Unverified Commit 9822b06e authored by Lintang Sutawika's avatar Lintang Sutawika Committed by GitHub
Browse files

Merge branch 'main' into weight_by_size

parents 51f27158 b177c82c
# Generated by utils.py
dataset_name: zh
doc_to_target: '{% if answer is not none %}{{answer[6:]}}{% else %}{{answer_number|string}}{% endif %}'
doc_to_text: '{% if answer is not none %}{{question+"\n逐步解答:"}}{% else %}{{"问题: "+question+"\n逐步解答:"}}{% endif %}'
filter_list:
- filter:
- function: regex
regex_pattern: 答案是 (\-?[0-9\.\,]+)。
- function: take_first
name: strict-match
- filter:
- function: regex
group_select: -1
regex_pattern: (-?[$0-9.,]{2,})|(-?[0-9]+)
- function: take_first
name: flexible-extract
generation_kwargs:
do_sample: false
until:
- '问题:'
- </s>
- <|im_end|>
include: cot_yaml
task: mgsm_native_cot_zh
import yaml
import argparse
import yaml
LANGUAGES = {
"bn": { # Bengali
......@@ -99,11 +100,24 @@ def add_regex_pattern(regex_pattern):
return {
"filter_list": [
{
"name": "get-answer",
"name": "strict-match",
"filter": [
{
"function": "regex",
"regex_pattern": f"""{regex_pattern}""",
},
{
"function": "take_first",
},
],
},
{
"name": "flexible-extract",
"filter": [
{
"function": "regex",
"regex_pattern": regex_pattern,
"regex_pattern": """(-?[$0-9.,]{2,})|(-?[0-9]+)""",
"group_select": -1,
},
{
"function": "take_first",
......@@ -128,23 +142,25 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None:
yaml_template = "cot_yaml"
filter_list = {}
DELIMITER = None
if mode == "direct":
ANSWER = LANGUAGES[lang]["DIRECT"]
REGEX = None
task_name = f"mgsm_{lang}_direct"
task_name = f"mgsm_direct_{lang}"
yaml_template = "direct_yaml"
elif mode == "native-cot":
ANSWER = LANGUAGES[lang]["ANSWER"]
REGEX = LANGUAGES[lang]["REGEX"]
task_name = f"mgsm_{lang}_native-cot"
task_name = f"mgsm_native_cot_{lang}"
filter_list = add_regex_pattern(REGEX)
DELIMITER = "" if lang in ["zh", "ja"] else None
elif mode == "en-cot":
ANSWER = LANGUAGES["en"]["ANSWER"]
REGEX = LANGUAGES["en"]["REGEX"]
task_name = f"mgsm_{lang}_en-cot"
task_name = f"mgsm_en_cot_{lang}"
file_name = f"{task_name}.yaml"
ANSWER_TO_SKIP = len(LANGUAGES[lang]["ANSWER"]) + 1
with open(
f"{output_dir}/{file_name}", "w" if overwrite else "x", encoding="utf8"
) as f:
......@@ -153,18 +169,23 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None:
{
"include": yaml_template,
"dataset_name": lang,
"task": f"mgsm_{lang}_direct",
"task": f"{task_name}",
"doc_to_text": f"""{{% if answer is not none %}}"""
f"""{{{{question+"\\n{ANSWER}"}}}}"""
f"""{{% else %}}"""
f"""{{{{"{QUESTION} "+question+"\\n{ANSWER}"}}}}"""
f"""{{% endif %}}""",
"doc_to_target": f"""{{% if answer is not none %}}"""
f"""{{{{answer[{len(ANSWER)}+1]}}}}"""
f"""{{{{answer[{ANSWER_TO_SKIP}:]}}}}"""
f"""{{% else %}}"""
f"""{{{{answer_number|string}}}}"""
f"""{{% endif %}}""",
**filter_list,
"generation_kwargs": {
"until": [QUESTION, "</s>", "<|im_end|>"],
"do_sample": False,
},
**({"target_delimiter": DELIMITER} if DELIMITER else {}),
},
f,
allow_unicode=True,
......
......@@ -22,3 +22,4 @@ metric_list:
num_fewshot: 0
metadata:
version: 1.0
num_fewshot: 4
import datasets
import re
import signal
from typing import Dict, List, Optional
import datasets
from lm_eval.utils import eval_logger
from typing import Optional, List, Dict
try:
import sympy
from sympy.parsing.latex import parse_latex
except ModuleNotFoundError:
raise Exception(
raise ModuleNotFoundError(
"`sympy` is required for generating translation task prompt templates. \
please install sympy via pip install lm-eval[math] or pip install -e .[math]",
)
......
"""
Take in a YAML, and output all "other" splits with this YAML
"""
import os
import yaml
import argparse
import os
import yaml
from tqdm import tqdm
from lm_eval.logger import eval_logger
SUBJECTS = {
"abstract_algebra": "stem",
"anatomy": "stem",
......@@ -124,7 +125,6 @@ if __name__ == "__main__":
yaml.dump(
yaml_dict,
yaml_file,
# width=float("inf"),
allow_unicode=True,
default_style='"',
)
......
......@@ -5,14 +5,24 @@ output_type: generate_until
doc_to_text: "Q: {{question.strip()}}\n(A) {{choices[0]}} (B) {{choices[1]}} (C) {{choices[2]}} (D) {{choices[3]}}\nA: Let's think step by step."
doc_to_target: "{{['(A)', '(B)', '(C)', '(D)'][answer]}}"
filter_list:
- name: "get-answer"
- name: "strict-match"
filter:
- function: "regex"
regex_pattern: "((?<=The answer is )(.*)(?=.)|(?<=the answer is )(.*)(?=.)|(?<=The answer: )(.*)(?=.)|(?<=The final answer: )(.*)(?=.))"
- function: "take_first"
- name: "flexible-extract"
filter:
- function: !function utils.MultiChoiceRegexFilter
group_select: -1
ignore_case: true
ignore_punctuation: true
regex_pattern: "(\\([A-Z]\\))"
- function: "take_first"
generation_kwargs:
until:
- "</s>"
- "Q:"
- "<|im_end|>"
do_sample: false
temperature: 0.0
num_fewshot: 0
......@@ -23,4 +33,4 @@ metric_list:
ignore_case: true
ignore_punctuation: true
metadata:
version: 0.0
version: 1.0
import re
import sys
import unicodedata
from lm_eval.filters.extraction import RegexFilter
class MultiChoiceRegexFilter(RegexFilter):
""" """
def __init__(
self,
regex_pattern: str = r"#### (\-?[0-9\.\,]+)",
group_select=0,
fallback: str = "[invalid]",
ignore_case=False,
ignore_punctuation=False,
regexes_to_ignore=None,
) -> None:
"""
regex_pattern: The basic regex pattern to use. If fails to match, we will use the customized match procedure
- step 1 : We parse the choices between ([A-Z])s then try to find these choices in the response.
- step 2 : We parse the choice with regex :[\s]*([A-?]), where ? varies by number of choices.
group_select: Selects the (group_select)th match from the findall result.
ignore_case: Ignores the case during step 1 matching
ignore_punctuation: Remove the punctuation during step 1 matching
regexes_to_ignore: Remove these regexes during step 1 matching
"""
super().__init__(regex_pattern, group_select, fallback)
self.ignore_case = ignore_case
self.ignore_punctuation = ignore_punctuation
self.regexes_to_ignore = regexes_to_ignore
def apply(self, resps, docs):
# here, we assume we have a list, in which each element is
# a list of model responses for some particular input/target pair.
# so we process each of these (same input/target response sets)
# independently (and keep them a list.)
def find_match(regex, resp, convert_dict={}):
match = regex.findall(resp)
if match:
match = match[self.group_select]
if isinstance(match, tuple):
match = [m for m in match if m][0]
match = match.strip()
if match and match in convert_dict:
match = convert_dict[match]
return match
punct_tbl = dict.fromkeys(
i
for i in range(sys.maxunicode)
if unicodedata.category(chr(i)).startswith("P")
)
def filter_ignores(st):
if self.regexes_to_ignore is not None:
for s in self.regexes_to_ignore:
st = re.sub(s, "", st)
if self.ignore_case:
st = st.lower()
if self.ignore_punctuation:
# https://stackoverflow.com/a/266162
st = st.translate(punct_tbl)
return st
filtered_resps = []
for r, doc in zip(resps, docs):
fallback_regexes = []
choice_to_alpha = {}
next_alpha = "A"
without_paren_fallback_regexes = []
without_paren_to_target = {}
choices = doc["choices"]
for c in choices:
m = filter_ignores(c.strip())
fallback_regexes.append(f"{re.escape(m)}")
choice_to_alpha[m] = f"({next_alpha})"
without_paren_fallback_regexes.append(next_alpha)
without_paren_to_target[next_alpha] = f"({next_alpha})"
next_alpha = chr(ord(next_alpha) + 1)
fallback_regex = re.compile("|".join(fallback_regexes))
without_paren_fallback_regex = "|".join(without_paren_fallback_regexes)
without_paren_fallback_regex = re.compile(
f":[\s]*({without_paren_fallback_regex})"
)
filtered = []
for resp in r:
match = find_match(self.regex, resp)
if not match:
match = find_match(
fallback_regex, filter_ignores(resp), choice_to_alpha
)
if not match:
match = find_match(
without_paren_fallback_regex, resp, without_paren_to_target
)
if not match:
match = self.fallback
filtered.append(match)
filtered_resps.append(filtered)
return filtered_resps
......@@ -5,12 +5,26 @@ fewshot_split: dev
output_type: generate_until
doc_to_text: "Q: {{question.strip()}}\n(A) {{choices[0]}} (B) {{choices[1]}} (C) {{choices[2]}} (D) {{choices[3]}}\nA: "
doc_to_target: "{{['(A)', '(B)', '(C)', '(D)'][answer]}}"
filter_list:
- name: "strict-match"
filter:
- function: "take_first"
- name: "flexible-extract"
filter:
- function: !function utils.MultiChoiceRegexFilter
group_select: 0
regex_pattern: "(\\([A-Z]\\))"
ignore_case: true
ignore_punctuation: true
- function: "take_first"
generation_kwargs:
until:
- "</s>"
- "Q:"
- "<|im_end|>"
metric_list:
- metric: exact_match
aggregation: mean
higher_is_better: true
metadata:
version: 0.0
version: 1.0
import re
import sys
import unicodedata
from lm_eval.filters.extraction import RegexFilter
class MultiChoiceRegexFilter(RegexFilter):
""" """
def __init__(
self,
regex_pattern: str = r"#### (\-?[0-9\.\,]+)",
group_select=0,
fallback: str = "[invalid]",
ignore_case=False,
ignore_punctuation=False,
regexes_to_ignore=None,
) -> None:
"""
regex_pattern: The basic regex pattern to use. If fails to match, we will use the customized match procedure
- step 1 : We parse the choices between ([A-Z])s then try to find these choices in the response.
- step 2 : We parse the choice with regex :[\s]*([A-?]), where ? varies by number of choices.
group_select: Selects the (group_select)th match from the findall result.
ignore_case: Ignores the case during step 1 matching
ignore_punctuation: Remove the punctuation during step 1 matching
regexes_to_ignore: Remove these regexes during step 1 matching
"""
super().__init__(regex_pattern, group_select, fallback)
self.ignore_case = ignore_case
self.ignore_punctuation = ignore_punctuation
self.regexes_to_ignore = regexes_to_ignore
def apply(self, resps, docs):
# here, we assume we have a list, in which each element is
# a list of model responses for some particular input/target pair.
# so we process each of these (same input/target response sets)
# independently (and keep them a list.)
def find_match(regex, resp, convert_dict={}):
match = regex.findall(resp)
if match:
match = match[self.group_select]
if isinstance(match, tuple):
match = [m for m in match if m][0]
match = match.strip()
if match and match in convert_dict:
match = convert_dict[match]
return match
punct_tbl = dict.fromkeys(
i
for i in range(sys.maxunicode)
if unicodedata.category(chr(i)).startswith("P")
)
def filter_ignores(st):
if self.regexes_to_ignore is not None:
for s in self.regexes_to_ignore:
st = re.sub(s, "", st)
if self.ignore_case:
st = st.lower()
if self.ignore_punctuation:
# https://stackoverflow.com/a/266162
st = st.translate(punct_tbl)
return st
filtered_resps = []
for r, doc in zip(resps, docs):
fallback_regexes = []
choice_to_alpha = {}
next_alpha = "A"
without_paren_fallback_regexes = []
without_paren_to_target = {}
choices = doc["choices"]
for c in choices:
m = filter_ignores(c.strip())
fallback_regexes.append(f"{re.escape(m)}")
choice_to_alpha[m] = f"({next_alpha})"
without_paren_fallback_regexes.append(next_alpha)
without_paren_to_target[next_alpha] = f"({next_alpha})"
next_alpha = chr(ord(next_alpha) + 1)
fallback_regex = re.compile("|".join(fallback_regexes))
without_paren_fallback_regex = "|".join(without_paren_fallback_regexes)
without_paren_fallback_regex = re.compile(
f":[\s]*({without_paren_fallback_regex})"
)
filtered = []
for resp in r:
match = find_match(self.regex, resp)
if not match:
match = find_match(
fallback_regex, filter_ignores(resp), choice_to_alpha
)
if not match:
match = find_match(
without_paren_fallback_regex, resp, without_paren_to_target
)
if not match:
match = self.fallback
filtered.append(match)
filtered_resps.append(filtered)
return filtered_resps
import yaml
import datasets
import yaml
from tqdm import tqdm
......
import yaml
import datasets
import yaml
from tqdm import tqdm
......
# Multilingual ARC
### Paper
Title: `Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback`
Abstract: https://arxiv.org/abs/2307.16039
A key technology for the development of large language models (LLMs) involves instruction tuning that helps align the models' responses with human expectations to realize impressive learning abilities. Two major approaches for instruction tuning characterize supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), which are currently applied to produce the best commercial LLMs (e.g., ChatGPT). To improve the accessibility of LLMs for research and development efforts, various instruction-tuned open-source LLMs have also been introduced recently, e.g., Alpaca, Vicuna, to name a few. However, existing open-source LLMs have only been instruction-tuned for English and a few popular languages, thus hindering their impacts and accessibility to many other languages in the world. Among a few very recent work to explore instruction tuning for LLMs in multiple languages, SFT has been used as the only approach to instruction-tune LLMs for multiple languages. This has left a significant gap for fine-tuned LLMs based on RLHF in diverse languages and raised important questions on how RLHF can boost the performance of multilingual instruction tuning. To overcome this issue, we present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages. Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research. We also present benchmark datasets to enable the evaluation of generative LLMs in multiple languages. Our experiments demonstrate the advantages of RLHF for multilingual instruction over SFT for different base models and datasets. Our framework and resources are released at this https URL.
Homepage: `https://github.com/nlp-uoregon/Okapi`
### Citation
```
@article{dac2023okapi,
title={Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback},
author={Dac Lai, Viet and Van Nguyen, Chien and Ngo, Nghia Trung and Nguyen, Thuat and Dernoncourt, Franck and Rossi, Ryan A and Nguyen, Thien Huu},
journal={arXiv e-prints},
pages={arXiv--2307},
year={2023}
}
```
### Groups and Tasks
#### Groups
- arc_multilingual
#### Tasks
- `arc_{ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh}`
### Checklist
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [x] Have you referenced the original paper that introduced the task?
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group:
- arc_multilingual
dataset_path: null
dataset_name: null
output_type: multiple_choice
training_split: train
validation_split: validation
test_split: test
process_docs: !function utils.process_docs
doc_to_text: "query"
doc_to_target: "gold"
doc_to_choice: "choices"
should_decontaminate: true
doc_to_decontamination_query: "query"
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
- metric: acc_norm
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
include: _arc_yaml
task: arc_ar
dataset_path: alexandrainst/m_arc
dataset_name: ar
training_split: train
validation_split: validation
test_split: test
include: _arc_yaml
task: arc_bn
dataset_path: alexandrainst/m_arc
dataset_name: bn
training_split: train
validation_split: validation
test_split: test
include: _arc_yaml
task: arc_ca
dataset_path: alexandrainst/m_arc
dataset_name: ca
training_split: train
validation_split: validation
test_split: test
include: _arc_yaml
task: arc_da
dataset_path: alexandrainst/m_arc
dataset_name: da
training_split: train
validation_split: validation
test_split: test
include: _arc_yaml
task: arc_de
dataset_path: alexandrainst/m_arc
dataset_name: de
training_split: train
validation_split: validation
test_split: test
include: _arc_yaml
task: arc_es
dataset_path: alexandrainst/m_arc
dataset_name: es
training_split: train
validation_split: validation
test_split: test
include: _arc_yaml
task: arc_eu
dataset_path: alexandrainst/m_arc
dataset_name: eu
training_split: train
validation_split: validation
test_split: test
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment