Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
758b9e3c
Unverified
Commit
758b9e3c
authored
Feb 14, 2021
by
Leo Gao
Committed by
GitHub
Feb 14, 2021
Browse files
Merge pull request #152 from zphang/record_fix
ReCoRD Update
parents
41eb4a65
81ab3416
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
32 additions
and
71 deletions
+32
-71
lm_eval/tasks/superglue.py
lm_eval/tasks/superglue.py
+32
-71
No files found.
lm_eval/tasks/superglue.py
View file @
758b9e3c
...
@@ -272,29 +272,24 @@ class ReCoRD(HFTask):
...
@@ -272,29 +272,24 @@ class ReCoRD(HFTask):
def
training_docs
(
self
):
def
training_docs
(
self
):
# In ReCoRD, each doc manifests multiple "examples" in the context of few shot example packing.
# In ReCoRD, each doc manifests multiple "examples" in the context of few shot example packing.
# Each doc consists of multiple answer candidates, each of which is scored yes/no.
# Each doc consists of multiple answer candidates, each of which is scored yes/no.
# Hence, we create one "doc" for each (context + passage, answer) pair.
# Moreover, we only use the correct answers for context packing
if
self
.
_training_docs
is
None
:
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
[]
self
.
_training_docs
=
[]
for
doc
in
self
.
data
[
"train"
]:
for
doc
in
self
.
data
[
"train"
]:
for
entity
in
list
(
set
(
doc
[
"entities"
])):
self
.
_training_docs
.
append
(
self
.
_process_doc
(
doc
))
self
.
_training_docs
.
append
({
"passage"
:
doc
[
"passage"
],
"query"
:
doc
[
"query"
],
"entity"
:
entity
,
"label"
:
entity
in
doc
[
"answers"
],
})
return
self
.
_training_docs
return
self
.
_training_docs
def
validation_docs
(
self
):
def
validation_docs
(
self
):
for
example_idx
,
doc
in
enumerate
(
self
.
data
[
"validation"
]):
# See: training_docs
for
entity
in
sorted
(
list
(
set
(
doc
[
"entities"
]))):
for
doc
in
self
.
data
[
"validation"
]:
yield
{
yield
self
.
_process_doc
(
doc
)
@
classmethod
def
_process_doc
(
cls
,
doc
):
return
{
"passage"
:
doc
[
"passage"
],
"passage"
:
doc
[
"passage"
],
"query"
:
doc
[
"query"
],
"query"
:
doc
[
"query"
],
"entity"
:
entity
,
"entities"
:
sorted
(
list
(
set
(
doc
[
"entities"
]))),
"label"
:
entity
in
doc
[
"answers"
],
"answers"
:
sorted
(
list
(
set
(
doc
[
"answers"
]))),
"example_idx"
:
example_idx
,
}
}
def
doc_to_text
(
self
,
doc
):
def
doc_to_text
(
self
,
doc
):
...
@@ -309,26 +304,31 @@ class ReCoRD(HFTask):
...
@@ -309,26 +304,31 @@ class ReCoRD(HFTask):
return
f
' -
{
query
}
'
.
replace
(
"@placeholder"
,
entity
)
return
f
' -
{
query
}
'
.
replace
(
"@placeholder"
,
entity
)
def
doc_to_target
(
self
,
doc
):
def
doc_to_target
(
self
,
doc
):
return
self
.
format_answer
(
query
=
doc
[
"query"
],
entity
=
doc
[
"entity"
])
# We only output the first correct entity in a doc
return
self
.
format_answer
(
query
=
doc
[
"query"
],
entity
=
doc
[
"answers"
][
0
])
def
construct_requests
(
self
,
doc
,
ctx
):
def
construct_requests
(
self
,
doc
,
ctx
):
requests
=
[
requests
=
[
rf
.
loglikelihood
(
ctx
,
self
.
format_answer
(
query
=
doc
[
"query"
],
entity
=
doc
[
"entity"
]))
rf
.
loglikelihood
(
ctx
,
self
.
format_answer
(
query
=
doc
[
"query"
],
entity
=
entity
))
for
entity
in
doc
[
"entities"
]
]
]
return
requests
return
requests
def
process_results
(
self
,
doc
,
results
):
def
process_results
(
self
,
doc
,
results
):
# We defer the actual meat of ReCoRD's evaluation until we start collating the results across "docs"
# ReCoRD's evaluation is actually deceptively simple:
assert
len
(
results
)
==
1
# - Pick the maximum likelihood prediction entity
scoring_info
=
{
# - Evaluate the accuracy and token F1 PER EXAMPLE
"example_idx"
:
doc
[
"example_idx"
],
# - Average over all examples
"pred_score"
:
results
[
0
][
0
],
max_idx
=
np
.
argmax
(
np
.
array
([
result
[
0
]
for
result
in
results
]))
"entity"
:
doc
[
"entity"
],
"label"
:
doc
[
"label"
],
prediction
=
doc
[
"entities"
][
max_idx
]
}
gold_label_set
=
doc
[
"answers"
]
f1
=
metric_max_over_ground_truths
(
squad_metrics
.
compute_f1
,
prediction
,
gold_label_set
)
em
=
metric_max_over_ground_truths
(
squad_metrics
.
compute_exact
,
prediction
,
gold_label_set
)
return
{
return
{
"f1"
:
scoring_info
,
"f1"
:
f1
,
"em"
:
scoring_info
,
"em"
:
em
,
}
}
def
higher_is_better
(
self
):
def
higher_is_better
(
self
):
...
@@ -339,49 +339,10 @@ class ReCoRD(HFTask):
...
@@ -339,49 +339,10 @@ class ReCoRD(HFTask):
def
aggregation
(
self
):
def
aggregation
(
self
):
return
{
return
{
"f1"
:
self
.
record_eval_em
,
"f1"
:
mean
,
"em"
:
self
.
record_eval_f1
,
"em"
:
mean
,
}
}
@
classmethod
def
record_eval_aggregation
(
cls
,
items
,
scoring_function
):
# ReCoRD's evaluation is actually deceptively simple:
# - Pick the maximum likelihood prediction entity
# - Evaluate the accuracy and token F1 PER EXAMPLE
# - Average over all examples
# Reconstruct an example_idx -> example results mapping
# (remember, each example spans multiple docs)
example_dict
=
{}
for
item
in
items
:
example_idx
=
item
[
"example_idx"
]
if
example_idx
not
in
example_dict
:
example_dict
[
example_idx
]
=
[]
example_dict
[
example_idx
].
append
(
item
)
# Compute score for each example
score_list
=
[]
for
example
in
example_dict
.
values
():
max_idx
=
int
(
np
.
argmax
(
np
.
array
([
result
[
"pred_score"
]
for
result
in
example
])))
entities
=
[
result
[
"entity"
]
for
result
in
example
]
prediction
=
entities
[
max_idx
]
gold_label_set
=
list
(
set
(
result
[
"entity"
]
for
result
in
example
if
result
[
"label"
]))
if
not
gold_label_set
:
# When we limit the number of docs processed, some examples may not have any valid answers.
# We skip these example.
continue
per_example_score
=
metric_max_over_ground_truths
(
scoring_function
,
prediction
,
gold_label_set
)
score_list
.
append
(
per_example_score
)
return
np
.
mean
(
score_list
)
@
classmethod
def
record_eval_em
(
cls
,
items
):
return
cls
.
record_eval_aggregation
(
items
,
scoring_function
=
squad_metrics
.
compute_exact
)
@
classmethod
def
record_eval_f1
(
cls
,
items
):
return
cls
.
record_eval_aggregation
(
items
,
scoring_function
=
squad_metrics
.
compute_f1
)
class
WordsInContext
(
HFTask
):
class
WordsInContext
(
HFTask
):
DATASET_PATH
=
"super_glue"
DATASET_PATH
=
"super_glue"
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment