Unverified Commit 56a4e794 authored by Lintang Sutawika's avatar Lintang Sutawika Committed by GitHub
Browse files

formatting (#2104)

parent 9884ad6e
dataset_name: twi dataset_name: twi
include: afrimmlu_common_translate_yaml include: afrimmlu_common_translate_yaml
task: afrimmlu_translate_twi task: afrimmlu_translate_twi
\ No newline at end of file
dataset_name: wol dataset_name: wol
include: afrimmlu_common_translate_yaml include: afrimmlu_common_translate_yaml
task: afrimmlu_translate_wol task: afrimmlu_translate_wol
\ No newline at end of file
dataset_name: xho dataset_name: xho
include: afrimmlu_common_translate_yaml include: afrimmlu_common_translate_yaml
task: afrimmlu_translate_xho task: afrimmlu_translate_xho
\ No newline at end of file
dataset_name: yor dataset_name: yor
include: afrimmlu_common_translate_yaml include: afrimmlu_common_translate_yaml
task: afrimmlu_translate_yor task: afrimmlu_translate_yor
\ No newline at end of file
dataset_name: zul dataset_name: zul
include: afrimmlu_common_translate_yaml include: afrimmlu_common_translate_yaml
task: afrimmlu_translate_zul task: afrimmlu_translate_zul
\ No newline at end of file
...@@ -7,9 +7,9 @@ def doc_to_choice(doc): ...@@ -7,9 +7,9 @@ def doc_to_choice(doc):
def doc_to_text(doc): def doc_to_text(doc):
output = """You are a highly knowledgeable and intelligent artificial intelligence output = """You are a highly knowledgeable and intelligent artificial intelligence
model answers multiple-choice questions about '{subject}' model answers multiple-choice questions about '{subject}'
Question: '''{question}''' Question: '''{question}'''
Choices: Choices:
...@@ -17,16 +17,18 @@ def doc_to_text(doc): ...@@ -17,16 +17,18 @@ def doc_to_text(doc):
B: ''{choice2}''' B: ''{choice2}'''
C: ''{choice3}''' C: ''{choice3}'''
D: ''{choice4}''' D: ''{choice4}'''
Answer: """ Answer: """
choices = eval(doc["choices"]) choices = eval(doc["choices"])
text = output.format(subject=doc['subject'], text = output.format(
question=doc['question'], subject=doc["subject"],
choice1=choices[0], question=doc["question"],
choice2=choices[1], choice1=choices[0],
choice3=choices[2], choice2=choices[1],
choice4=choices[3]) choice3=choices[2],
choice4=choices[3],
)
return text return text
...@@ -35,4 +37,4 @@ def weighted_f1_score(items): ...@@ -35,4 +37,4 @@ def weighted_f1_score(items):
golds = unzipped_list[0] golds = unzipped_list[0]
preds = unzipped_list[1] preds = unzipped_list[1]
fscore = f1_score(golds, preds, average="weighted") fscore = f1_score(golds, preds, average="weighted")
return fscore return fscore
\ No newline at end of file
...@@ -7,9 +7,9 @@ def doc_to_choice(doc): ...@@ -7,9 +7,9 @@ def doc_to_choice(doc):
def doc_to_text(doc): def doc_to_text(doc):
output = """You are a highly knowledgeable and intelligent artificial intelligence output = """You are a highly knowledgeable and intelligent artificial intelligence
model answers multiple-choice questions about '{subject}' model answers multiple-choice questions about '{subject}'
Question: '''{question}''' Question: '''{question}'''
Choices: Choices:
...@@ -17,16 +17,18 @@ def doc_to_text(doc): ...@@ -17,16 +17,18 @@ def doc_to_text(doc):
B: ''{choice2}''' B: ''{choice2}'''
C: ''{choice3}''' C: ''{choice3}'''
D: ''{choice4}''' D: ''{choice4}'''
Answer: """ Answer: """
choices = eval(doc["choices"]) choices = eval(doc["choices"])
text = output.format(subject=doc['subject'], text = output.format(
question=doc['question'], subject=doc["subject"],
choice1=choices[0], question=doc["question"],
choice2=choices[1], choice1=choices[0],
choice3=choices[2], choice2=choices[1],
choice4=choices[3]) choice3=choices[2],
choice4=choices[3],
)
return text return text
...@@ -35,4 +37,4 @@ def weighted_f1_score(items): ...@@ -35,4 +37,4 @@ def weighted_f1_score(items):
golds = unzipped_list[0] golds = unzipped_list[0]
preds = unzipped_list[1] preds = unzipped_list[1]
fscore = f1_score(golds, preds, average="weighted") fscore = f1_score(golds, preds, average="weighted")
return fscore return fscore
\ No newline at end of file
...@@ -5,8 +5,8 @@ ...@@ -5,8 +5,8 @@
IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models
https://arxiv.org/pdf/2406.03368 https://arxiv.org/pdf/2406.03368
IrokoBench is a human-translated benchmark dataset for 16 typologically diverse IrokoBench is a human-translated benchmark dataset for 16 typologically diverse
low-resource African languages covering three tasks: natural language inference (AfriXNLI), low-resource African languages covering three tasks: natural language inference (AfriXNLI),
mathematical reasoning (AfriMGSM), and multi-choice knowledge-based QA (AfriMMLU). mathematical reasoning (AfriMGSM), and multi-choice knowledge-based QA (AfriMMLU).
...@@ -14,13 +14,13 @@ mathematical reasoning (AfriMGSM), and multi-choice knowledge-based QA (AfriMMLU ...@@ -14,13 +14,13 @@ mathematical reasoning (AfriMGSM), and multi-choice knowledge-based QA (AfriMMLU
``` ```
@misc{adelani2024irokobenchnewbenchmarkafrican, @misc{adelani2024irokobenchnewbenchmarkafrican,
title={IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models}, title={IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models},
author={David Ifeoluwa Adelani and Jessica Ojo and Israel Abebe Azime and Jian Yun Zhuang and Jesujoba O. Alabi and Xuanli He and Millicent Ochieng and Sara Hooker and Andiswa Bukula and En-Shiun Annie Lee and Chiamaka Chukwuneke and Happy Buzaaba and Blessing Sibanda and Godson Kalipe and Jonathan Mukiibi and Salomon Kabongo and Foutse Yuehgoh and Mmasibidi Setaka and Lolwethu Ndolela and Nkiruka Odu and Rooweither Mabuya and Shamsuddeen Hassan Muhammad and Salomey Osei and Sokhar Samb and Tadesse Kebede Guge and Pontus Stenetorp}, author={David Ifeoluwa Adelani and Jessica Ojo and Israel Abebe Azime and Jian Yun Zhuang and Jesujoba O. Alabi and Xuanli He and Millicent Ochieng and Sara Hooker and Andiswa Bukula and En-Shiun Annie Lee and Chiamaka Chukwuneke and Happy Buzaaba and Blessing Sibanda and Godson Kalipe and Jonathan Mukiibi and Salomon Kabongo and Foutse Yuehgoh and Mmasibidi Setaka and Lolwethu Ndolela and Nkiruka Odu and Rooweither Mabuya and Shamsuddeen Hassan Muhammad and Salomey Osei and Sokhar Samb and Tadesse Kebede Guge and Pontus Stenetorp},
year={2024}, year={2024},
eprint={2406.03368}, eprint={2406.03368},
archivePrefix={arXiv}, archivePrefix={arXiv},
primaryClass={cs.CL}, primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.03368}, url={https://arxiv.org/abs/2406.03368},
} }
``` ```
...@@ -30,7 +30,7 @@ mathematical reasoning (AfriMGSM), and multi-choice knowledge-based QA (AfriMMLU ...@@ -30,7 +30,7 @@ mathematical reasoning (AfriMGSM), and multi-choice knowledge-based QA (AfriMMLU
* `afrixnli`: All afrixnli tasks * `afrixnli`: All afrixnli tasks
* `afrixnli_en_direct`: afrixnli_en_direct evaluates models performance using the anli prompt on the curated dataset * `afrixnli_en_direct`: afrixnli_en_direct evaluates models performance using the anli prompt on the curated dataset
* `afrixnli_native_direct`: afrixnli_native_direct evaluates models performance using the anli prompt translated to the * `afrixnli_native_direct`: afrixnli_native_direct evaluates models performance using the anli prompt translated to the
respective languages on the curated dataset respective languages on the curated dataset
* `afrixnli_translate`: afrixnli_translate evaluates models using the anli prompt in translate-test setting * `afrixnli_translate`: afrixnli_translate evaluates models using the anli prompt in translate-test setting
* `afrixnli_manual_direct`: afrixnli_manual_direct evaluates models performance using Lai's prompt on the curated dataset * `afrixnli_manual_direct`: afrixnli_manual_direct evaluates models performance using Lai's prompt on the curated dataset
......
...@@ -2,11 +2,7 @@ from sklearn.metrics import f1_score ...@@ -2,11 +2,7 @@ from sklearn.metrics import f1_score
def doc_to_target(doc): def doc_to_target(doc):
replacements = { replacements = {0: "True", 1: "Neither", 2: "False"}
0: 'True',
1: 'Neither',
2: 'False'
}
return replacements[doc["label"]] return replacements[doc["label"]]
......
...@@ -2,4 +2,3 @@ ...@@ -2,4 +2,3 @@
dataset_name: amh dataset_name: amh
include: afrixnli_translate_yaml include: afrixnli_translate_yaml
task: afrixnli_translate_amh task: afrixnli_translate_amh
...@@ -2,11 +2,7 @@ from sklearn.metrics import f1_score ...@@ -2,11 +2,7 @@ from sklearn.metrics import f1_score
def doc_to_target(doc): def doc_to_target(doc):
replacements = { replacements = {0: "True", 1: "Neither", 2: "False"}
0: 'True',
1: 'Neither',
2: 'False'
}
return replacements[doc["label"]] return replacements[doc["label"]]
......
...@@ -2,25 +2,20 @@ from sklearn.metrics import f1_score ...@@ -2,25 +2,20 @@ from sklearn.metrics import f1_score
def doc_to_text(doc): def doc_to_text(doc):
output = """Please identify whether the premise entails or contradicts the hypothesis in the following premise output = """Please identify whether the premise entails or contradicts the hypothesis in the following premise
and hypothesis. The answer should be exact entailment, contradiction, or neutral. and hypothesis. The answer should be exact entailment, contradiction, or neutral.
Premise: {premise} Premise: {premise}
Hypothesis: {hypothesis} Hypothesis: {hypothesis}
Is it entailment, contradiction, or neutral?""" Is it entailment, contradiction, or neutral?"""
text = output.format(premise=doc['premise'], text = output.format(premise=doc["premise"], hypothesis=doc["hypothesis"])
hypothesis=doc['hypothesis'])
return text return text
def doc_to_target(doc): def doc_to_target(doc):
replacements = { replacements = {0: "entailment", 1: "neutral", 2: "contradiction"}
0: 'entailment',
1: 'neutral',
2: 'contradiction'
}
return replacements[doc["label"]] return replacements[doc["label"]]
......
...@@ -2,25 +2,20 @@ from sklearn.metrics import f1_score ...@@ -2,25 +2,20 @@ from sklearn.metrics import f1_score
def doc_to_text(doc): def doc_to_text(doc):
output = """Please identify whether the premise entails or contradicts the hypothesis in the following premise output = """Please identify whether the premise entails or contradicts the hypothesis in the following premise
and hypothesis. The answer should be exact entailment, contradiction, or neutral. and hypothesis. The answer should be exact entailment, contradiction, or neutral.
Premise: {premise} Premise: {premise}
Hypothesis: {hypothesis} Hypothesis: {hypothesis}
Is it entailment, contradiction, or neutral?""" Is it entailment, contradiction, or neutral?"""
text = output.format(premise=doc['premise'], text = output.format(premise=doc["premise"], hypothesis=doc["hypothesis"])
hypothesis=doc['hypothesis'])
return text return text
def doc_to_target(doc): def doc_to_target(doc):
replacements = { replacements = {0: "entailment", 1: "neutral", 2: "contradiction"}
0: 'entailment',
1: 'neutral',
2: 'contradiction'
}
return replacements[doc["label"]] return replacements[doc["label"]]
......
import yaml
import argparse import argparse
import yaml
class FunctionTag: class FunctionTag:
def __init__(self, value): def __init__(self, value):
...@@ -12,110 +13,110 @@ LANGUAGES = { ...@@ -12,110 +13,110 @@ LANGUAGES = {
"QUESTION_WORD": "ትክክል", "QUESTION_WORD": "ትክክል",
"ENTAILMENT_LABEL": "አዎ", "ENTAILMENT_LABEL": "አዎ",
"NEUTRAL_LABEL": "እንዲሁም", "NEUTRAL_LABEL": "እንዲሁም",
"CONTRADICTION_LABEL": "አይ" "CONTRADICTION_LABEL": "አይ",
}, },
"eng": { "eng": {
"QUESTION_WORD": "Right", "QUESTION_WORD": "Right",
"ENTAILMENT_LABEL": "Yes", "ENTAILMENT_LABEL": "Yes",
"NEUTRAL_LABEL": "Also", "NEUTRAL_LABEL": "Also",
"CONTRADICTION_LABEL": "No" "CONTRADICTION_LABEL": "No",
}, },
"ewe": { "ewe": {
"QUESTION_WORD": "Esɔ gbe", "QUESTION_WORD": "Esɔ gbe",
"ENTAILMENT_LABEL": "Ɛ̃", "ENTAILMENT_LABEL": "Ɛ̃",
"NEUTRAL_LABEL": "Hã", "NEUTRAL_LABEL": "Hã",
"CONTRADICTION_LABEL": "Ao" "CONTRADICTION_LABEL": "Ao",
}, },
"fra": { "fra": {
"QUESTION_WORD": "correct", "QUESTION_WORD": "correct",
"ENTAILMENT_LABEL": "Oui", "ENTAILMENT_LABEL": "Oui",
"NEUTRAL_LABEL": "Aussi", "NEUTRAL_LABEL": "Aussi",
"CONTRADICTION_LABEL": "Non" "CONTRADICTION_LABEL": "Non",
}, },
"hau": { "hau": {
"QUESTION_WORD": "Daidai", "QUESTION_WORD": "Daidai",
"ENTAILMENT_LABEL": "Ee", "ENTAILMENT_LABEL": "Ee",
"NEUTRAL_LABEL": "Haka kuma", "NEUTRAL_LABEL": "Haka kuma",
"CONTRADICTION_LABEL": "A'a" "CONTRADICTION_LABEL": "A'a",
}, },
"ibo": { "ibo": {
"QUESTION_WORD": "Ziri ezi", "QUESTION_WORD": "Ziri ezi",
"ENTAILMENT_LABEL": "Éè", "ENTAILMENT_LABEL": "Éè",
"NEUTRAL_LABEL": "Ọzọkwa", "NEUTRAL_LABEL": "Ọzọkwa",
"CONTRADICTION_LABEL": "Mba" "CONTRADICTION_LABEL": "Mba",
}, },
"kin": { "kin": {
"QUESTION_WORD": "Nibyo", "QUESTION_WORD": "Nibyo",
"ENTAILMENT_LABEL": "Yego", "ENTAILMENT_LABEL": "Yego",
"NEUTRAL_LABEL": "Na none", "NEUTRAL_LABEL": "Na none",
"CONTRADICTION_LABEL": "Oya" "CONTRADICTION_LABEL": "Oya",
}, },
"lin": { "lin": {
"QUESTION_WORD": "Malamu", "QUESTION_WORD": "Malamu",
"ENTAILMENT_LABEL": "Iyo", "ENTAILMENT_LABEL": "Iyo",
"NEUTRAL_LABEL": "Lisusu", "NEUTRAL_LABEL": "Lisusu",
"CONTRADICTION_LABEL": "Te" "CONTRADICTION_LABEL": "Te",
}, },
"lug": { "lug": {
"QUESTION_WORD": "Kituufu", "QUESTION_WORD": "Kituufu",
"ENTAILMENT_LABEL": "Yee", "ENTAILMENT_LABEL": "Yee",
"NEUTRAL_LABEL": "N’ekirala", "NEUTRAL_LABEL": "N’ekirala",
"CONTRADICTION_LABEL": "Nedda" "CONTRADICTION_LABEL": "Nedda",
}, },
"orm": { "orm": {
"QUESTION_WORD": "Sirrii", "QUESTION_WORD": "Sirrii",
"ENTAILMENT_LABEL": "Eeyyee", "ENTAILMENT_LABEL": "Eeyyee",
"NEUTRAL_LABEL": "Akkasumas", "NEUTRAL_LABEL": "Akkasumas",
"CONTRADICTION_LABEL": "Lakki" "CONTRADICTION_LABEL": "Lakki",
}, },
"sna": { "sna": {
"QUESTION_WORD": "Chokwadi", "QUESTION_WORD": "Chokwadi",
"ENTAILMENT_LABEL": "Hongu", "ENTAILMENT_LABEL": "Hongu",
"NEUTRAL_LABEL": "Uye", "NEUTRAL_LABEL": "Uye",
"CONTRADICTION_LABEL": "Kwete" "CONTRADICTION_LABEL": "Kwete",
}, },
"sot": { "sot": {
"QUESTION_WORD": "Nepile", "QUESTION_WORD": "Nepile",
"ENTAILMENT_LABEL": "E", "ENTAILMENT_LABEL": "E",
"NEUTRAL_LABEL": "Hape", "NEUTRAL_LABEL": "Hape",
"CONTRADICTION_LABEL": "Tjhe" "CONTRADICTION_LABEL": "Tjhe",
}, },
"swa": { "swa": {
"QUESTION_WORD": "Sahihi", "QUESTION_WORD": "Sahihi",
"ENTAILMENT_LABEL": "Ndiyo", "ENTAILMENT_LABEL": "Ndiyo",
"NEUTRAL_LABEL": "Pia", "NEUTRAL_LABEL": "Pia",
"CONTRADICTION_LABEL": "Hapana" "CONTRADICTION_LABEL": "Hapana",
}, },
"twi": { "twi": {
"QUESTION_WORD": "Nifa", "QUESTION_WORD": "Nifa",
"ENTAILMENT_LABEL": "Aane", "ENTAILMENT_LABEL": "Aane",
"NEUTRAL_LABEL": "Anaasɛ", "NEUTRAL_LABEL": "Anaasɛ",
"CONTRADICTION_LABEL": "Daabi" "CONTRADICTION_LABEL": "Daabi",
}, },
"wol": { "wol": {
"QUESTION_WORD": "Dëgg", "QUESTION_WORD": "Dëgg",
"ENTAILMENT_LABEL": "Waaw", "ENTAILMENT_LABEL": "Waaw",
"NEUTRAL_LABEL": "Itam", "NEUTRAL_LABEL": "Itam",
"CONTRADICTION_LABEL": "Déet" "CONTRADICTION_LABEL": "Déet",
}, },
"xho": { "xho": {
"QUESTION_WORD": "Ichanekile", "QUESTION_WORD": "Ichanekile",
"ENTAILMENT_LABEL": "Ewe", "ENTAILMENT_LABEL": "Ewe",
"NEUTRAL_LABEL": "Kananjalo", "NEUTRAL_LABEL": "Kananjalo",
"CONTRADICTION_LABEL": "Hayi" "CONTRADICTION_LABEL": "Hayi",
}, },
"yor": { "yor": {
"QUESTION_WORD": "Òótọ́", "QUESTION_WORD": "Òótọ́",
"ENTAILMENT_LABEL": "Bẹ́ẹ̀ni", "ENTAILMENT_LABEL": "Bẹ́ẹ̀ni",
"NEUTRAL_LABEL": "Àti pé", "NEUTRAL_LABEL": "Àti pé",
"CONTRADICTION_LABEL": "Rárá" "CONTRADICTION_LABEL": "Rárá",
}, },
"zul": { "zul": {
"QUESTION_WORD": "Kulungile", "QUESTION_WORD": "Kulungile",
"ENTAILMENT_LABEL": "Yebo", "ENTAILMENT_LABEL": "Yebo",
"NEUTRAL_LABEL": "Futhi", "NEUTRAL_LABEL": "Futhi",
"CONTRADICTION_LABEL": "Cha" "CONTRADICTION_LABEL": "Cha",
} },
} }
...@@ -127,8 +128,26 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None: ...@@ -127,8 +128,26 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None:
:param overwrite: Whether to overwrite files if they already exist. :param overwrite: Whether to overwrite files if they already exist.
""" """
err = [] err = []
languages = ['eng', 'amh', 'ibo', 'fra', 'sna', 'wol', 'ewe', 'lin', 'lug', 'xho', 'kin', 'twi', 'zul', 'orm', languages = [
'yor', 'hau', 'sot', 'swa'] "eng",
"amh",
"ibo",
"fra",
"sna",
"wol",
"ewe",
"lin",
"lug",
"xho",
"kin",
"twi",
"zul",
"orm",
"yor",
"hau",
"sot",
"swa",
]
for lang in languages: for lang in languages:
try: try:
if mode == "native-direct": if mode == "native-direct":
...@@ -141,7 +160,9 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None: ...@@ -141,7 +160,9 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None:
task_name = f"afrixnli_native_direct_{lang}" task_name = f"afrixnli_native_direct_{lang}"
yaml_template = "afrixnli_native_direct_yaml" yaml_template = "afrixnli_native_direct_yaml"
with open( with open(
f"{output_dir}/{file_name}", "w" if overwrite else "x", encoding="utf8" f"{output_dir}/{file_name}",
"w" if overwrite else "x",
encoding="utf8",
) as f: ) as f:
f.write("# Generated by utils.py\n") f.write("# Generated by utils.py\n")
yaml.dump( yaml.dump(
...@@ -150,10 +171,10 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None: ...@@ -150,10 +171,10 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None:
"task": task_name, "task": task_name,
"dataset_name": lang, "dataset_name": lang,
"doc_to_choice": f"{{{{[" "doc_to_choice": f"{{{{["
f"""premise+\", {QUESTION_WORD}? {ENTAILMENT_LABEL}, \"+hypothesis,""" f"""premise+\", {QUESTION_WORD}? {ENTAILMENT_LABEL}, \"+hypothesis,"""
f"""premise+\", {QUESTION_WORD}? {NEUTRAL_LABEL}, \"+hypothesis,""" f"""premise+\", {QUESTION_WORD}? {NEUTRAL_LABEL}, \"+hypothesis,"""
f"""premise+\", {QUESTION_WORD}? {CONTRADICTION_LABEL}, \"+hypothesis""" f"""premise+\", {QUESTION_WORD}? {CONTRADICTION_LABEL}, \"+hypothesis"""
f"]}}}}", f"]}}}}",
}, },
f, f,
allow_unicode=True, allow_unicode=True,
...@@ -163,14 +184,16 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None: ...@@ -163,14 +184,16 @@ def gen_lang_yamls(output_dir: str, overwrite: bool, mode: str) -> None:
task_name = f"afrixnli_{mode}_{lang}" task_name = f"afrixnli_{mode}_{lang}"
yaml_template = f"afrixnli_{mode}_yaml" yaml_template = f"afrixnli_{mode}_yaml"
with open( with open(
f"{output_dir}/{file_name}", "w" if overwrite else "x", encoding="utf8" f"{output_dir}/{file_name}",
"w" if overwrite else "x",
encoding="utf8",
) as f: ) as f:
f.write("# Generated by utils.py\n") f.write("# Generated by utils.py\n")
yaml.dump( yaml.dump(
{ {
"include": yaml_template, "include": yaml_template,
"task": task_name, "task": task_name,
"dataset_name": lang "dataset_name": lang,
}, },
f, f,
allow_unicode=True, allow_unicode=True,
...@@ -195,7 +218,9 @@ def main() -> None: ...@@ -195,7 +218,9 @@ def main() -> None:
help="Overwrite files if they already exist", help="Overwrite files if they already exist",
) )
parser.add_argument( parser.add_argument(
"--output-dir", default="./manual/translate", help="Directory to write yaml files to" "--output-dir",
default="./manual/translate",
help="Directory to write yaml files to",
) )
parser.add_argument( parser.add_argument(
"--mode", "--mode",
......
...@@ -3,4 +3,4 @@ task: ...@@ -3,4 +3,4 @@ task:
- med_concepts_qa_atc_tasks - med_concepts_qa_atc_tasks
aggregate_metric_list: aggregate_metric_list:
- metric: acc - metric: acc
aggregation: mean aggregation: mean
\ No newline at end of file
...@@ -3,4 +3,4 @@ task: ...@@ -3,4 +3,4 @@ task:
- med_concepts_qa_icd10proc_tasks - med_concepts_qa_icd10proc_tasks
aggregate_metric_list: aggregate_metric_list:
- metric: acc - metric: acc
aggregation: mean aggregation: mean
\ No newline at end of file
...@@ -3,4 +3,4 @@ task: ...@@ -3,4 +3,4 @@ task:
- med_concepts_qa_icd9cm_tasks - med_concepts_qa_icd9cm_tasks
aggregate_metric_list: aggregate_metric_list:
- metric: acc - metric: acc
aggregation: mean aggregation: mean
\ No newline at end of file
...@@ -3,4 +3,4 @@ task: ...@@ -3,4 +3,4 @@ task:
- med_concepts_qa_icd9proc_tasks - med_concepts_qa_icd9proc_tasks
aggregate_metric_list: aggregate_metric_list:
- metric: acc - metric: acc
aggregation: mean aggregation: mean
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment