title = {Natural Questions: a Benchmark for Question Answering Research},
author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov},
year = {2019},
journal = {Transactions of the Association of Computational Linguistics}
}
"""
"""
importrandom
importrandom
from.commonimportHFTask
from.commonimportHFTask
fromitertoolsimportislice
fromitertoolsimportislice
_CITATION="""
@article{47761,
title={Natural Questions: a Benchmark for Question Answering Research},
author={Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov},
year={2019},
journal={Transactions of the Association of Computational Linguistics}
@@ -9,13 +9,6 @@ including books, github repositories, webpages, chat logs, and medical, physics,
...
@@ -9,13 +9,6 @@ including books, github repositories, webpages, chat logs, and medical, physics,
math, computer science, and philosophy papers.
math, computer science, and philosophy papers.
Homepage: https://pile.eleuther.ai/
Homepage: https://pile.eleuther.ai/
@article{pile,
title={The {P}ile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and Presser, Shawn and Leahy, Connor},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
"""
"""
importos
importos
...
@@ -28,6 +21,16 @@ from ..utils import general_detokenize
...
@@ -28,6 +21,16 @@ from ..utils import general_detokenize
frombest_downloadimportdownload_file
frombest_downloadimportdownload_file
_CITATION="""
@article{pile,
title={The {P}ile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and Presser, Shawn and Leahy, Connor},
abstract = "The Story Cloze Test (SCT) is a recent framework for evaluating story comprehension and script learning. There have been a variety of models tackling the SCT so far. Although the original goal behind the SCT was to require systems to perform deep language understanding and commonsense reasoning for successful narrative understanding, some recent models could perform significantly better than the initial baselines by leveraging human-authorship biases discovered in the SCT dataset. In order to shed some light on this issue, we have performed various data analysis and analyzed a variety of top performing models presented for this task. Given the statistics we have aggregated, we have designed a new crowdsourcing scheme that creates a new SCT dataset, which overcomes some of the biases. We benchmark a few models on the new dataset and show that the top-performing model on the original SCT dataset fails to keep up its performance. Our findings further signify the importance of benchmarking NLP systems on various evolving test sets.",
abstract = "The Story Cloze Test (SCT) is a recent framework for evaluating story comprehension and script learning. There have been a variety of models tackling the SCT so far. Although the original goal behind the SCT was to require systems to perform deep language understanding and commonsense reasoning for successful narrative understanding, some recent models could perform significantly better than the initial baselines by leveraging human-authorship biases discovered in the SCT dataset. In order to shed some light on this issue, we have performed various data analysis and analyzed a variety of top performing models presented for this task. Given the statistics we have aggregated, we have designed a new crowdsourcing scheme that creates a new SCT dataset, which overcomes some of the biases. We benchmark a few models on the new dataset and show that the top-performing model on the original SCT dataset fails to keep up its performance. Our findings further signify the importance of benchmarking NLP systems on various evolving test sets.",
author = {Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel},
author = {Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel},
booktitle = {Advances in Neural Information Processing Systems},
booktitle = {Advances in Neural Information Processing Systems},