewshot 5 \
> --num_examples 10 \
> --output_base_path /path/to/output/folder
> ```
>
> This will write out one text file for each task.
To verify the data integrity of the tasks you're performing in addition to running the tasks themselves, you can use the `--check_integrity` flag:
```bash
python -m lm_eval \
--model openai \
lm_eval --model openai \
--model_args engine=davinci \
--tasks lambada_openai,hellaswag \
--check_integrity
......@@ -198,8 +183,7 @@ python -m lm_eval \
For models loaded with the HuggingFace `transformers` library, any arguments provided via `--model_args` get passed to the relevant constructor directly. This means that anything you can do with `AutoModel` can be done with our library. For example, you can pass a local path via `pretrained=` or use models finetuned with [PEFT](https://github.com/huggingface/peft) by taking the call you would run to evaluate the base model and add `,peft=PATH` to the `model_args` argument:
```bash
python -m lm_eval \
--model hf \
lm_eval --model hf \
--model_args pretrained=EleutherAI/gpt-j-6b,parallelize=True,load_in_4bit=True,peft=nomic-ai/gpt4all-j-lora \
--tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq \
--device cuda:0
......@@ -208,8 +192,7 @@ python -m lm_eval \
[GPTQ](https://github.com/PanQiWei/AutoGPTQ) quantized models can be loaded by specifying their file names in `,gptq=NAME` (or `,gptq=True` for default names) in the `model_args` argument:
```bash
python -m lm_eval \
--model hf \
lm_eval --model hf \
--model_args pretrained=model-name-or-path,gptq=model.safetensors,gptq_use_triton=True \
--tasks hellaswag
```
......@@ -232,7 +215,7 @@ You can also ask for help, or discuss new features with the maintainers in the #
To implement a new task in the eval harness, see [this guide](./docs/new_task_guide.md).
In general, we following the following priority list for addressing concerns about prompting and other eval details:
In general, we follow this priority list for addressing concerns about prompting and other eval details:
1. If there is widespread agreement among people who train LLMs, use the agreed upon procedure.
2. If there is a clear and unambiguous official implementation, use that procedure.
3. If there is widespread agreement among people who evaluate LLMs, use the agreed upon procedure.
......@@ -242,6 +225,10 @@ These are guidelines and not rules, and can be overruled in special circumstance
We try to prioritize agreement with the procedures used by other groups to decrease the harm when people inevitably compare runs across different papers despite our discouragement of the practice. Historically, we also prioritized the implementation from "Language Models are Few Shot Learners" as our original goal was specifically to compare results with that paper.
### Support
The best way to get support is to open an issue on this repo or join the EleutherAI discord server](https://discord.gg/eleutherai). The `#lm-thunderdome` channel is dedicated to developing this project and the `#release-discussion` channel is for receiving support for our releases.
## Cite as
```
......
......@@ -7,18 +7,4 @@ Welcome to the docs for the LM Evaluation Harness!
* To learn about the public interface of the library, as well as how to evaluate via the commandline or as integrated into an external library, see the [Interface](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/user_guide.md)
* To learn how to add a new library, API, or model type to the library, as well as a quick explainer on the types of ways to evaluate an LM, see the [Model Guide](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/model_guide.md).
* For a crash course on adding new tasks to the library, see our [New Task Guide](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/new_task_guide.md).
* To learn more about pushing the limits of task configuration that the Eval Harness supports, see the [Advanced Task Guide](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/advanced_task_guide.md).
## Progress on Revamp
Tracking progress on revamping documentation pages for the refactor of LM-Evaluation-Harness.
### Desired Pages
* [ ] YAML explainer
* [ ] Explainer on filters + advanced features
* [ ] Walkthrough start-to-finish of adding a new task to codebase
* [ ] Explaining registries + decorators
* [ ] model_guide.md for adding new model API
* [ ] guide to writing an adapter to new advanced codebase (e.g. NeoX)
* [ ] Parallelism guide (?)
* To learn more about pushing the limits of task configuration that the Eval Harness supports, see the [Task Configuration Guide](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/task_guide.md).
......@@ -2,7 +2,9 @@
`lm-evaluation-harness` is a framework that strives to support a wide range of zero- and few-shot evaluation tasks on autoregressive language models (LMs).
This documentation page provides a walkthrough to get started creating your own task, on the `big-refactor` branch of the repository (which will be v0.5.0 in the future.)
This documentation page provides a walkthrough to get started creating your own task, on the `big-refactor` branch of the repository (which will be v0.4.0 in the future.)
A more interactive tutorial is available as a Jupyter notebook [here](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/examples/lm-eval-overview.ipynb).
## Setup
......
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "Qw83KAePAhaS"
},
"source": [
"# Releasing LM-Evaluation-Harness v0.4.0"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Z7k2vq1iAdqr"
},
"source": [
"With the vast amount of work done in the field today, it helps to have a tool that people can use easily to share their results and use to check others to ensure reported numbers are valid. The LM Evaluation Harness is one such tool the community has used extensively. We want to continue to support the community and with that in mind, we’re excited to announce a major update on the LM Evaluation Harness to further our goal for open and accessible AI research."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0gDoM0AJAvEc"
},
"source": [
"Our refactor stems from our desires to make the following believed best practices easier to carry out. \n",
"\n",
"1. Never copy results from other papers\n",
"2. Always share your exact prompts\n",
"3. Always provide model outputs\n",
"4. Qualitatively review a small batch of outputs before running evaluation jobs at scale\n",
"\n",
"We also wanted to make the library a better experience to use and to contribute or design evaluations within. New features in the new release that serve this purpose include:\n",
"\n",
"1. Faster Evaluation Runtimes (accelerated data-parallel inference with HF Transformers + Accelerate, and commonly used or faster inference libraries such as vLLM and Llama-CPP)\n",
"2. Easier addition and sharing of new tasks (YAML-based task config formats, allowing single-file sharing of custom tasks)\n",
"3. More configurability, for more advanced workflows and easier operation with modifying prompts\n",
"4. Better logging of data at runtime and post-hoc"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nnwsOpjda_YW"
},
"source": [
"In this notebook we will be going through a short tutorial on how things work."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zAov81vTbL2K"
},
"source": [
"## Install LM-Eval"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8hiosGzq_qZg",
"outputId": "6ab73e5e-1f54-417e-a388-07e0d870b132"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/EleutherAI/lm-evaluation-harness.git@big-refactor\n",
" Cloning https://github.com/EleutherAI/lm-evaluation-harness.git (to revision big-refactor) to /tmp/pip-req-build-tnssql5s\n",
" Running command git clone --filter=blob:none --quiet https://github.com/EleutherAI/lm-evaluation-harness.git /tmp/pip-req-build-tnssql5s\n",
" Running command git checkout -b big-refactor --track origin/big-refactor\n",
" Switched to a new branch 'big-refactor'\n",
" Branch 'big-refactor' set up to track remote branch 'big-refactor' from 'origin'.\n",
" Resolved https://github.com/EleutherAI/lm-evaluation-harness.git to commit 42f486ee49b65926a444cb0620870a39a5b4b0a8\n",
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"Collecting accelerate>=0.21.0 (from lm-eval==1.0.0)\n",
" Downloading accelerate-0.24.1-py3-none-any.whl (261 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.4/261.4 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting evaluate (from lm-eval==1.0.0)\n",
" Downloading evaluate-0.4.1-py3-none-any.whl (84 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting datasets>=2.0.0 (from lm-eval==1.0.0)\n",
" Downloading datasets-2.15.0-py3-none-any.whl (521 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m521.2/521.2 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting jsonlines (from lm-eval==1.0.0)\n",
" Downloading jsonlines-4.0.0-py3-none-any.whl (8.7 kB)\n",
"Requirement already satisfied: numexpr in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.8.7)\n",
"Collecting peft>=0.2.0 (from lm-eval==1.0.0)\n",
" Downloading peft-0.6.2-py3-none-any.whl (174 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m174.7/174.7 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting pybind11>=2.6.2 (from lm-eval==1.0.0)\n",
" Downloading pybind11-2.11.1-py3-none-any.whl (227 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.7/227.7 kB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting pytablewriter (from lm-eval==1.0.0)\n",
" Downloading pytablewriter-1.2.0-py3-none-any.whl (111 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.1/111.1 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting rouge-score>=0.0.4 (from lm-eval==1.0.0)\n",
" Downloading rouge_score-0.1.2.tar.gz (17 kB)\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Collecting sacrebleu>=1.5.0 (from lm-eval==1.0.0)\n",
" Downloading sacrebleu-2.3.2-py3-none-any.whl (119 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.7/119.7 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: scikit-learn>=0.24.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (1.2.2)\n",
"Collecting sqlitedict (from lm-eval==1.0.0)\n",
" Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: torch>=1.8 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.1.0+cu118)\n",
"Collecting tqdm-multiprocess (from lm-eval==1.0.0)\n",
" Downloading tqdm_multiprocess-0.0.11-py3-none-any.whl (9.8 kB)\n",
"Requirement already satisfied: transformers>=4.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (4.35.2)\n",
"Collecting zstandard (from lm-eval==1.0.0)\n",
" Downloading zstandard-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (1.23.5)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (23.2)\n",
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (5.9.5)\n",
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (6.0.1)\n",
"Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (0.19.4)\n",
"Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (9.0.0)\n",
"Collecting pyarrow-hotfix (from datasets>=2.0.0->lm-eval==1.0.0)\n",
" Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\n",
"Collecting dill<0.3.8,>=0.3.0 (from datasets>=2.0.0->lm-eval==1.0.0)\n",
" Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m14.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (1.5.3)\n",
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2.31.0)\n",
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (4.66.1)\n",
"Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.4.1)\n",
"Collecting multiprocess (from datasets>=2.0.0->lm-eval==1.0.0)\n",
" Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2023.6.0)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.8.6)\n",
"Collecting responses<0.19 (from evaluate->lm-eval==1.0.0)\n",
" Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
"Requirement already satisfied: safetensors in /usr/local/lib/python3.10/dist-packages (from peft>=0.2.0->lm-eval==1.0.0) (0.4.0)\n",
"Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (1.4.0)\n",
"Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (3.8.1)\n",
"Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (1.16.0)\n",
"Collecting portalocker (from sacrebleu>=1.5.0->lm-eval==1.0.0)\n",
" Downloading portalocker-2.8.2-py3-none-any.whl (17 kB)\n",
"Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (2023.6.3)\n",
"Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (0.9.0)\n",
"Collecting colorama (from sacrebleu>=1.5.0->lm-eval==1.0.0)\n",
" Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (4.9.3)\n",
"Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (1.11.3)\n",
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (1.3.2)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (3.2.0)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.13.1)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (4.5.0)\n",
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (1.12)\n",
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.2.1)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.1.2)\n",
"Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (2.1.0)\n",
"Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.1->lm-eval==1.0.0) (0.15.0)\n",
"Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonlines->lm-eval==1.0.0) (23.1.0)\n",
"Requirement already satisfied: setuptools>=38.3.0 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm-eval==1.0.0) (67.7.2)\n",
"Collecting DataProperty<2,>=1.0.1 (from pytablewriter->lm-eval==1.0.0)\n",
" Downloading DataProperty-1.0.1-py3-none-any.whl (27 kB)\n",
"Collecting mbstrdecoder<2,>=1.0.0 (from pytablewriter->lm-eval==1.0.0)\n",
" Downloading mbstrdecoder-1.1.3-py3-none-any.whl (7.8 kB)\n",
"Collecting pathvalidate<4,>=2.3.0 (from pytablewriter->lm-eval==1.0.0)\n",
" Downloading pathvalidate-3.2.0-py3-none-any.whl (23 kB)\n",
"Collecting tabledata<2,>=1.3.1 (from pytablewriter->lm-eval==1.0.0)\n",
" Downloading tabledata-1.3.3-py3-none-any.whl (11 kB)\n",
"Collecting tcolorpy<1,>=0.0.5 (from pytablewriter->lm-eval==1.0.0)\n",
" Downloading tcolorpy-0.1.4-py3-none-any.whl (7.9 kB)\n",
"Collecting typepy[datetime]<2,>=1.3.2 (from pytablewriter->lm-eval==1.0.0)\n",
" Downloading typepy-1.3.2-py3-none-any.whl (31 kB)\n",
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (3.3.2)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (6.0.4)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (4.0.3)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.9.2)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.4.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.3.1)\n",
"Requirement already satisfied: chardet<6,>=3.0.4 in /usr/local/lib/python3.10/dist-packages (from mbstrdecoder<2,>=1.0.0->pytablewriter->lm-eval==1.0.0) (5.2.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (2.0.7)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (2023.7.22)\n",
"Requirement already satisfied: python-dateutil<3.0.0,>=2.8.0 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm-eval==1.0.0) (2.8.2)\n",
"Requirement already satisfied: pytz>=2018.9 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm-eval==1.0.0) (2023.3.post1)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.8->lm-eval==1.0.0) (2.1.3)\n",
"Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score>=0.0.4->lm-eval==1.0.0) (8.1.7)\n",
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8->lm-eval==1.0.0) (1.3.0)\n",
"Building wheels for collected packages: lm-eval, rouge-score, sqlitedict\n",
" Building wheel for lm-eval (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for lm-eval: filename=lm_eval-1.0.0-py3-none-any.whl size=994254 sha256=88356155b19f2891981ecef948326ad6ce8ca40a6009378410ec20d0e225995a\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-9v6ye7h3/wheels/17/01/26/599c0779e9858a70a73fa8a306699b5b9a868f820c225457b0\n",
" Building wheel for rouge-score (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for rouge-score: filename=rouge_score-0.1.2-py3-none-any.whl size=24933 sha256=6bb0d44e4881972c43ce194e7cb65233d309758cb15f0dec54590d3d2efcfc36\n",
" Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n",
" Building wheel for sqlitedict (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16863 sha256=5747f7dd73ddf3d8fbcebf51b5e4f718fabe1e94bccdf16d2f22a2e65ee7fdf4\n",
" Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n",
"Successfully built lm-eval rouge-score sqlitedict\n",
"Installing collected packages: sqlitedict, zstandard, tcolorpy, pybind11, pyarrow-hotfix, portalocker, pathvalidate, mbstrdecoder, jsonlines, dill, colorama, typepy, tqdm-multiprocess, sacrebleu, rouge-score, responses, multiprocess, accelerate, datasets, DataProperty, tabledata, peft, evaluate, pytablewriter, lm-eval\n",
"Successfully installed DataProperty-1.0.1 accelerate-0.24.1 colorama-0.4.6 datasets-2.15.0 dill-0.3.7 evaluate-0.4.1 jsonlines-4.0.0 lm-eval-1.0.0 mbstrdecoder-1.1.3 multiprocess-0.70.15 pathvalidate-3.2.0 peft-0.6.2 portalocker-2.8.2 pyarrow-hotfix-0.6 pybind11-2.11.1 pytablewriter-1.2.0 responses-0.18.0 rouge-score-0.1.2 sacrebleu-2.3.2 sqlitedict-2.1.0 tabledata-1.3.3 tcolorpy-0.1.4 tqdm-multiprocess-0.0.11 typepy-1.3.2 zstandard-0.22.0\n"
]
}
],
"source": [
"# Install LM-Eval\n",
"!pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@big-refactor"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 0,
"referenced_widgets": [
"a1d3a8aa016544a78e8821c8f6199e06",
"f61ed33fad754146bdd2ac9db1ba1c48",
"bfa0af6aeff344c6845e1080a878e92e",
"fd1ad9e0367d4004aae853b91c3a7617",
"6b2d90209ec14230b3d58a74ac9b83bf",
"a73f357065d34d7baf0453ae4a8d75e2",
"46f521b73fd943c081c648fd873ebc0a",
"7c5689bc13684db8a22681f41863dddd",
"48763b6233374554ae76035c0483066f",
"4986a21eb560448fa79f4b25cde48951",
"aed3acd2f2d74003b44079c333a0698e"
]
},
"id": "uyO5MaKkZyah",
"outputId": "d46e8096-5086-4e49-967e-ea33d4a2a335"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a1d3a8aa016544a78e8821c8f6199e06",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading builder script: 0%| | 0.00/5.67k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from lm_eval import api"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8rfUeX6n_wkK"
},
"source": [
"## Create new evaluation tasks with config-based tasks\n",
"\n",
"Even within the same task, many works have reported numbers based on different choices of evaluation. Some report on the test sets, validation sets, or even subset of the training sets. Others have specialized prompts and verbalizers. We introduce YAMLs to allow users to easily make different variations. By leveraging the YAML configs to configure evaluations, the refactored LM-Eval takes the methods of the `Task` object and makes them configurable by setting the appropriate attributes in the config file. There, users can set the tasks they want by setting the name of the HF dataset (local tasks are also possible), the dataset splits used, and much more. Key configurations relating to prompting, such as `doc_to_text`, previously implemented as a method of the same name, are now configurable with jinja2 to allow high-level scripting to transform a HF dataset to text string as input to the model.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HYFUhhfOSJKe"
},
"source": [
"A core-feature to LM-Eval is to configure tasks with YAML configs. With configs, you can fill preset fields to easily set up a task.\n",
"\n",
"Here, we write a demo YAML config for a multiple-choice evaluation of BoolQ:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "bg3dGROW-V39"
},
"outputs": [],
"source": [
"YAML_boolq_string = '''\n",
"task: demo_boolq\n",
"dataset_path: super_glue\n",
"dataset_name: boolq\n",
"output_type: multiple_choice\n",
"training_split: train\n",
"validation_split: validation\n",
"doc_to_text: \"{{passage}}\\nQuestion: {{question}}?\\nAnswer:\"\n",
"doc_to_target: label\n",
"doc_to_choice: [\"no\", \"yes\"]\n",
"should_decontaminate: true\n",
"doc_to_decontamination_query: passage\n",
"metric_list:\n",
" - metric: acc\n",
"'''\n",
"with open('boolq.yaml', 'w') as f:\n",
" f.write(YAML_boolq_string)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we can now run evaluation on this task, by pointing to the config file we've just created:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "LOUHK7PtQfq4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-11-29:11:54:55,156 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
"2023-11-29 11:54:55.942051: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2023-11-29 11:54:55.942108: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2023-11-29 11:54:55.942142: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2023-11-29 11:54:57.066802: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
"2023-11-29:11:55:00,954 INFO [__main__.py:132] Verbosity set to INFO\n",
"2023-11-29:11:55:11,038 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
"2023-11-29:11:55:11,038 INFO [__main__.py:143] Including path: ./\n",
"2023-11-29:11:55:11,046 INFO [__main__.py:205] Selected Tasks: ['demo_boolq']\n",
"2023-11-29:11:55:11,047 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
"2023-11-29:11:55:11,110 INFO [huggingface.py:120] Using device 'cuda'\n",
"config.json: 100% 571/571 [00:00<00:00, 2.87MB/s]\n",
"model.safetensors: 100% 5.68G/5.68G [00:32<00:00, 173MB/s]\n",
"tokenizer_config.json: 100% 396/396 [00:00<00:00, 2.06MB/s]\n",
"tokenizer.json: 100% 2.11M/2.11M [00:00<00:00, 11.6MB/s]\n",
"special_tokens_map.json: 100% 99.0/99.0 [00:00<00:00, 555kB/s]\n",
"2023-11-29:11:56:18,658 WARNING [task.py:614] [Task: demo_boolq] metric acc is defined, but aggregation is not. using default aggregation=mean\n",
"2023-11-29:11:56:18,658 WARNING [task.py:626] [Task: demo_boolq] metric acc is defined, but higher_is_better is not. using default higher_is_better=True\n",
"Downloading builder script: 100% 30.7k/30.7k [00:00<00:00, 59.0MB/s]\n",
"Downloading metadata: 100% 38.7k/38.7k [00:00<00:00, 651kB/s]\n",
"Downloading readme: 100% 14.8k/14.8k [00:00<00:00, 37.3MB/s]\n",
"Downloading data: 100% 4.12M/4.12M [00:00<00:00, 55.1MB/s]\n",
"Generating train split: 100% 9427/9427 [00:00<00:00, 15630.89 examples/s]\n",
"Generating validation split: 100% 3270/3270 [00:00<00:00, 20002.56 examples/s]\n",
"Generating test split: 100% 3245/3245 [00:00<00:00, 20866.19 examples/s]\n",
"2023-11-29:11:56:22,315 INFO [task.py:355] Building contexts for task on rank 0...\n",
"2023-11-29:11:56:22,322 INFO [evaluator.py:319] Running loglikelihood requests\n",
"100% 20/20 [00:04<00:00, 4.37it/s]\n",
"fatal: not a git repository (or any of the parent directories): .git\n",
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
"| Tasks |Version|Filter|n-shot|Metric|Value| |Stderr|\n",
"|----------|-------|------|-----:|------|----:|---|-----:|\n",
"|demo_boolq|Yaml |none | 0|acc | 1|± | 0|\n",
"\n"
]
}
],
"source": [
"!lm_eval \\\n",
" --model hf \\\n",
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
" --include_path ./ \\\n",
" --tasks demo_boolq \\\n",
" --limit 10\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LOUHK7PtQfq4"
},
"source": [
"Often, tasks are part of a larger group used to measure different capabilities. The dynamism of the field today means new dimensions of evaluation can come about which would mix and match new and older tasks alike. In LM-Eval, We can also group tasks and call that the group name to evaluate on a set of tasks easily. In this instance, let's evaluate the group `yes_or_no_tasks` which comprise of the tasks `demo_boolq` and `demo_cola`; tasks which are multiple choice tasks with options `yes` and `no` as the name suggests.\n",
"\n",
"<!-- making new groups is easier than ever, allowing user to work bottom-up by makiing individual tasks and linking them to a group or Top-Down, making a new group by listing existing tasks.\n",
"\n",
"We also show the aggregate across samples besides only showing the aggregation between subtasks. This may come in handy when certain groups want to be aggregated as a single task. -->\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "fthNg3ywO-kA"
},
"outputs": [],
"source": [
"YAML_cola_string = '''\n",
"group: yes_or_no_tasks\n",
"task: demo_cola\n",
"dataset_path: glue\n",
"dataset_name: cola\n",
"output_type: multiple_choice\n",
"training_split: train\n",
"validation_split: validation\n",
"doc_to_text: \"{{sentence}}\\nQuestion: Does this sentence make sense?\\nAnswer:\"\n",
"doc_to_target: label\n",
"doc_to_choice: [\"no\", \"yes\"]\n",
"should_decontaminate: true\n",
"doc_to_decontamination_query: sentence\n",
"metric_list:\n",
" - metric: acc\n",
"'''\n",
"with open('cola.yaml', 'w') as f:\n",
" f.write(YAML_cola_string)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "XceRKCuuDtbn"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-11-29:11:56:33,016 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
"2023-11-29 11:56:33.852995: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2023-11-29 11:56:33.853050: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2023-11-29 11:56:33.853087: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2023-11-29 11:56:35.129047: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
"2023-11-29:11:56:38,546 INFO [__main__.py:132] Verbosity set to INFO\n",
"2023-11-29:11:56:47,509 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
"2023-11-29:11:56:47,509 INFO [__main__.py:143] Including path: ./\n",
"2023-11-29:11:56:47,517 INFO [__main__.py:205] Selected Tasks: ['yes_or_no_tasks']\n",
"2023-11-29:11:56:47,520 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
"2023-11-29:11:56:47,550 INFO [huggingface.py:120] Using device 'cuda'\n",
"2023-11-29:11:57:08,743 WARNING [task.py:614] [Task: demo_cola] metric acc is defined, but aggregation is not. using default aggregation=mean\n",
"2023-11-29:11:57:08,743 WARNING [task.py:626] [Task: demo_cola] metric acc is defined, but higher_is_better is not. using default higher_is_better=True\n",
"Downloading builder script: 100% 28.8k/28.8k [00:00<00:00, 52.7MB/s]\n",
"Downloading metadata: 100% 28.7k/28.7k [00:00<00:00, 51.9MB/s]\n",
"Downloading readme: 100% 27.9k/27.9k [00:00<00:00, 48.0MB/s]\n",
"Downloading data: 100% 377k/377k [00:00<00:00, 12.0MB/s]\n",
"Generating train split: 100% 8551/8551 [00:00<00:00, 19744.58 examples/s]\n",
"Generating validation split: 100% 1043/1043 [00:00<00:00, 27057.01 examples/s]\n",
"Generating test split: 100% 1063/1063 [00:00<00:00, 22705.17 examples/s]\n",
"2023-11-29:11:57:11,698 INFO [task.py:355] Building contexts for task on rank 0...\n",
"2023-11-29:11:57:11,704 INFO [evaluator.py:319] Running loglikelihood requests\n",
"100% 20/20 [00:03<00:00, 5.15it/s]\n",
"fatal: not a git repository (or any of the parent directories): .git\n",
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
"| Tasks |Version|Filter|n-shot|Metric|Value| |Stderr|\n",
"|---------------|-------|------|-----:|------|----:|---|-----:|\n",
"|yes_or_no_tasks|N/A |none | 0|acc | 0.7|± |0.1528|\n",
"| - demo_cola |Yaml |none | 0|acc | 0.7|± |0.1528|\n",
"\n",
"| Groups |Version|Filter|n-shot|Metric|Value| |Stderr|\n",
"|---------------|-------|------|-----:|------|----:|---|-----:|\n",
"|yes_or_no_tasks|N/A |none | 0|acc | 0.7|± |0.1528|\n",
"\n"
]
}
],
"source": [
"# !accelerate launch --no_python\n",
"!lm_eval \\\n",
" --model hf \\\n",
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
" --include_path ./ \\\n",
" --tasks yes_or_no_tasks \\\n",
" --limit 10 \\\n",
" --output output/yes_or_no_tasks/ \\\n",
" --log_samples\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XceRKCuuDtbn"
},
"source": [
"## Edit Prompt Templates Quickly\n",
"\n",
"The following is a yaml made to evaluate the specific subtask of `high_school_geography` from MMLU. It uses the standard prompt where the we choose the letters from the options with most likelihood as the model's prediction."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "GTFvdt9kSlBG"
},
"outputs": [],
"source": [
"YAML_mmlu_geo_string = '''\n",
"group: mmlu\n",
"task: demo_mmlu_high_school_geography\n",
"dataset_path: cais/mmlu\n",
"dataset_name: high_school_geography\n",
"description: \"The following are multiple choice questions (with answers) about high school geography.\\n\\n\"\n",
"test_split: test\n",
"fewshot_split: dev\n",
"fewshot_config:\n",
" sampler: first_n\n",
"output_type: multiple_choice\n",
"doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
"doc_to_choice: [\"A\", \"B\", \"C\", \"D\"]\n",
"doc_to_target: answer\n",
"metric_list:\n",
" - metric: acc\n",
" aggregation: mean\n",
" higher_is_better: true\n",
" - metric: acc_norm\n",
" aggregation: mean\n",
" higher_is_better: true\n",
"'''\n",
"with open('mmlu_high_school_geography.yaml', 'w') as f:\n",
" f.write(YAML_mmlu_geo_string)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "jyKOfCsKb-xy"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-11-29:11:57:23,598 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
"2023-11-29 11:57:24.719750: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2023-11-29 11:57:24.719806: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2023-11-29 11:57:24.719847: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2023-11-29 11:57:26.656125: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
"2023-11-29:11:57:31,563 INFO [__main__.py:132] Verbosity set to INFO\n",
"2023-11-29:11:57:40,541 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
"2023-11-29:11:57:40,541 INFO [__main__.py:143] Including path: ./\n",
"2023-11-29:11:57:40,558 INFO [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography']\n",
"2023-11-29:11:57:40,559 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
"2023-11-29:11:57:40,589 INFO [huggingface.py:120] Using device 'cuda'\n",
"Downloading builder script: 100% 5.84k/5.84k [00:00<00:00, 17.7MB/s]\n",
"Downloading metadata: 100% 106k/106k [00:00<00:00, 892kB/s] \n",
"Downloading readme: 100% 39.7k/39.7k [00:00<00:00, 631kB/s]\n",
"Downloading data: 100% 166M/166M [00:01<00:00, 89.0MB/s]\n",
"Generating auxiliary_train split: 100% 99842/99842 [00:07<00:00, 12536.83 examples/s]\n",
"Generating test split: 100% 198/198 [00:00<00:00, 1439.20 examples/s]\n",
"Generating validation split: 100% 22/22 [00:00<00:00, 4181.76 examples/s]\n",
"Generating dev split: 100% 5/5 [00:00<00:00, 36.25 examples/s]\n",
"2023-11-29:11:58:09,798 INFO [task.py:355] Building contexts for task on rank 0...\n",
"2023-11-29:11:58:09,822 INFO [evaluator.py:319] Running loglikelihood requests\n",
"100% 40/40 [00:05<00:00, 7.86it/s]\n",
"fatal: not a git repository (or any of the parent directories): .git\n",
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
"| Tasks |Version|Filter|n-shot| Metric |Value| |Stderr|\n",
"|-------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
"|demo_mmlu_high_school_geography|Yaml |none | 0|acc | 0.3|± |0.1528|\n",
"| | |none | 0|acc_norm| 0.3|± |0.1528|\n",
"\n"
]
}
],
"source": [
"# !accelerate launch --no_python\n",
"!lm_eval \\\n",
" --model hf \\\n",
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
" --include_path ./ \\\n",
" --tasks demo_mmlu_high_school_geography \\\n",
" --limit 10 \\\n",
" --output output/mmlu_high_school_geography/ \\\n",
" --log_samples"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jyKOfCsKb-xy"
},
"source": [
"We could also evaluate this task in a different way. For example, instead of observing the loglikelihood of the letters, we can instead evaluate on the choices themselves as the continuation. This is done by simply changing `doc_to_choice` from a list of letters to the corresponding `choices` field from the HF dataset. We write `\"{{choices}}\"` so that the string field is interpreted as jinja string that acquires the list from the HF dataset directly.\n",
"\n",
"Another convenient feature here is since we're only modifying the `doc_to_choice` and the rest of config is the same as the task above, we can use the above configuration as a template by using `include: mmlu_high_school_geography.yaml` to load the config from that file. We'll need to add a unique task name as to not colide with the existing yaml config we're including. For this case we'll simply name this one `mmlu_high_school_geography_continuation`. `doc_to_text` is added here just for sake of clarity."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "lqElwU54TaK-"
},
"outputs": [],
"source": [
"YAML_mmlu_geo_string = '''\n",
"include: mmlu_high_school_geography.yaml\n",
"task: demo_mmlu_high_school_geography_continuation\n",
"doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
"doc_to_choice: \"{{choices}}\"\n",
"'''\n",
"with open('mmlu_high_school_geography_continuation.yaml', 'w') as f:\n",
" f.write(YAML_mmlu_geo_string)\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"id": "-_CVnDirdy7j"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-11-29:11:58:21,284 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
"2023-11-29 11:58:22.850159: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2023-11-29 11:58:22.850219: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2023-11-29 11:58:22.850254: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2023-11-29 11:58:24.948103: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
"2023-11-29:11:58:28,460 INFO [__main__.py:132] Verbosity set to INFO\n",
"2023-11-29:11:58:37,935 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
"2023-11-29:11:58:37,935 INFO [__main__.py:143] Including path: ./\n",
"2023-11-29:11:58:37,969 INFO [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography_continuation']\n",
"2023-11-29:11:58:37,972 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
"2023-11-29:11:58:38,008 INFO [huggingface.py:120] Using device 'cuda'\n",
"2023-11-29:11:58:59,758 INFO [task.py:355] Building contexts for task on rank 0...\n",
"2023-11-29:11:58:59,777 INFO [evaluator.py:319] Running loglikelihood requests\n",
"100% 40/40 [00:02<00:00, 16.23it/s]\n",
"fatal: not a git repository (or any of the parent directories): .git\n",
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
"| Tasks |Version|Filter|n-shot| Metric |Value| |Stderr|\n",
"|--------------------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
"|demo_mmlu_high_school_geography_continuation|Yaml |none | 0|acc | 0.1|± |0.1000|\n",
"| | |none | 0|acc_norm| 0.2|± |0.1333|\n",
"\n"
]
}
],
"source": [
"# !accelerate launch --no_python\n",
"!lm_eval \\\n",
" --model hf \\\n",
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
" --include_path ./ \\\n",
" --tasks demo_mmlu_high_school_geography_continuation \\\n",
" --limit 10 \\\n",
" --output output/mmlu_high_school_geography_continuation/ \\\n",
" --log_samples\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-_CVnDirdy7j"
},
"source": [
"If we take a look at the samples, we can see that it is in fact evaluating the continuation based on the choices rather than the letters."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"id": "duBDqC6PAdjL"
},
"outputs": [
{
"data": {
"application/javascript": "\n ((filepath) => {{\n if (!google.colab.kernel.accessAllowed) {{\n return;\n }}\n google.colab.files.view(filepath);\n }})(\"/content/output/mmlu_high_school_geography_continuation/pretrained__EleutherAI__pythia-2.8b_demo_mmlu_high_school_geography_continuation.jsonl\")",
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from google.colab import files\n",
"files.view(\"output/mmlu_high_school_geography_continuation/pretrained__EleutherAI__pythia-2.8b_demo_mmlu_high_school_geography_continuation.jsonl\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6p0-KPwAgK5j"
},
"source": [
"## Closer Look at YAML Fields\n",
"\n",
"To prepare a task we can simply fill in a YAML config with the relevant information.\n",
"\n",
"`output_type`\n",
"The current provided evaluation types comprise of the following:\n",
"1. `loglikelihood`: Evaluates the loglikelihood of a continuation, conditioned on some input string.\n",
"2. `loglikelihood_rolling`: evaluate the loglikelihood of producing a string, conditioned on the empty string. (Used for perplexity evaluations)\n",
"3. `multiple_choice`: Evaluates loglikelihood among the a number of choices predicted by the model.\n",
"4. `greedy_until`: Model outputs greedy generation (can be configured to to use beam search and other generation-related parameters)\n",
"\n",
"The core prompt revolves around 3 fields.\n",
"1. `doc_to_text`: Denotes the prompt template that will be used as input to the model.\n",
"2. `doc_to_choice`: Available choices that will be used as continuation for the model. This is used when the `output_type` is `multiple_choice`, and otherwise can be left as `None`.\n",
"3. `doc_to_target`: When `output_type` is `multiple_choice`, this can be an index that corresponds to the correct answer, or the answer string itself (must be a subset of `doc_to_choice`). For other tasks, this is expected to be a string. You can fill this field with a feature name from the HF dataset so long as the resulting feature follows the conditioned described.\n",
"\n",
"These three fields can be expressed as strings, column names from the source dataset, or as Jinja2 templates that can use fields from the source dataset as variables.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6p0-KPwAgK5j"
},
"source": [
"## What if Jinja is not Sufficient?\n",
"\n",
"There can be times where the Jinja2 templating language is not enough to make the prompt we had in mind. There are a few ways to circumvent this limitation:\n",
"\n",
"1. Use `!function` operator for the prompt-related fields to pass a python function that takes as input the dataset row, and will output the prompt template component.\n",
"2. Perform a transformation on the dataset beforehand."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below, we show an example of using `!function` to create `doc_to_text` from a python function:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "DYZ5c0JhR1lJ",
"outputId": "ca945235-fb9e-4f17-8bfa-78e7d6ec1490"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-11-29:11:59:08,312 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
"2023-11-29 11:59:09.348327: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2023-11-29 11:59:09.348387: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2023-11-29 11:59:09.348421: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2023-11-29 11:59:10.573752: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
"2023-11-29:11:59:14,044 INFO [__main__.py:132] Verbosity set to INFO\n",
"2023-11-29:11:59:23,654 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
"2023-11-29:11:59:23,654 INFO [__main__.py:143] Including path: ./\n",
"2023-11-29:11:59:23,678 INFO [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography_function_prompt']\n",
"2023-11-29:11:59:23,679 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
"2023-11-29:11:59:23,708 INFO [huggingface.py:120] Using device 'cuda'\n",
"2023-11-29:11:59:44,516 INFO [task.py:355] Building contexts for task on rank 0...\n",
"2023-11-29:11:59:44,524 INFO [evaluator.py:319] Running loglikelihood requests\n",
"100% 40/40 [00:02<00:00, 15.41it/s]\n",
"fatal: not a git repository (or any of the parent directories): .git\n",
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
"| Tasks |Version|Filter|n-shot| Metric |Value| |Stderr|\n",
"|-----------------------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
"|demo_mmlu_high_school_geography_function_prompt|Yaml |none | 0|acc | 0.1|± |0.1000|\n",
"| | |none | 0|acc_norm| 0.2|± |0.1333|\n",
"\n"
]
}
],
"source": [
"YAML_mmlu_geo_string = '''\n",
"include: mmlu_high_school_geography.yaml\n",
"task: demo_mmlu_high_school_geography_function_prompt\n",
"doc_to_text: !function utils.doc_to_text\n",
"doc_to_choice: \"{{choices}}\"\n",
"'''\n",
"with open('demo_mmlu_high_school_geography_function_prompt.yaml', 'w') as f:\n",
" f.write(YAML_mmlu_geo_string)\n",
"\n",
"DOC_TO_TEXT = '''\n",
"def doc_to_text(x):\n",
" question = x[\"question\"].strip()\n",
" choices = x[\"choices\"]\n",
" option_a = choices[0]\n",
" option_b = choices[1]\n",
" option_c = choices[2]\n",
" option_d = choices[3]\n",
" return f\"{question}\\\\nA. {option_a}\\\\nB. {option_b}\\\\nC. {option_c}\\\\nD. {option_d}\\\\nAnswer:\"\n",
"'''\n",
"with open('utils.py', 'w') as f:\n",
" f.write(DOC_TO_TEXT)\n",
"\n",
"!lm_eval \\\n",
" --model hf \\\n",
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
" --include_path ./ \\\n",
" --tasks demo_mmlu_high_school_geography_function_prompt \\\n",
" --limit 10 \\\n",
" --output output/demo_mmlu_high_school_geography_function_prompt/ \\\n",
" --log_samples\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we'll also show how to do this via preprocessing the dataset as necessary using the `process_docs` config field:\n",
"\n",
"We will write a function that will modify each document in our evaluation dataset's split to add a field that is suitable for us to use in `doc_to_text`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"YAML_mmlu_geo_string = '''\n",
"include: mmlu_high_school_geography.yaml\n",
"task: demo_mmlu_high_school_geography_function_prompt_2\n",
"process_docs: !function utils_process_docs.process_docs\n",
"doc_to_text: \"{{input}}\"\n",
"doc_to_choice: \"{{choices}}\"\n",
"'''\n",
"with open('demo_mmlu_high_school_geography_process_docs.yaml', 'w') as f:\n",
" f.write(YAML_mmlu_geo_string)\n",
"\n",
"DOC_TO_TEXT = '''\n",
"def process_docs(dataset):\n",
" def _process_doc(x):\n",
" question = x[\"question\"].strip()\n",
" choices = x[\"choices\"]\n",
" option_a = choices[0]\n",
" option_b = choices[1]\n",
" option_c = choices[2]\n",
" option_d = choices[3]\n",
" doc[\"input\"] = f\"{question}\\\\nA. {option_a}\\\\nB. {option_b}\\\\nC. {option_c}\\\\nD. {option_d}\\\\nAnswer:\"\n",
" return out_doc\n",
"\n",
" return dataset.map(_process_doc)\n",
"'''\n",
"\n",
"with open('utils_process_docs.py', 'w') as f:\n",
" f.write(DOC_TO_TEXT)\n",
"\n",
"!lm_eval \\\n",
" --model hf \\\n",
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
" --include_path ./ \\\n",
" --tasks demo_mmlu_high_school_geography_function_prompt_2 \\\n",
" --limit 10 \\\n",
" --output output/demo_mmlu_high_school_geography_function_prompt_2/ \\\n",
" --log_samples\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We hope that this explainer gives you a sense of what can be done with and how to work with LM-Evaluation-Harnes v0.4.0 ! \n",
"\n",
"For more information, check out our documentation pages in the `docs/` folder, and if you have questions, please raise them in GitHub issues, or in #lm-thunderdome or #release-discussion on the EleutherAI discord server."
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [
"zAov81vTbL2K"
],
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"46f521b73fd943c081c648fd873ebc0a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"48763b6233374554ae76035c0483066f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"4986a21eb560448fa79f4b25cde48951": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6b2d90209ec14230b3d58a74ac9b83bf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7c5689bc13684db8a22681f41863dddd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a1d3a8aa016544a78e8821c8f6199e06": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f61ed33fad754146bdd2ac9db1ba1c48",
"IPY_MODEL_bfa0af6aeff344c6845e1080a878e92e",
"IPY_MODEL_fd1ad9e0367d4004aae853b91c3a7617"
],
"layout": "IPY_MODEL_6b2d90209ec14230b3d58a74ac9b83bf"
}
},
"a73f357065d34d7baf0453ae4a8d75e2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"aed3acd2f2d74003b44079c333a0698e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"bfa0af6aeff344c6845e1080a878e92e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7c5689bc13684db8a22681f41863dddd",
"max": 5669,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_48763b6233374554ae76035c0483066f",
"value": 5669
}
},
"f61ed33fad754146bdd2ac9db1ba1c48": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a73f357065d34d7baf0453ae4a8d75e2",
"placeholder": "​",
"style": "IPY_MODEL_46f521b73fd943c081c648fd873ebc0a",
"value": "Downloading builder script: 100%"
}
},
"fd1ad9e0367d4004aae853b91c3a7617": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4986a21eb560448fa79f4b25cde48951",
"placeholder": "​",
"style": "IPY_MODEL_aed3acd2f2d74003b44079c333a0698e",
"value": " 5.67k/5.67k [00:00&lt;00:00, 205kB/s]"
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
......@@ -133,13 +133,6 @@ class LM(abc.ABC):
additional_config = {} if additional_config is None else additional_config
args = utils.simple_parse_args_string(arg_string)
args2 = {k: v for k, v in additional_config.items() if v is not None}
# TODO: delete once float16 MPS is fixed in torch stable
if (
args2.get("device") in ("mps", "mps:0")
or args.get("device") in ("mps", "mps:0")
and "dev" not in torch.__version__
):
args["dtype"] = "float32"
return cls(**args, **args2)
@property
......
import os
from packaging import version
import torch
import transformers
from transformers.models.auto.modeling_auto import (
......@@ -118,11 +118,11 @@ class HFLM(LM):
device = int(device)
self._device = torch.device(device)
eval_logger.info(f"Using device '{device}'")
if device in ("mps", "mps:0") and "dev" not in torch.__version__:
eval_logger.info(
"MPS: Setting dtype to float32. To use float16 with MPS, please install a nightly build of "
"PyTorch: pip3 install --pre torch torchvision torchaudio --index-url "
"https://download.pytorch.org/whl/nightly/cpu"
if device in ("mps", "mps:0") and version.parse(
torch.__version__
) < version.parse("2.1"):
raise RuntimeError(
f"mps requires torch >= 2.1. You have {torch.__version__}"
)
else:
eval_logger.info("Device not specified")
......
import os
import time
from typing import List, Tuple
import copy
from collections import defaultdict
from tqdm import tqdm
from lm_eval import utils
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
......@@ -51,7 +55,7 @@ please install these via `pip install lm-eval[openai]` or `pip install -e .[open
backoff_time = 3
while True:
try:
return openai.Completion.create(**kwargs)
return openai.Completions.create(**kwargs)
except openai.error.OpenAIError:
import traceback
......@@ -60,7 +64,7 @@ please install these via `pip install lm-eval[openai]` or `pip install -e .[open
backoff_time *= 1.5
@register_model("openai", "openai-completions", "gooseai")
@register_model("gooseai")
class OpenaiCompletionsLM(LM):
REQ_CHUNK_SIZE = 20
......@@ -304,3 +308,211 @@ class OpenaiCompletionsLM(LM):
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
return loglikelihoods
def oa_chat_completion(client, **kwargs):
"""Query OpenAI API for chat completion.
Retry with back-off until they respond
"""
try:
import openai, tiktoken # noqa: E401
except ModuleNotFoundError:
raise Exception(
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
)
async def _get_completions(**kwargs):
chat_completions = await client.chat.completions.create(**kwargs)
return chat_completions
backoff_time = 3
while True:
try:
return client.chat.completions.create(**kwargs)
except openai.OpenAIError:
import traceback
traceback.print_exc()
time.sleep(backoff_time)
backoff_time *= 1.5
@register_model("openai-chat-completions")
class OpenaiChatCompletionsLM(LM):
def __init__(
self, model: str = "gpt-3.5-turbo", truncate: bool = False, batch_size: int = 1
) -> None:
"""
:param model: str
OpenAI API model (e.g. gpt-3.5-turbo)
:param truncate: bool
Truncate input if too long (if False and input is too long, throw error)
"""
super().__init__()
try:
import openai, tiktoken # noqa: E401
except ModuleNotFoundError:
raise Exception(
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
)
self.model = model
self.frequency_penalty = 0
self.logit_bias = None
self.n = 1
self.presence_penalty = 0
self.temperature = 1
self.top_p = 1
self.tokenizer = tiktoken.encoding_for_model(self.model)
self.vocab_size = self.tokenizer.n_vocab
self.truncate = truncate
self.end_of_text_token_id = self.tokenizer.eot_token
# Read from environment variable OPENAI_API_KEY
self.client = openai.OpenAI() # openai.AsyncOpenAI()
@property
def eot_token_id(self):
return self.end_of_text_token_id
@property
def max_length(self) -> int:
# Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
return 2048
@property
def max_gen_toks(self) -> int:
return 256
@property
def batch_size(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError()
@property
def device(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError()
def tok_encode(self, string: str) -> List[int]:
return self.tokenizer.encode(string)
def tok_decode(self, tokens: List[int]) -> str:
return self.tokenizer.decode(tokens)
def _encode_pair(
self, context: str, continuation: str
) -> Tuple[List[int], List[int]]:
n_spaces = len(context) - len(context.rstrip())
if n_spaces > 0:
continuation = context[-n_spaces:] + continuation
context = context[:-n_spaces]
whole_enc = self.tok_encode(context + continuation)
context_enc = self.tok_encode(context)
context_enc_len = len(context_enc)
continuation_enc = whole_enc[context_enc_len:]
return context_enc, continuation_enc
def generate_until(self, requests) -> List[str]:
res = defaultdict(list)
re_ords = {}
def _collate(x):
toks = self.tok_encode(x[0])
return -len(toks), x[0]
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
for key, reqs in grouper.get_grouped().items():
# within each set of reqs for given kwargs, we reorder by token length, descending.
re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
def sameuntil_chunks(xs, size):
ret = []
lastuntil = xs[0][1]
for x in xs:
if len(ret) >= size or x[1] != lastuntil:
yield ret, lastuntil
ret = []
lastuntil = x[1]
ret.append(x)
if ret:
yield ret, lastuntil
pbar = tqdm(total=len(requests), disable=(self.rank != 0))
for key, re_ord in re_ords.items():
# n needs to be 1 because messages in
# chat completion are not batch but
# is regarded as a single conversation.
chunks = utils.chunks(re_ord.get_reordered(), n=1)
for chunk in chunks:
contexts, all_gen_kwargs = zip(*chunk)
inps = [{"role": "user", "content": context} for context in contexts]
gen_kwargs = all_gen_kwargs[0]
until = None
if isinstance(gen_kwargs, dict):
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
if "until" in kwargs.keys():
until = kwargs.pop("until")
if isinstance(until, str):
until = [kwargs]
elif not isinstance(until, list):
raise ValueError(
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
)
else:
raise ValueError(
f"Expected `kwargs` to be of type `dict` but got {kwargs}"
)
if "max_gen_toks" in kwargs.keys():
max_gen_toks = kwargs.pop("max_gen_toks")
else:
max_gen_toks = self.max_gen_toks
response = oa_chat_completion(
client=self.client,
messages=inps,
model=self.model,
frequency_penalty=self.frequency_penalty,
# logit_bias=self.logit_bias,
max_tokens=max_gen_toks,
n=self.n,
presence_penalty=self.presence_penalty,
temperature=self.temperature,
top_p=self.top_p,
)
for resp, (context, args_) in zip(response.choices, chunk):
s = resp.message.content
if until is not None:
for term in until:
if len(term) > 0:
s = s.split(term)[0]
res[key].append(s)
self.cache_hook.add_partial(
"generate_until", (context, {"until": until}), s
)
pbar.update(1)
# reorder this group of results back to original unsorted form
res[key] = re_ord.get_original(res[key])
pbar.close()
return grouper.get_original(res)
def loglikelihood(self, requests):
raise NotImplementedError("No support for logits.")
def loglikelihood_rolling(self, requests):
raise NotImplementedError("No support for logits.")
......@@ -70,7 +70,7 @@ promptsource = [
]
gptq = ["auto-gptq[triton] @ git+https://github.com/PanQiWei/AutoGPTQ"]
anthropic = ["anthropic"]
openai = ["openai", "tiktoken"]
openai = ["openai>=1.3.5", "tiktoken"]
vllm = ["vllm"]
all = [
"lm_eval[dev]",
......
import hashlib
import json
import openai
import os
import pickle
import pytest
......@@ -8,6 +7,10 @@ import unittest.mock as mock
import lm_eval.models as models
from openai import OpenAI
client = OpenAI()
LOGLIKELIHOOD_TEST_CASES = [
("The quick brown fox jumps over the lazy", " dog"),
......@@ -172,7 +175,7 @@ def openai_mock_completion(**kwargs):
if os.path.exists(fname):
with open(fname, "rb") as fh:
return pickle.load(fh)
ret = openai.Completion.create(**kwargs)
ret = client.completions.create(**kwargs)
ret.api_key = ""
with open(fname, "wb") as fh:
pickle.dump(ret, fh)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment