Unverified Commit 930d8378 authored by Baber Abbasi's avatar Baber Abbasi Committed by GitHub
Browse files

Longbench bugfix (#2895)

* add warning in for default until

* fix stop tokens; add vcsum

* bugfix:fix doc_to_target to string

* fix lsht, trec

* add task to readme

* add debugging logs for multiple input/output
parent 82fe48ec
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: musique
doc_to_text: 'Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{{context}}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {{input}}\nAnswer:'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 32
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.qa_f1_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -5,15 +5,16 @@ task: longbench_narrativeqa
dataset_path: THUDM/LongBench
test_split: test
dataset_name: narrativeqa
doc_to_text: 'You are given a story, which can be either a novel or a movie script, and a question. Answer the question asconcisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {{context}}\n\nNow, answer the question based on the story as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {{input}}\n\nAnswer:'
doc_to_target: '{{answers}}'
doc_to_text: 'You are given a story, which can be either a novel or a movie script, and a question. Answer the question asconcisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {{context}}\n\nNow, answer the question based on the story asconcisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {{input}}\n\nAnswer:'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 128
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.qa_f1_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: passage_count
doc_to_text: 'There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{{context}}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: '
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 32
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.count_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: passage_count_e
doc_to_text: 'There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{{context}}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: '
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 32
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.count_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: passage_retrieval_en
doc_to_text: 'Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{{context}}\n\nThe following is an abstract.\n\n{{input}}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like "Paragraph 1", "Paragraph 2", etc.\n\nThe answer is: '
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 32
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.retrieval_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: passage_retrieval_en_e
doc_to_text: 'Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{{context}}\n\nThe following is an abstract.\n\n{{input}}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like "Paragraph 1", "Paragraph 2", etc.\n\nThe answer is: '
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 32
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.retrieval_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: passage_retrieval_zh
doc_to_text: '以下是若干段落文字,以及其中一个段落的摘要。请确定给定的摘要出自哪一段。\n\n{{context}}\n\n下面是一个摘要\n\n{{input}}\n\n请输入摘要所属段落的编号。答案格式必须是"段落1","段落2"等格式\n\n答案是:'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 32
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.retrieval_zh_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: qasper
doc_to_text: 'You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.\n\nArticle: {{context}}\n\n Answer the question based on the above article as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.\n\nQuestion: {{input}}\n\nAnswer:'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 128
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.qa_f1_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: qasper_e
doc_to_text: 'You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.\n\nArticle: {{context}}\n\n Answer the question based on the above article as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.\n\nQuestion: {{input}}\n\nAnswer:'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 128
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.qa_f1_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: qmsum
doc_to_text: 'You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{{context}}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {{input}}\nAnswer:'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 512
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.rouge_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: repobench-p
doc_to_text: 'Please complete the code given below. \n{{context}}{{input}}Next line of code:\n'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 64
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.code_sim_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: repobench-p_e
doc_to_text: 'Please complete the code given below. \n{{context}}{{input}}Next line of code:\n'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 64
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.code_sim_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: samsum
doc_to_text: 'Summarize the dialogue into a few short sentences. The following are some examples.\n\n{{context}}\n\n{{input}}'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 128
temperature: 1
do_sample: True
until: ['\n']
metric_list:
- metric: !function metrics.rouge_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: samsum_e
doc_to_text: 'Summarize the dialogue into a few short sentences. The following are some examples.\n\n{{context}}\n\n{{input}}'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 128
temperature: 1
do_sample: True
until: ['\n']
metric_list:
- metric: !function metrics.rouge_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,16 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: trec
doc_to_text: 'Please determine the type of the question below. Here are some examples of questions.\n\n{{context}}\n{{input}}'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
process_results: !function metrics.classification_score
generation_kwargs:
max_gen_toks: 64
temperature: 1
do_sample: True
until: ['\n']
metric_list:
- metric: !function metrics.classification_score
- metric: "classification_score"
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: trec_e
doc_to_text: 'Please determine the type of the question below. Here are some examples of questions.\n\n{{context}}\n{{input}}'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 64
temperature: 1
do_sample: True
until: ['\n']
metric_list:
- metric: !function metrics.classification_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: triviaqa
doc_to_text: 'Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{{context}}\n\n{{input}}'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 32
temperature: 1
do_sample: True
until: ['\n']
metric_list:
- metric: !function metrics.qa_f1_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
......@@ -6,14 +6,15 @@ dataset_path: THUDM/LongBench
test_split: test
dataset_name: triviaqa_e
doc_to_text: 'Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{{context}}\n\n{{input}}'
doc_to_target: '{{answers}}'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 32
temperature: 1
do_sample: True
until: ['\n']
metric_list:
- metric: !function metrics.qa_f1_score
aggregation: mean
higher_is_better: True
metadata:
version: 1.0
version: 2.0
tag:
- longbench
task: longbench_vcsum
dataset_path: THUDM/LongBench
test_split: test
dataset_name: vcsum
doc_to_text: '下面有一段会议记录,请你阅读后,写一段总结,总结会议的内容。\n会议记录:\n{{context}}\n\n会议总结:'
doc_to_target: '{{answers[0]}}'
generation_kwargs:
max_gen_toks: 512
temperature: 1
do_sample: True
until: []
metric_list:
- metric: !function metrics.rouge_zh_score
aggregation: mean
higher_is_better: True
metadata:
version: 2.0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment