Unverified Commit 7f698a5a authored by Timur Aysin's avatar Timur Aysin Committed by GitHub
Browse files

Fix LongBench Evaluation (#3273)



* fix: set 'do_sample=False' and use double quotes in 'doc_to_text'

* feat: update versions and README for longbench

* pacify pre-commit

---------
Co-authored-by: default avatarBaber <baber@hey.com>
parent 0c134ee9
...@@ -5,17 +5,17 @@ task: longbench_passage_count_e ...@@ -5,17 +5,17 @@ task: longbench_passage_count_e
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: passage_count_e dataset_name: passage_count_e
doc_to_text: 'There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{{context}}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: ' doc_to_text: "There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{{context}}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: "
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_count_score process_results: !function metrics.get_count_score
generation_kwargs: generation_kwargs:
max_gen_toks: 32 max_gen_toks: 32
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "count_score" - metric: "count_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_passage_retrieval_en ...@@ -5,17 +5,17 @@ task: longbench_passage_retrieval_en
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: passage_retrieval_en dataset_name: passage_retrieval_en
doc_to_text: 'Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{{context}}\n\nThe following is an abstract.\n\n{{input}}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like "Paragraph 1", "Paragraph 2", etc.\n\nThe answer is: ' doc_to_text: "Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{{context}}\n\nThe following is an abstract.\n\n{{input}}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like \"Paragraph 1\", \"Paragraph 2\", etc.\n\nThe answer is: "
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_retrieval_score process_results: !function metrics.get_retrieval_score
generation_kwargs: generation_kwargs:
max_gen_toks: 32 max_gen_toks: 32
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "retrieval_score" - metric: "retrieval_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_passage_retrieval_en_e ...@@ -5,17 +5,17 @@ task: longbench_passage_retrieval_en_e
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: passage_retrieval_en_e dataset_name: passage_retrieval_en_e
doc_to_text: 'Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{{context}}\n\nThe following is an abstract.\n\n{{input}}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like "Paragraph 1", "Paragraph 2", etc.\n\nThe answer is: ' doc_to_text: "Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{{context}}\n\nThe following is an abstract.\n\n{{input}}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like \"Paragraph 1\", \"Paragraph 2\", etc.\n\nThe answer is: "
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_retrieval_score process_results: !function metrics.get_retrieval_score
generation_kwargs: generation_kwargs:
max_gen_toks: 32 max_gen_toks: 32
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "retrieval_score" - metric: "retrieval_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_passage_retrieval_zh ...@@ -5,17 +5,17 @@ task: longbench_passage_retrieval_zh
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: passage_retrieval_zh dataset_name: passage_retrieval_zh
doc_to_text: '以下是若干段落文字,以及其中一个段落的摘要。请确定给定的摘要出自哪一段。\n\n{{context}}\n\n下面是一个摘要\n\n{{input}}\n\n请输入摘要所属段落的编号。答案格式必须是"段落1","段落2"等格式\n\n答案是:' doc_to_text: "以下是若干段落文字,以及其中一个段落的摘要。请确定给定的摘要出自哪一段。\n\n{{context}}\n\n下面是一个摘要\n\n{{input}}\n\n请输入摘要所属段落的编号。答案格式必须是\"段落1\"\"段落2\"等格式\n\n答案是:"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_retrieval_zh_score process_results: !function metrics.get_retrieval_zh_score
generation_kwargs: generation_kwargs:
max_gen_toks: 32 max_gen_toks: 32
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "retrieval_zh_score" - metric: "retrieval_zh_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_qasper ...@@ -5,17 +5,17 @@ task: longbench_qasper
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: qasper dataset_name: qasper
doc_to_text: 'You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.\n\nArticle: {{context}}\n\n Answer the question based on the above article as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.\n\nQuestion: {{input}}\n\nAnswer:' doc_to_text: "You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write \"unanswerable\". If the question is a yes/no question, answer \"yes\", \"no\", or \"unanswerable\". Do not provide any explanation.\n\nArticle: {{context}}\n\n Answer the question based on the above article as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write \"unanswerable\". If the question is a yes/no question, answer \"yes\", \"no\", or \"unanswerable\". Do not provide any explanation.\n\nQuestion: {{input}}\n\nAnswer:"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_qa_f1_score process_results: !function metrics.get_qa_f1_score
generation_kwargs: generation_kwargs:
max_gen_toks: 128 max_gen_toks: 128
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "qa_f1_score" - metric: "qa_f1_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_qasper_e ...@@ -5,17 +5,17 @@ task: longbench_qasper_e
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: qasper_e dataset_name: qasper_e
doc_to_text: 'You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.\n\nArticle: {{context}}\n\n Answer the question based on the above article as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.\n\nQuestion: {{input}}\n\nAnswer:' doc_to_text: "You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write \"unanswerable\". If the question is a yes/no question, answer \"yes\", \"no\", or \"unanswerable\". Do not provide any explanation.\n\nArticle: {{context}}\n\n Answer the question based on the above article as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write \"unanswerable\". If the question is a yes/no question, answer \"yes\", \"no\", or \"unanswerable\". Do not provide any explanation.\n\nQuestion: {{input}}\n\nAnswer:"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_qa_f1_score process_results: !function metrics.get_qa_f1_score
generation_kwargs: generation_kwargs:
max_gen_toks: 128 max_gen_toks: 128
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "qa_f1_score" - metric: "qa_f1_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_qmsum ...@@ -5,17 +5,17 @@ task: longbench_qmsum
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: qmsum dataset_name: qmsum
doc_to_text: 'You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{{context}}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {{input}}\nAnswer:' doc_to_text: "You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{{context}}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {{input}}\nAnswer:"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_rouge_score process_results: !function metrics.get_rouge_score
generation_kwargs: generation_kwargs:
max_gen_toks: 512 max_gen_toks: 512
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "rouge_score" - metric: "rouge_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_repobench-p ...@@ -5,17 +5,17 @@ task: longbench_repobench-p
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: repobench-p dataset_name: repobench-p
doc_to_text: 'Please complete the code given below. \n{{context}}{{input}}Next line of code:\n' doc_to_text: "Please complete the code given below. \n{{context}}{{input}}Next line of code:\n"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_code_sim_score process_results: !function metrics.get_code_sim_score
generation_kwargs: generation_kwargs:
max_gen_toks: 64 max_gen_toks: 64
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "code_sim_score" - metric: "code_sim_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_repobench-p_e ...@@ -5,17 +5,17 @@ task: longbench_repobench-p_e
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: repobench-p_e dataset_name: repobench-p_e
doc_to_text: 'Please complete the code given below. \n{{context}}{{input}}Next line of code:\n' doc_to_text: "Please complete the code given below. \n{{context}}{{input}}Next line of code:\n"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_code_sim_score process_results: !function metrics.get_code_sim_score
generation_kwargs: generation_kwargs:
max_gen_toks: 64 max_gen_toks: 64
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "code_sim_score" - metric: "code_sim_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_samsum ...@@ -5,17 +5,17 @@ task: longbench_samsum
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: samsum dataset_name: samsum
doc_to_text: 'Summarize the dialogue into a few short sentences. The following are some examples.\n\n{{context}}\n\n{{input}}' doc_to_text: "Summarize the dialogue into a few short sentences. The following are some examples.\n\n{{context}}\n\n{{input}}"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_rouge_score process_results: !function metrics.get_rouge_score
generation_kwargs: generation_kwargs:
max_gen_toks: 128 max_gen_toks: 128
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: ["\n"] until: ["\n"]
metric_list: metric_list:
- metric: "rouge_score" - metric: "rouge_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_samsum_e ...@@ -5,17 +5,17 @@ task: longbench_samsum_e
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: samsum_e dataset_name: samsum_e
doc_to_text: 'Summarize the dialogue into a few short sentences. The following are some examples.\n\n{{context}}\n\n{{input}}' doc_to_text: "Summarize the dialogue into a few short sentences. The following are some examples.\n\n{{context}}\n\n{{input}}"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_rouge_score process_results: !function metrics.get_rouge_score
generation_kwargs: generation_kwargs:
max_gen_toks: 128 max_gen_toks: 128
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: ["\n"] until: ["\n"]
metric_list: metric_list:
- metric: "rouge_score" - metric: "rouge_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_trec ...@@ -5,17 +5,17 @@ task: longbench_trec
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: trec dataset_name: trec
doc_to_text: 'Please determine the type of the question below. Here are some examples of questions.\n\n{{context}}\n{{input}}' doc_to_text: "Please determine the type of the question below. Here are some examples of questions.\n\n{{context}}\n{{input}}"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_classification_score process_results: !function metrics.get_classification_score
generation_kwargs: generation_kwargs:
max_gen_toks: 64 max_gen_toks: 64
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: ["\n"] until: ["\n"]
metric_list: metric_list:
- metric: "classification_score" - metric: "classification_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_trec_e ...@@ -5,17 +5,17 @@ task: longbench_trec_e
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: trec_e dataset_name: trec_e
doc_to_text: 'Please determine the type of the question below. Here are some examples of questions.\n\n{{context}}\n{{input}}' doc_to_text: "Please determine the type of the question below. Here are some examples of questions.\n\n{{context}}\n{{input}}"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_classification_score process_results: !function metrics.get_classification_score
generation_kwargs: generation_kwargs:
max_gen_toks: 64 max_gen_toks: 64
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: ["\n"] until: ["\n"]
metric_list: metric_list:
- metric: "classification_score" - metric: "classification_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_triviaqa ...@@ -5,17 +5,17 @@ task: longbench_triviaqa
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: triviaqa dataset_name: triviaqa
doc_to_text: 'Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{{context}}\n\n{{input}}' doc_to_text: "Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{{context}}\n\n{{input}}"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_qa_f1_score process_results: !function metrics.get_qa_f1_score
generation_kwargs: generation_kwargs:
max_gen_toks: 32 max_gen_toks: 32
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: ["\n"] until: ["\n"]
metric_list: metric_list:
- metric: "qa_f1_score" - metric: "qa_f1_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_triviaqa_e ...@@ -5,17 +5,17 @@ task: longbench_triviaqa_e
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: triviaqa_e dataset_name: triviaqa_e
doc_to_text: 'Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{{context}}\n\n{{input}}' doc_to_text: "Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{{context}}\n\n{{input}}"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_qa_f1_score process_results: !function metrics.get_qa_f1_score
generation_kwargs: generation_kwargs:
max_gen_toks: 32 max_gen_toks: 32
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: ["\n"] until: ["\n"]
metric_list: metric_list:
- metric: "qa_f1_score" - metric: "qa_f1_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
...@@ -5,17 +5,17 @@ task: longbench_vcsum ...@@ -5,17 +5,17 @@ task: longbench_vcsum
dataset_path: THUDM/LongBench dataset_path: THUDM/LongBench
test_split: test test_split: test
dataset_name: vcsum dataset_name: vcsum
doc_to_text: '下面有一段会议记录,请你阅读后,写一段总结,总结会议的内容。\n会议记录:\n{{context}}\n\n会议总结:' doc_to_text: "下面有一段会议记录,请你阅读后,写一段总结,总结会议的内容。\n会议记录:\n{{context}}\n\n会议总结:"
doc_to_target: '{{answers}}' doc_to_target: '{{answers}}'
process_results: !function metrics.get_rouge_zh_score process_results: !function metrics.get_rouge_zh_score
generation_kwargs: generation_kwargs:
max_gen_toks: 512 max_gen_toks: 512
temperature: 1 temperature: 1
do_sample: True do_sample: False
until: [] until: []
metric_list: metric_list:
- metric: "rouge_zh_score" - metric: "rouge_zh_score"
aggregation: mean aggregation: mean
higher_is_better: True higher_is_better: True
metadata: metadata:
version: 3.0 version: 4.0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment