Unverified Commit 81fc0826 authored by Baber Abbasi's avatar Baber Abbasi Committed by GitHub
Browse files

fix github parse error (#2998)

parent 53c65300
...@@ -79,48 +79,48 @@ ...@@ -79,48 +79,48 @@
" Switched to a new branch 'big-refactor'\n", " Switched to a new branch 'big-refactor'\n",
" Branch 'big-refactor' set up to track remote branch 'big-refactor' from 'origin'.\n", " Branch 'big-refactor' set up to track remote branch 'big-refactor' from 'origin'.\n",
" Resolved https://github.com/EleutherAI/lm-evaluation-harness.git to commit 42f486ee49b65926a444cb0620870a39a5b4b0a8\n", " Resolved https://github.com/EleutherAI/lm-evaluation-harness.git to commit 42f486ee49b65926a444cb0620870a39a5b4b0a8\n",
" Installing build dependencies ... \u001B[?25l\u001B[?25hdone\n", " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001B[?25l\u001B[?25hdone\n", " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001B[?25l\u001B[?25hdone\n", " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"Collecting accelerate>=0.21.0 (from lm-eval==1.0.0)\n", "Collecting accelerate>=0.21.0 (from lm-eval==1.0.0)\n",
" Downloading accelerate-0.24.1-py3-none-any.whl (261 kB)\n", " Downloading accelerate-0.24.1-py3-none-any.whl (261 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m261.4/261.4 kB\u001B[0m \u001B[31m4.1 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.4/261.4 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hCollecting evaluate (from lm-eval==1.0.0)\n", "\u001b[?25hCollecting evaluate (from lm-eval==1.0.0)\n",
" Downloading evaluate-0.4.1-py3-none-any.whl (84 kB)\n", " Downloading evaluate-0.4.1-py3-none-any.whl (84 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m84.1/84.1 kB\u001B[0m \u001B[31m5.9 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hCollecting datasets>=2.0.0 (from lm-eval==1.0.0)\n", "\u001b[?25hCollecting datasets>=2.0.0 (from lm-eval==1.0.0)\n",
" Downloading datasets-2.15.0-py3-none-any.whl (521 kB)\n", " Downloading datasets-2.15.0-py3-none-any.whl (521 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m521.2/521.2 kB\u001B[0m \u001B[31m9.5 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m521.2/521.2 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hCollecting jsonlines (from lm-eval==1.0.0)\n", "\u001b[?25hCollecting jsonlines (from lm-eval==1.0.0)\n",
" Downloading jsonlines-4.0.0-py3-none-any.whl (8.7 kB)\n", " Downloading jsonlines-4.0.0-py3-none-any.whl (8.7 kB)\n",
"Requirement already satisfied: numexpr in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.8.7)\n", "Requirement already satisfied: numexpr in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.8.7)\n",
"Collecting peft>=0.2.0 (from lm-eval==1.0.0)\n", "Collecting peft>=0.2.0 (from lm-eval==1.0.0)\n",
" Downloading peft-0.6.2-py3-none-any.whl (174 kB)\n", " Downloading peft-0.6.2-py3-none-any.whl (174 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m174.7/174.7 kB\u001B[0m \u001B[31m7.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m174.7/174.7 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hCollecting pybind11>=2.6.2 (from lm-eval==1.0.0)\n", "\u001b[?25hCollecting pybind11>=2.6.2 (from lm-eval==1.0.0)\n",
" Downloading pybind11-2.11.1-py3-none-any.whl (227 kB)\n", " Downloading pybind11-2.11.1-py3-none-any.whl (227 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m227.7/227.7 kB\u001B[0m \u001B[31m12.9 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.7/227.7 kB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hCollecting pytablewriter (from lm-eval==1.0.0)\n", "\u001b[?25hCollecting pytablewriter (from lm-eval==1.0.0)\n",
" Downloading pytablewriter-1.2.0-py3-none-any.whl (111 kB)\n", " Downloading pytablewriter-1.2.0-py3-none-any.whl (111 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m111.1/111.1 kB\u001B[0m \u001B[31m8.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.1/111.1 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hCollecting rouge-score>=0.0.4 (from lm-eval==1.0.0)\n", "\u001b[?25hCollecting rouge-score>=0.0.4 (from lm-eval==1.0.0)\n",
" Downloading rouge_score-0.1.2.tar.gz (17 kB)\n", " Downloading rouge_score-0.1.2.tar.gz (17 kB)\n",
" Preparing metadata (setup.py) ... \u001B[?25l\u001B[?25hdone\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Collecting sacrebleu>=1.5.0 (from lm-eval==1.0.0)\n", "Collecting sacrebleu>=1.5.0 (from lm-eval==1.0.0)\n",
" Downloading sacrebleu-2.3.2-py3-none-any.whl (119 kB)\n", " Downloading sacrebleu-2.3.2-py3-none-any.whl (119 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m119.7/119.7 kB\u001B[0m \u001B[31m8.7 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.7/119.7 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hRequirement already satisfied: scikit-learn>=0.24.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (1.2.2)\n", "\u001b[?25hRequirement already satisfied: scikit-learn>=0.24.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (1.2.2)\n",
"Collecting sqlitedict (from lm-eval==1.0.0)\n", "Collecting sqlitedict (from lm-eval==1.0.0)\n",
" Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n", " Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n",
" Preparing metadata (setup.py) ... \u001B[?25l\u001B[?25hdone\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: torch>=1.8 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.1.0+cu118)\n", "Requirement already satisfied: torch>=1.8 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.1.0+cu118)\n",
"Collecting tqdm-multiprocess (from lm-eval==1.0.0)\n", "Collecting tqdm-multiprocess (from lm-eval==1.0.0)\n",
" Downloading tqdm_multiprocess-0.0.11-py3-none-any.whl (9.8 kB)\n", " Downloading tqdm_multiprocess-0.0.11-py3-none-any.whl (9.8 kB)\n",
"Requirement already satisfied: transformers>=4.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (4.35.2)\n", "Requirement already satisfied: transformers>=4.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (4.35.2)\n",
"Collecting zstandard (from lm-eval==1.0.0)\n", "Collecting zstandard (from lm-eval==1.0.0)\n",
" Downloading zstandard-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB)\n", " Downloading zstandard-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m5.4/5.4 MB\u001B[0m \u001B[31m29.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (1.23.5)\n", "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (1.23.5)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (23.2)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (23.2)\n",
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (5.9.5)\n", "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (5.9.5)\n",
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (6.0.1)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (6.0.1)\n",
...@@ -130,15 +130,15 @@ ...@@ -130,15 +130,15 @@
" Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\n", " Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\n",
"Collecting dill<0.3.8,>=0.3.0 (from datasets>=2.0.0->lm-eval==1.0.0)\n", "Collecting dill<0.3.8,>=0.3.0 (from datasets>=2.0.0->lm-eval==1.0.0)\n",
" Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n", " Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m115.3/115.3 kB\u001B[0m \u001B[31m14.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m14.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (1.5.3)\n", "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (1.5.3)\n",
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2.31.0)\n", "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2.31.0)\n",
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (4.66.1)\n", "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (4.66.1)\n",
"Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.4.1)\n", "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.4.1)\n",
"Collecting multiprocess (from datasets>=2.0.0->lm-eval==1.0.0)\n", "Collecting multiprocess (from datasets>=2.0.0->lm-eval==1.0.0)\n",
" Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n", " Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m134.8/134.8 kB\u001B[0m \u001B[31m19.9 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001B[?25hRequirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2023.6.0)\n", "\u001b[?25hRequirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2023.6.0)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.8.6)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.8.6)\n",
"Collecting responses<0.19 (from evaluate->lm-eval==1.0.0)\n", "Collecting responses<0.19 (from evaluate->lm-eval==1.0.0)\n",
" Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n", " Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
...@@ -193,13 +193,13 @@ ...@@ -193,13 +193,13 @@
"Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score>=0.0.4->lm-eval==1.0.0) (8.1.7)\n", "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score>=0.0.4->lm-eval==1.0.0) (8.1.7)\n",
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8->lm-eval==1.0.0) (1.3.0)\n", "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8->lm-eval==1.0.0) (1.3.0)\n",
"Building wheels for collected packages: lm-eval, rouge-score, sqlitedict\n", "Building wheels for collected packages: lm-eval, rouge-score, sqlitedict\n",
" Building wheel for lm-eval (pyproject.toml) ... \u001B[?25l\u001B[?25hdone\n", " Building wheel for lm-eval (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for lm-eval: filename=lm_eval-1.0.0-py3-none-any.whl size=994254 sha256=88356155b19f2891981ecef948326ad6ce8ca40a6009378410ec20d0e225995a\n", " Created wheel for lm-eval: filename=lm_eval-1.0.0-py3-none-any.whl size=994254 sha256=88356155b19f2891981ecef948326ad6ce8ca40a6009378410ec20d0e225995a\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-9v6ye7h3/wheels/17/01/26/599c0779e9858a70a73fa8a306699b5b9a868f820c225457b0\n", " Stored in directory: /tmp/pip-ephem-wheel-cache-9v6ye7h3/wheels/17/01/26/599c0779e9858a70a73fa8a306699b5b9a868f820c225457b0\n",
" Building wheel for rouge-score (setup.py) ... \u001B[?25l\u001B[?25hdone\n", " Building wheel for rouge-score (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for rouge-score: filename=rouge_score-0.1.2-py3-none-any.whl size=24933 sha256=6bb0d44e4881972c43ce194e7cb65233d309758cb15f0dec54590d3d2efcfc36\n", " Created wheel for rouge-score: filename=rouge_score-0.1.2-py3-none-any.whl size=24933 sha256=6bb0d44e4881972c43ce194e7cb65233d309758cb15f0dec54590d3d2efcfc36\n",
" Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n", " Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n",
" Building wheel for sqlitedict (setup.py) ... \u001B[?25l\u001B[?25hdone\n", " Building wheel for sqlitedict (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16863 sha256=5747f7dd73ddf3d8fbcebf51b5e4f718fabe1e94bccdf16d2f22a2e65ee7fdf4\n", " Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16863 sha256=5747f7dd73ddf3d8fbcebf51b5e4f718fabe1e94bccdf16d2f22a2e65ee7fdf4\n",
" Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n", " Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n",
"Successfully built lm-eval rouge-score sqlitedict\n", "Successfully built lm-eval rouge-score sqlitedict\n",
...@@ -886,348 +886,352 @@ ...@@ -886,348 +886,352 @@
}, },
"widgets": { "widgets": {
"application/vnd.jupyter.widget-state+json": { "application/vnd.jupyter.widget-state+json": {
"46f521b73fd943c081c648fd873ebc0a": { "state": {
"model_module": "@jupyter-widgets/controls", "46f521b73fd943c081c648fd873ebc0a": {
"model_module_version": "1.5.0", "model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel", "model_module_version": "1.5.0",
"state": { "model_name": "DescriptionStyleModel",
"_model_module": "@jupyter-widgets/controls", "state": {
"_model_module_version": "1.5.0", "_model_module": "@jupyter-widgets/controls",
"_model_name": "DescriptionStyleModel", "_model_module_version": "1.5.0",
"_view_count": null, "_model_name": "DescriptionStyleModel",
"_view_module": "@jupyter-widgets/base", "_view_count": null,
"_view_module_version": "1.2.0", "_view_module": "@jupyter-widgets/base",
"_view_name": "StyleView", "_view_module_version": "1.2.0",
"description_width": "" "_view_name": "StyleView",
} "description_width": ""
}, }
"48763b6233374554ae76035c0483066f": { },
"model_module": "@jupyter-widgets/controls", "48763b6233374554ae76035c0483066f": {
"model_module_version": "1.5.0", "model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel", "model_module_version": "1.5.0",
"state": { "model_name": "ProgressStyleModel",
"_model_module": "@jupyter-widgets/controls", "state": {
"_model_module_version": "1.5.0", "_model_module": "@jupyter-widgets/controls",
"_model_name": "ProgressStyleModel", "_model_module_version": "1.5.0",
"_view_count": null, "_model_name": "ProgressStyleModel",
"_view_module": "@jupyter-widgets/base", "_view_count": null,
"_view_module_version": "1.2.0", "_view_module": "@jupyter-widgets/base",
"_view_name": "StyleView", "_view_module_version": "1.2.0",
"bar_color": null, "_view_name": "StyleView",
"description_width": "" "bar_color": null,
} "description_width": ""
}, }
"4986a21eb560448fa79f4b25cde48951": { },
"model_module": "@jupyter-widgets/base", "4986a21eb560448fa79f4b25cde48951": {
"model_module_version": "1.2.0", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_module_version": "1.2.0",
"state": { "model_name": "LayoutModel",
"_model_module": "@jupyter-widgets/base", "state": {
"_model_module_version": "1.2.0", "_model_module": "@jupyter-widgets/base",
"_model_name": "LayoutModel", "_model_module_version": "1.2.0",
"_view_count": null, "_model_name": "LayoutModel",
"_view_module": "@jupyter-widgets/base", "_view_count": null,
"_view_module_version": "1.2.0", "_view_module": "@jupyter-widgets/base",
"_view_name": "LayoutView", "_view_module_version": "1.2.0",
"align_content": null, "_view_name": "LayoutView",
"align_items": null, "align_content": null,
"align_self": null, "align_items": null,
"border": null, "align_self": null,
"bottom": null, "border": null,
"display": null, "bottom": null,
"flex": null, "display": null,
"flex_flow": null, "flex": null,
"grid_area": null, "flex_flow": null,
"grid_auto_columns": null, "grid_area": null,
"grid_auto_flow": null, "grid_auto_columns": null,
"grid_auto_rows": null, "grid_auto_flow": null,
"grid_column": null, "grid_auto_rows": null,
"grid_gap": null, "grid_column": null,
"grid_row": null, "grid_gap": null,
"grid_template_areas": null, "grid_row": null,
"grid_template_columns": null, "grid_template_areas": null,
"grid_template_rows": null, "grid_template_columns": null,
"height": null, "grid_template_rows": null,
"justify_content": null, "height": null,
"justify_items": null, "justify_content": null,
"left": null, "justify_items": null,
"margin": null, "left": null,
"max_height": null, "margin": null,
"max_width": null, "max_height": null,
"min_height": null, "max_width": null,
"min_width": null, "min_height": null,
"object_fit": null, "min_width": null,
"object_position": null, "object_fit": null,
"order": null, "object_position": null,
"overflow": null, "order": null,
"overflow_x": null, "overflow": null,
"overflow_y": null, "overflow_x": null,
"padding": null, "overflow_y": null,
"right": null, "padding": null,
"top": null, "right": null,
"visibility": null, "top": null,
"width": null "visibility": null,
} "width": null
}, }
"6b2d90209ec14230b3d58a74ac9b83bf": { },
"model_module": "@jupyter-widgets/base", "6b2d90209ec14230b3d58a74ac9b83bf": {
"model_module_version": "1.2.0", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_module_version": "1.2.0",
"state": { "model_name": "LayoutModel",
"_model_module": "@jupyter-widgets/base", "state": {
"_model_module_version": "1.2.0", "_model_module": "@jupyter-widgets/base",
"_model_name": "LayoutModel", "_model_module_version": "1.2.0",
"_view_count": null, "_model_name": "LayoutModel",
"_view_module": "@jupyter-widgets/base", "_view_count": null,
"_view_module_version": "1.2.0", "_view_module": "@jupyter-widgets/base",
"_view_name": "LayoutView", "_view_module_version": "1.2.0",
"align_content": null, "_view_name": "LayoutView",
"align_items": null, "align_content": null,
"align_self": null, "align_items": null,
"border": null, "align_self": null,
"bottom": null, "border": null,
"display": null, "bottom": null,
"flex": null, "display": null,
"flex_flow": null, "flex": null,
"grid_area": null, "flex_flow": null,
"grid_auto_columns": null, "grid_area": null,
"grid_auto_flow": null, "grid_auto_columns": null,
"grid_auto_rows": null, "grid_auto_flow": null,
"grid_column": null, "grid_auto_rows": null,
"grid_gap": null, "grid_column": null,
"grid_row": null, "grid_gap": null,
"grid_template_areas": null, "grid_row": null,
"grid_template_columns": null, "grid_template_areas": null,
"grid_template_rows": null, "grid_template_columns": null,
"height": null, "grid_template_rows": null,
"justify_content": null, "height": null,
"justify_items": null, "justify_content": null,
"left": null, "justify_items": null,
"margin": null, "left": null,
"max_height": null, "margin": null,
"max_width": null, "max_height": null,
"min_height": null, "max_width": null,
"min_width": null, "min_height": null,
"object_fit": null, "min_width": null,
"object_position": null, "object_fit": null,
"order": null, "object_position": null,
"overflow": null, "order": null,
"overflow_x": null, "overflow": null,
"overflow_y": null, "overflow_x": null,
"padding": null, "overflow_y": null,
"right": null, "padding": null,
"top": null, "right": null,
"visibility": null, "top": null,
"width": null "visibility": null,
} "width": null
}, }
"7c5689bc13684db8a22681f41863dddd": { },
"model_module": "@jupyter-widgets/base", "7c5689bc13684db8a22681f41863dddd": {
"model_module_version": "1.2.0", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_module_version": "1.2.0",
"state": { "model_name": "LayoutModel",
"_model_module": "@jupyter-widgets/base", "state": {
"_model_module_version": "1.2.0", "_model_module": "@jupyter-widgets/base",
"_model_name": "LayoutModel", "_model_module_version": "1.2.0",
"_view_count": null, "_model_name": "LayoutModel",
"_view_module": "@jupyter-widgets/base", "_view_count": null,
"_view_module_version": "1.2.0", "_view_module": "@jupyter-widgets/base",
"_view_name": "LayoutView", "_view_module_version": "1.2.0",
"align_content": null, "_view_name": "LayoutView",
"align_items": null, "align_content": null,
"align_self": null, "align_items": null,
"border": null, "align_self": null,
"bottom": null, "border": null,
"display": null, "bottom": null,
"flex": null, "display": null,
"flex_flow": null, "flex": null,
"grid_area": null, "flex_flow": null,
"grid_auto_columns": null, "grid_area": null,
"grid_auto_flow": null, "grid_auto_columns": null,
"grid_auto_rows": null, "grid_auto_flow": null,
"grid_column": null, "grid_auto_rows": null,
"grid_gap": null, "grid_column": null,
"grid_row": null, "grid_gap": null,
"grid_template_areas": null, "grid_row": null,
"grid_template_columns": null, "grid_template_areas": null,
"grid_template_rows": null, "grid_template_columns": null,
"height": null, "grid_template_rows": null,
"justify_content": null, "height": null,
"justify_items": null, "justify_content": null,
"left": null, "justify_items": null,
"margin": null, "left": null,
"max_height": null, "margin": null,
"max_width": null, "max_height": null,
"min_height": null, "max_width": null,
"min_width": null, "min_height": null,
"object_fit": null, "min_width": null,
"object_position": null, "object_fit": null,
"order": null, "object_position": null,
"overflow": null, "order": null,
"overflow_x": null, "overflow": null,
"overflow_y": null, "overflow_x": null,
"padding": null, "overflow_y": null,
"right": null, "padding": null,
"top": null, "right": null,
"visibility": null, "top": null,
"width": null "visibility": null,
} "width": null
}, }
"a1d3a8aa016544a78e8821c8f6199e06": { },
"model_module": "@jupyter-widgets/controls", "a1d3a8aa016544a78e8821c8f6199e06": {
"model_module_version": "1.5.0", "model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel", "model_module_version": "1.5.0",
"state": { "model_name": "HBoxModel",
"_dom_classes": [], "state": {
"_model_module": "@jupyter-widgets/controls", "_dom_classes": [],
"_model_module_version": "1.5.0", "_model_module": "@jupyter-widgets/controls",
"_model_name": "HBoxModel", "_model_module_version": "1.5.0",
"_view_count": null, "_model_name": "HBoxModel",
"_view_module": "@jupyter-widgets/controls", "_view_count": null,
"_view_module_version": "1.5.0", "_view_module": "@jupyter-widgets/controls",
"_view_name": "HBoxView", "_view_module_version": "1.5.0",
"box_style": "", "_view_name": "HBoxView",
"children": [ "box_style": "",
"IPY_MODEL_f61ed33fad754146bdd2ac9db1ba1c48", "children": [
"IPY_MODEL_bfa0af6aeff344c6845e1080a878e92e", "IPY_MODEL_f61ed33fad754146bdd2ac9db1ba1c48",
"IPY_MODEL_fd1ad9e0367d4004aae853b91c3a7617" "IPY_MODEL_bfa0af6aeff344c6845e1080a878e92e",
], "IPY_MODEL_fd1ad9e0367d4004aae853b91c3a7617"
"layout": "IPY_MODEL_6b2d90209ec14230b3d58a74ac9b83bf" ],
} "layout": "IPY_MODEL_6b2d90209ec14230b3d58a74ac9b83bf"
}, }
"a73f357065d34d7baf0453ae4a8d75e2": { },
"model_module": "@jupyter-widgets/base", "a73f357065d34d7baf0453ae4a8d75e2": {
"model_module_version": "1.2.0", "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel", "model_module_version": "1.2.0",
"state": { "model_name": "LayoutModel",
"_model_module": "@jupyter-widgets/base", "state": {
"_model_module_version": "1.2.0", "_model_module": "@jupyter-widgets/base",
"_model_name": "LayoutModel", "_model_module_version": "1.2.0",
"_view_count": null, "_model_name": "LayoutModel",
"_view_module": "@jupyter-widgets/base", "_view_count": null,
"_view_module_version": "1.2.0", "_view_module": "@jupyter-widgets/base",
"_view_name": "LayoutView", "_view_module_version": "1.2.0",
"align_content": null, "_view_name": "LayoutView",
"align_items": null, "align_content": null,
"align_self": null, "align_items": null,
"border": null, "align_self": null,
"bottom": null, "border": null,
"display": null, "bottom": null,
"flex": null, "display": null,
"flex_flow": null, "flex": null,
"grid_area": null, "flex_flow": null,
"grid_auto_columns": null, "grid_area": null,
"grid_auto_flow": null, "grid_auto_columns": null,
"grid_auto_rows": null, "grid_auto_flow": null,
"grid_column": null, "grid_auto_rows": null,
"grid_gap": null, "grid_column": null,
"grid_row": null, "grid_gap": null,
"grid_template_areas": null, "grid_row": null,
"grid_template_columns": null, "grid_template_areas": null,
"grid_template_rows": null, "grid_template_columns": null,
"height": null, "grid_template_rows": null,
"justify_content": null, "height": null,
"justify_items": null, "justify_content": null,
"left": null, "justify_items": null,
"margin": null, "left": null,
"max_height": null, "margin": null,
"max_width": null, "max_height": null,
"min_height": null, "max_width": null,
"min_width": null, "min_height": null,
"object_fit": null, "min_width": null,
"object_position": null, "object_fit": null,
"order": null, "object_position": null,
"overflow": null, "order": null,
"overflow_x": null, "overflow": null,
"overflow_y": null, "overflow_x": null,
"padding": null, "overflow_y": null,
"right": null, "padding": null,
"top": null, "right": null,
"visibility": null, "top": null,
"width": null "visibility": null,
} "width": null
}, }
"aed3acd2f2d74003b44079c333a0698e": { },
"model_module": "@jupyter-widgets/controls", "aed3acd2f2d74003b44079c333a0698e": {
"model_module_version": "1.5.0", "model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel", "model_module_version": "1.5.0",
"state": { "model_name": "DescriptionStyleModel",
"_model_module": "@jupyter-widgets/controls", "state": {
"_model_module_version": "1.5.0", "_model_module": "@jupyter-widgets/controls",
"_model_name": "DescriptionStyleModel", "_model_module_version": "1.5.0",
"_view_count": null, "_model_name": "DescriptionStyleModel",
"_view_module": "@jupyter-widgets/base", "_view_count": null,
"_view_module_version": "1.2.0", "_view_module": "@jupyter-widgets/base",
"_view_name": "StyleView", "_view_module_version": "1.2.0",
"description_width": "" "_view_name": "StyleView",
} "description_width": ""
}, }
"bfa0af6aeff344c6845e1080a878e92e": { },
"model_module": "@jupyter-widgets/controls", "bfa0af6aeff344c6845e1080a878e92e": {
"model_module_version": "1.5.0", "model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel", "model_module_version": "1.5.0",
"state": { "model_name": "FloatProgressModel",
"_dom_classes": [], "state": {
"_model_module": "@jupyter-widgets/controls", "_dom_classes": [],
"_model_module_version": "1.5.0", "_model_module": "@jupyter-widgets/controls",
"_model_name": "FloatProgressModel", "_model_module_version": "1.5.0",
"_view_count": null, "_model_name": "FloatProgressModel",
"_view_module": "@jupyter-widgets/controls", "_view_count": null,
"_view_module_version": "1.5.0", "_view_module": "@jupyter-widgets/controls",
"_view_name": "ProgressView", "_view_module_version": "1.5.0",
"bar_style": "success", "_view_name": "ProgressView",
"description": "", "bar_style": "success",
"description_tooltip": null, "description": "",
"layout": "IPY_MODEL_7c5689bc13684db8a22681f41863dddd", "description_tooltip": null,
"max": 5669, "layout": "IPY_MODEL_7c5689bc13684db8a22681f41863dddd",
"min": 0, "max": 5669,
"orientation": "horizontal", "min": 0,
"style": "IPY_MODEL_48763b6233374554ae76035c0483066f", "orientation": "horizontal",
"value": 5669 "style": "IPY_MODEL_48763b6233374554ae76035c0483066f",
} "value": 5669
}, }
"f61ed33fad754146bdd2ac9db1ba1c48": { },
"model_module": "@jupyter-widgets/controls", "f61ed33fad754146bdd2ac9db1ba1c48": {
"model_module_version": "1.5.0", "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel", "model_module_version": "1.5.0",
"state": { "model_name": "HTMLModel",
"_dom_classes": [], "state": {
"_model_module": "@jupyter-widgets/controls", "_dom_classes": [],
"_model_module_version": "1.5.0", "_model_module": "@jupyter-widgets/controls",
"_model_name": "HTMLModel", "_model_module_version": "1.5.0",
"_view_count": null, "_model_name": "HTMLModel",
"_view_module": "@jupyter-widgets/controls", "_view_count": null,
"_view_module_version": "1.5.0", "_view_module": "@jupyter-widgets/controls",
"_view_name": "HTMLView", "_view_module_version": "1.5.0",
"description": "", "_view_name": "HTMLView",
"description_tooltip": null, "description": "",
"layout": "IPY_MODEL_a73f357065d34d7baf0453ae4a8d75e2", "description_tooltip": null,
"placeholder": "​", "layout": "IPY_MODEL_a73f357065d34d7baf0453ae4a8d75e2",
"style": "IPY_MODEL_46f521b73fd943c081c648fd873ebc0a", "placeholder": "​",
"value": "Downloading builder script: 100%" "style": "IPY_MODEL_46f521b73fd943c081c648fd873ebc0a",
"value": "Downloading builder script: 100%"
}
},
"fd1ad9e0367d4004aae853b91c3a7617": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4986a21eb560448fa79f4b25cde48951",
"placeholder": "​",
"style": "IPY_MODEL_aed3acd2f2d74003b44079c333a0698e",
"value": " 5.67k/5.67k [00:00&lt;00:00, 205kB/s]"
}
} }
}, },
"fd1ad9e0367d4004aae853b91c3a7617": { "version_major": 2,
"model_module": "@jupyter-widgets/controls", "version_minor": 0
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4986a21eb560448fa79f4b25cde48951",
"placeholder": "​",
"style": "IPY_MODEL_aed3acd2f2d74003b44079c333a0698e",
"value": " 5.67k/5.67k [00:00&lt;00:00, 205kB/s]"
}
}
} }
} }
}, },
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment