Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
4f002df5
Commit
4f002df5
authored
Jun 26, 2023
by
haileyschoelkopf
Browse files
remove hf-causal model type
parent
b3aab393
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
433 deletions
+0
-433
lm_eval/models/hf_causal.py
lm_eval/models/hf_causal.py
+0
-433
No files found.
lm_eval/models/hf_causal.py
deleted
100644 → 0
View file @
b3aab393
import
torch
import
transformers
import
copy
from
tqdm
import
tqdm
import
torch.nn.functional
as
F
from
lm_eval
import
utils
from
lm_eval.logger
import
eval_logger
from
lm_eval.api.model
import
LM
from
lm_eval.api.registry
import
register_model
from
lm_eval.utils
import
MultiTokenEOSCriteria
,
stop_sequences_criteria
from
accelerate
import
Accelerator
from
typing
import
Optional
,
Union
@
register_model
(
"hf-causal"
)
class
HFCausalLM
(
LM
):
def
__init__
(
self
,
device
=
"cuda"
,
pretrained
=
"gpt2"
,
revision
=
"main"
,
low_cpu_mem_usage
=
None
,
dtype
:
Optional
[
Union
[
str
,
torch
.
dtype
]]
=
"auto"
,
subfolder
=
None
,
tokenizer
=
None
,
batch_size
=
1
,
):
super
().
__init__
()
assert
isinstance
(
device
,
str
)
assert
isinstance
(
pretrained
,
str
)
assert
isinstance
(
batch_size
,
int
)
gpus
=
torch
.
cuda
.
device_count
()
if
gpus
<=
1
:
if
device
:
if
device
not
in
[
"cuda"
,
"cpu"
]:
device
=
int
(
device
)
self
.
_device
=
torch
.
device
(
device
)
eval_logger
.
info
(
f
"Using device '
{
device
}
'"
)
else
:
eval_logger
.
info
(
"Device not specified"
)
eval_logger
.
info
(
f
"Cuda Available?
{
torch
.
cuda
.
is_available
()
}
"
)
self
.
_device
=
(
torch
.
device
(
"cuda"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"cpu"
)
)
self
.
_rank
=
0
self
.
_world_size
=
1
else
:
self
.
_device
=
"cpu"
# TODO: update this to be less of a hack once subfolder is fixed in HF
revision
=
revision
+
(
"/"
+
subfolder
if
subfolder
is
not
None
else
""
)
self
.
model
=
transformers
.
AutoModelForCausalLM
.
from_pretrained
(
pretrained
,
revision
=
revision
,
low_cpu_mem_usage
=
low_cpu_mem_usage
,
torch_dtype
=
utils
.
get_dtype
(
dtype
),
).
to
(
self
.
device
)
self
.
model
.
eval
()
eval_logger
.
info
(
self
.
model
.
dtype
)
self
.
tokenizer
=
transformers
.
AutoTokenizer
.
from_pretrained
(
pretrained
if
tokenizer
is
None
else
tokenizer
,
revision
=
revision
,
)
self
.
vocab_size
=
self
.
tokenizer
.
vocab_size
# multithreading and batching
self
.
batch_size_per_gpu
=
batch_size
# todo: adaptive batch size
# multigpu support with accelerate
if
gpus
>
1
:
accelerator
=
Accelerator
()
if
gpus
>
accelerator
.
num_processes
:
eval_logger
.
warning
(
"WARNING: The number of total system GPUs does not match the number of spawned processes. "
"If you would like to use data parallelism, please launch the script "
"with 'accelerate launch *script*'. "
f
"Current run will proceed with
{
accelerator
.
num_processes
}
devices."
)
self
.
_rank
=
accelerator
.
local_process_index
self
.
_world_size
=
accelerator
.
num_processes
# manually set model to use gpu, for case where many GPUs available but
# only seek to use one
self
.
_device
=
(
torch
.
device
(
f
"cuda:
{
accelerator
.
local_process_index
}
"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"cpu"
)
)
self
.
model
.
to
(
self
.
device
)
else
:
self
.
model
=
accelerator
.
prepare
(
self
.
model
)
self
.
_device
=
torch
.
device
(
f
"cuda:
{
accelerator
.
local_process_index
}
"
)
self
.
accelerator
=
accelerator
if
self
.
accelerator
.
is_local_main_process
:
eval_logger
.
info
(
f
"Using
{
gpus
}
devices with data parallelism"
)
self
.
_rank
=
self
.
accelerator
.
local_process_index
self
.
_world_size
=
self
.
accelerator
.
num_processes
@
property
def
eot_token_id
(
self
):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return
self
.
tokenizer
.
eos_token_id
@
property
def
max_length
(
self
):
try
:
if
hasattr
(
self
,
"accelerator"
):
return
self
.
accelerator
.
unwrap_model
(
self
.
model
).
config
.
n_ctx
else
:
return
self
.
model
.
config
.
n_ctx
except
AttributeError
:
# gptneoconfig doesn't have n_ctx apparently
if
hasattr
(
self
,
"accelerator"
):
return
self
.
accelerator
.
unwrap_model
(
self
.
model
).
config
.
max_position_embeddings
else
:
return
self
.
model
.
config
.
max_position_embeddings
@
property
def
max_gen_toks
(
self
):
return
256
@
property
def
batch_size
(
self
):
return
self
.
batch_size_per_gpu
@
property
def
device
(
self
):
return
self
.
_device
@
property
def
rank
(
self
):
return
self
.
_rank
@
property
def
world_size
(
self
):
return
self
.
_world_size
def
tok_encode
(
self
,
string
:
str
):
return
self
.
tokenizer
.
encode
(
string
,
add_special_tokens
=
False
)
def
tok_decode
(
self
,
tokens
):
return
self
.
tokenizer
.
decode
(
tokens
)
def
_model_call
(
self
,
inps
):
"""
inps: a torch tensor of shape [batch, sequence]
the size of sequence may vary from call to call
returns: a torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model
"""
with
torch
.
no_grad
():
return
self
.
model
(
inps
).
logits
def
_model_generate
(
self
,
context
,
max_length
,
stop
,
**
generation_kwargs
):
# we require users to pass do_sample=True explicitly
# for non-greedy gen. This should be reevaluated when considering beam search.
if
"do_sample"
not
in
generation_kwargs
.
keys
():
generation_kwargs
[
"do_sample"
]
=
False
# build stopping criteria
stopping_criteria
=
stop_sequences_criteria
(
self
.
tokenizer
,
stop
,
1
,
context
.
shape
[
0
]
)
if
hasattr
(
self
,
"accelerator"
):
return
self
.
accelerator
.
unwrap_model
(
self
.
model
).
generate
(
context
,
max_length
=
max_length
,
stopping_criteria
=
stopping_criteria
,
pad_token_id
=
self
.
eot_token_id
,
use_cache
=
True
,
**
generation_kwargs
,
)
else
:
return
self
.
model
.
generate
(
context
,
max_length
=
max_length
,
stopping_criteria
=
stopping_criteria
,
pad_token_id
=
self
.
eot_token_id
,
use_cache
=
True
,
**
generation_kwargs
,
)
def
loglikelihood
(
self
,
requests
):
new_reqs
=
[]
for
context
,
continuation
in
[
req
.
args
for
req
in
requests
]:
if
context
==
""
:
# end of text as context
context_enc
=
[
self
.
eot_token_id
]
else
:
context_enc
=
self
.
tok_encode
(
context
)
continuation_enc
=
self
.
tok_encode
(
continuation
)
new_reqs
.
append
(((
context
,
continuation
),
context_enc
,
continuation_enc
))
return
self
.
_loglikelihood_tokens
(
new_reqs
)
def
loglikelihood_rolling
(
self
,
requests
):
loglikelihoods
=
[]
for
(
string
,)
in
tqdm
([
req
.
args
for
req
in
requests
],
disable
=
(
self
.
rank
!=
0
)):
rolling_token_windows
=
list
(
map
(
utils
.
make_disjoint_window
,
utils
.
get_rolling_token_windows
(
token_list
=
self
.
tok_encode
(
string
),
prefix_token
=
self
.
eot_token_id
,
max_seq_len
=
self
.
max_length
,
context_len
=
1
,
),
)
)
rolling_token_windows
=
[(
None
,)
+
x
for
x
in
rolling_token_windows
]
# TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
# that
pad_amnt
=
0
if
self
.
world_size
>
1
:
# TODO: Comment on what we do here
mytensor
=
torch
.
tensor
(
len
(
rolling_token_windows
),
device
=
self
.
device
)
gathered
=
(
self
.
accelerator
.
gather
(
mytensor
).
cpu
().
detach
().
numpy
().
tolist
()
)
pad_amnt
=
max
(
gathered
)
-
gathered
[
self
.
rank
]
if
pad_amnt
>
0
:
rolling_token_windows
+=
pad_amnt
*
[
rolling_token_windows
[
0
]]
string_nll
=
self
.
_loglikelihood_tokens
(
rolling_token_windows
,
disable_tqdm
=
True
)
if
(
self
.
world_size
>
1
)
and
(
pad_amnt
>
0
):
string_nll
=
[
x
[
0
]
for
x
in
string_nll
[:
-
pad_amnt
]]
else
:
# discard is_greedy
string_nll
=
[
x
[
0
]
for
x
in
string_nll
]
string_nll
=
sum
(
string_nll
)
loglikelihoods
.
append
(
string_nll
)
return
loglikelihoods
def
_loglikelihood_tokens
(
self
,
requests
,
disable_tqdm
=
False
):
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
res
=
[]
def
_collate
(
x
):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks
=
x
[
1
]
+
x
[
2
]
return
-
len
(
toks
),
tuple
(
toks
)
# TODO: automatic (variable) batch size detection for vectorization
re_ord
=
utils
.
Reorderer
(
requests
,
_collate
)
for
chunk
in
utils
.
chunks
(
tqdm
(
re_ord
.
get_reordered
(),
disable
=
(
disable_tqdm
or
(
self
.
rank
!=
0
))),
self
.
batch_size
,
):
inps
=
[]
cont_toks_list
=
[]
inplens
=
[]
padding_length
=
None
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
# again because vectorizing is annoying
for
_
,
context_enc
,
continuation_enc
in
chunk
:
# sanity check
assert
len
(
context_enc
)
>
0
assert
len
(
continuation_enc
)
>
0
assert
len
(
continuation_enc
)
<=
self
.
max_length
# how this all works:
# CTX CONT
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
# model \ \
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
# when too long to fit in context, truncate from the left
inp
=
torch
.
tensor
(
(
context_enc
+
continuation_enc
)[
-
(
self
.
max_length
+
1
)
:][:
-
1
],
dtype
=
torch
.
long
,
).
to
(
self
.
device
)
(
inplen
,)
=
inp
.
shape
cont
=
continuation_enc
# since in _collate we make sure length is descending, the longest is always the first one.
padding_length
=
(
padding_length
if
padding_length
is
not
None
else
inplen
)
# pad length from seq to padding_length
inp
=
torch
.
cat
(
[
inp
,
# [seq]
torch
.
zeros
(
padding_length
-
inplen
,
dtype
=
torch
.
long
).
to
(
inp
.
device
),
# [padding_length - seq]
],
dim
=
0
,
)
inps
.
append
(
inp
.
unsqueeze
(
0
))
# [1, padding_length]
cont_toks_list
.
append
(
cont
)
inplens
.
append
(
inplen
)
batched_inps
=
torch
.
cat
(
inps
,
dim
=
0
)
# [batch, padding_length
multi_logits
=
F
.
log_softmax
(
self
.
_model_call
(
batched_inps
),
dim
=-
1
).
cpu
()
# [batch, padding_length, vocab]
for
(
cache_key
,
_
,
_
),
logits
,
inp
,
inplen
,
cont_toks
in
zip
(
chunk
,
multi_logits
,
inps
,
inplens
,
cont_toks_list
):
# Slice to original seq length
contlen
=
len
(
cont_toks
)
logits
=
logits
[
inplen
-
contlen
:
inplen
].
unsqueeze
(
0
)
# [1, seq, vocab]
# Check if per-token argmax is exactly equal to continuation
greedy_tokens
=
logits
.
argmax
(
dim
=-
1
)
cont_toks
=
torch
.
tensor
(
cont_toks
,
dtype
=
torch
.
long
).
unsqueeze
(
0
)
# [1, seq]
max_equal
=
(
greedy_tokens
==
cont_toks
).
all
()
# Obtain log-probs at the corresponding continuation token indices
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
logits
=
torch
.
gather
(
logits
,
2
,
cont_toks
.
unsqueeze
(
-
1
)).
squeeze
(
-
1
)
# [1, seq]
# Answer: (log prob, is-exact-match)
answer
=
(
float
(
logits
.
sum
()),
bool
(
max_equal
))
res
.
append
(
answer
)
return
re_ord
.
get_original
(
res
)
def
greedy_until
(
self
,
requests
):
# TODO: implement fully general `until` that handles until that are
# multiple tokens or that span multiple tokens correctly
res
=
[]
def
_collate
(
x
):
toks
=
self
.
tok_encode
(
x
[
0
])
return
len
(
toks
),
x
[
0
]
re_ord
=
utils
.
Reorderer
([
req
.
args
for
req
in
requests
],
_collate
)
for
context
,
gen_kwargs
in
tqdm
(
re_ord
.
get_reordered
()):
until
=
None
if
isinstance
(
gen_kwargs
,
dict
):
gen_kwargs
=
copy
.
deepcopy
(
gen_kwargs
)
# edge case for repeats > 1
if
"until"
in
gen_kwargs
.
keys
():
until
=
gen_kwargs
.
pop
(
"until"
)
if
isinstance
(
until
,
str
):
until
=
[
gen_kwargs
]
elif
not
isinstance
(
until
,
list
):
raise
ValueError
(
f
"Expected `gen_kwargs['until']` to be of type Union[str,list] but got
{
until
}
"
)
else
:
raise
ValueError
(
f
"Expected `gen_kwargs` to be of type `dict` but got
{
gen_kwargs
}
"
)
if
not
until
:
until
=
[
self
.
tok_decode
(
self
.
eot_token_id
)]
if
"max_gen_toks"
in
gen_kwargs
.
keys
():
max_gen_toks
=
gen_kwargs
.
pop
(
"max_gen_toks"
)
else
:
max_gen_toks
=
self
.
max_gen_toks
primary_until
=
until
[
0
]
# try:
# (primary_until,) = self.tok_encode(until[0])
# except Exception:
# # if our primary until would be multiple tokens long, we'll have errors.
# # TODO: handling this better will let us stop generating earlier + often.
# primary_until = self.eot_token_id
context_enc
=
torch
.
tensor
(
[
self
.
tok_encode
(
context
)[
max_gen_toks
-
self
.
max_length
:]]
).
to
(
self
.
device
)
cont
=
self
.
_model_generate
(
context
=
context_enc
,
max_length
=
context_enc
.
shape
[
1
]
+
max_gen_toks
,
stop
=
primary_until
,
**
gen_kwargs
,
)
s
=
self
.
tok_decode
(
cont
[
0
].
tolist
()[
context_enc
.
shape
[
1
]
:])
for
term
in
until
:
s
=
s
.
split
(
term
)[
0
]
res
.
append
(
s
)
return
re_ord
.
get_original
(
res
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment