Commit 4f002df5 authored by haileyschoelkopf's avatar haileyschoelkopf
Browse files

remove hf-causal model type

parent b3aab393
import torch
import transformers
import copy
from tqdm import tqdm
import torch.nn.functional as F
from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria
from accelerate import Accelerator
from typing import Optional, Union
@register_model("hf-causal")
class HFCausalLM(LM):
def __init__(
self,
device="cuda",
pretrained="gpt2",
revision="main",
low_cpu_mem_usage=None,
dtype: Optional[Union[str, torch.dtype]] = "auto",
subfolder=None,
tokenizer=None,
batch_size=1,
):
super().__init__()
assert isinstance(device, str)
assert isinstance(pretrained, str)
assert isinstance(batch_size, int)
gpus = torch.cuda.device_count()
if gpus <= 1:
if device:
if device not in ["cuda", "cpu"]:
device = int(device)
self._device = torch.device(device)
eval_logger.info(f"Using device '{device}'")
else:
eval_logger.info("Device not specified")
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
self._device = (
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
)
self._rank = 0
self._world_size = 1
else:
self._device = "cpu"
# TODO: update this to be less of a hack once subfolder is fixed in HF
revision = revision + ("/" + subfolder if subfolder is not None else "")
self.model = transformers.AutoModelForCausalLM.from_pretrained(
pretrained,
revision=revision,
low_cpu_mem_usage=low_cpu_mem_usage,
torch_dtype=utils.get_dtype(dtype),
).to(self.device)
self.model.eval()
eval_logger.info(self.model.dtype)
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
pretrained if tokenizer is None else tokenizer,
revision=revision,
)
self.vocab_size = self.tokenizer.vocab_size
# multithreading and batching
self.batch_size_per_gpu = batch_size # todo: adaptive batch size
# multigpu support with accelerate
if gpus > 1:
accelerator = Accelerator()
if gpus > accelerator.num_processes:
eval_logger.warning(
"WARNING: The number of total system GPUs does not match the number of spawned processes. "
"If you would like to use data parallelism, please launch the script "
"with 'accelerate launch *script*'. "
f"Current run will proceed with {accelerator.num_processes} devices."
)
self._rank = accelerator.local_process_index
self._world_size = accelerator.num_processes
# manually set model to use gpu, for case where many GPUs available but
# only seek to use one
self._device = (
torch.device(f"cuda:{accelerator.local_process_index}")
if torch.cuda.is_available()
else torch.device("cpu")
)
self.model.to(self.device)
else:
self.model = accelerator.prepare(self.model)
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {gpus} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id
@property
def max_length(self):
try:
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self.model).config.n_ctx
else:
return self.model.config.n_ctx
except AttributeError:
# gptneoconfig doesn't have n_ctx apparently
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(
self.model
).config.max_position_embeddings
else:
return self.model.config.max_position_embeddings
@property
def max_gen_toks(self):
return 256
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def device(self):
return self._device
@property
def rank(self):
return self._rank
@property
def world_size(self):
return self._world_size
def tok_encode(self, string: str):
return self.tokenizer.encode(string, add_special_tokens=False)
def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)
def _model_call(self, inps):
"""
inps: a torch tensor of shape [batch, sequence]
the size of sequence may vary from call to call
returns: a torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model
"""
with torch.no_grad():
return self.model(inps).logits
def _model_generate(self, context, max_length, stop, **generation_kwargs):
# we require users to pass do_sample=True explicitly
# for non-greedy gen. This should be reevaluated when considering beam search.
if "do_sample" not in generation_kwargs.keys():
generation_kwargs["do_sample"] = False
# build stopping criteria
stopping_criteria = stop_sequences_criteria(
self.tokenizer, stop, 1, context.shape[0]
)
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self.model).generate(
context,
max_length=max_length,
stopping_criteria=stopping_criteria,
pad_token_id=self.eot_token_id,
use_cache=True,
**generation_kwargs,
)
else:
return self.model.generate(
context,
max_length=max_length,
stopping_criteria=stopping_criteria,
pad_token_id=self.eot_token_id,
use_cache=True,
**generation_kwargs,
)
def loglikelihood(self, requests):
new_reqs = []
for context, continuation in [req.args for req in requests]:
if context == "":
# end of text as context
context_enc = [self.eot_token_id]
else:
context_enc = self.tok_encode(context)
continuation_enc = self.tok_encode(continuation)
new_reqs.append(((context, continuation), context_enc, continuation_enc))
return self._loglikelihood_tokens(new_reqs)
def loglikelihood_rolling(self, requests):
loglikelihoods = []
for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
rolling_token_windows = list(
map(
utils.make_disjoint_window,
utils.get_rolling_token_windows(
token_list=self.tok_encode(string),
prefix_token=self.eot_token_id,
max_seq_len=self.max_length,
context_len=1,
),
)
)
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
# TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
# that
pad_amnt = 0
if self.world_size > 1:
# TODO: Comment on what we do here
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
gathered = (
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
)
pad_amnt = max(gathered) - gathered[self.rank]
if pad_amnt > 0:
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
string_nll = self._loglikelihood_tokens(
rolling_token_windows, disable_tqdm=True
)
if (self.world_size > 1) and (pad_amnt > 0):
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
else:
# discard is_greedy
string_nll = [x[0] for x in string_nll]
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
return loglikelihoods
def _loglikelihood_tokens(self, requests, disable_tqdm=False):
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
res = []
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = x[1] + x[2]
return -len(toks), tuple(toks)
# TODO: automatic (variable) batch size detection for vectorization
re_ord = utils.Reorderer(requests, _collate)
for chunk in utils.chunks(
tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
self.batch_size,
):
inps = []
cont_toks_list = []
inplens = []
padding_length = None
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
# again because vectorizing is annoying
for _, context_enc, continuation_enc in chunk:
# sanity check
assert len(context_enc) > 0
assert len(continuation_enc) > 0
assert len(continuation_enc) <= self.max_length
# how this all works:
# CTX CONT
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
# model \ \
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
# when too long to fit in context, truncate from the left
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
dtype=torch.long,
).to(self.device)
(inplen,) = inp.shape
cont = continuation_enc
# since in _collate we make sure length is descending, the longest is always the first one.
padding_length = (
padding_length if padding_length is not None else inplen
)
# pad length from seq to padding_length
inp = torch.cat(
[
inp, # [seq]
torch.zeros(padding_length - inplen, dtype=torch.long).to(
inp.device
), # [padding_length - seq]
],
dim=0,
)
inps.append(inp.unsqueeze(0)) # [1, padding_length]
cont_toks_list.append(cont)
inplens.append(inplen)
batched_inps = torch.cat(inps, dim=0) # [batch, padding_length
multi_logits = F.log_softmax(
self._model_call(batched_inps), dim=-1
).cpu() # [batch, padding_length, vocab]
for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
chunk, multi_logits, inps, inplens, cont_toks_list
):
# Slice to original seq length
contlen = len(cont_toks)
logits = logits[inplen - contlen : inplen].unsqueeze(
0
) # [1, seq, vocab]
# Check if per-token argmax is exactly equal to continuation
greedy_tokens = logits.argmax(dim=-1)
cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
0
) # [1, seq]
max_equal = (greedy_tokens == cont_toks).all()
# Obtain log-probs at the corresponding continuation token indices
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
-1
) # [1, seq]
# Answer: (log prob, is-exact-match)
answer = (float(logits.sum()), bool(max_equal))
res.append(answer)
return re_ord.get_original(res)
def greedy_until(self, requests):
# TODO: implement fully general `until` that handles until that are
# multiple tokens or that span multiple tokens correctly
res = []
def _collate(x):
toks = self.tok_encode(x[0])
return len(toks), x[0]
re_ord = utils.Reorderer([req.args for req in requests], _collate)
for context, gen_kwargs in tqdm(re_ord.get_reordered()):
until = None
if isinstance(gen_kwargs, dict):
gen_kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
if "until" in gen_kwargs.keys():
until = gen_kwargs.pop("until")
if isinstance(until, str):
until = [gen_kwargs]
elif not isinstance(until, list):
raise ValueError(
f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {until}"
)
else:
raise ValueError(
f"Expected `gen_kwargs` to be of type `dict` but got {gen_kwargs}"
)
if not until:
until = [self.tok_decode(self.eot_token_id)]
if "max_gen_toks" in gen_kwargs.keys():
max_gen_toks = gen_kwargs.pop("max_gen_toks")
else:
max_gen_toks = self.max_gen_toks
primary_until = until[0]
# try:
# (primary_until,) = self.tok_encode(until[0])
# except Exception:
# # if our primary until would be multiple tokens long, we'll have errors.
# # TODO: handling this better will let us stop generating earlier + often.
# primary_until = self.eot_token_id
context_enc = torch.tensor(
[self.tok_encode(context)[max_gen_toks - self.max_length :]]
).to(self.device)
cont = self._model_generate(
context=context_enc,
max_length=context_enc.shape[1] + max_gen_toks,
stop=primary_until,
**gen_kwargs,
)
s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
for term in until:
s = s.split(term)[0]
res.append(s)
return re_ord.get_original(res)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment