Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
372ca6f5
Unverified
Commit
372ca6f5
authored
Apr 29, 2022
by
Stella Biderman
Committed by
GitHub
Apr 29, 2022
Browse files
Merge pull request #20 from JanKalo/master
Added bigscience-LAMA evaluation
parents
2e0b659a
49f117ed
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
304 additions
and
0 deletions
+304
-0
lm_eval/tasks/__init__.py
lm_eval/tasks/__init__.py
+16
-0
lm_eval/tasks/lama.py
lm_eval/tasks/lama.py
+288
-0
No files found.
lm_eval/tasks/__init__.py
View file @
372ca6f5
...
@@ -5,6 +5,7 @@ from typing import List, Union
...
@@ -5,6 +5,7 @@ from typing import List, Union
import
sacrebleu
import
sacrebleu
import
lm_eval.base
import
lm_eval.base
from
.
import
superglue
from
.
import
superglue
from
.
import
glue
from
.
import
glue
from
.
import
arc
from
.
import
arc
...
@@ -54,12 +55,15 @@ from . import gsm8k
...
@@ -54,12 +55,15 @@ from . import gsm8k
from
.
import
storycloze
from
.
import
storycloze
from
.
import
hans
from
.
import
hans
from
.
import
gem_webnlg
from
.
import
gem_webnlg
from
.
import
lama
# from . import e2e_nlg_cleaned
from
.
import
gem_xsum
from
.
import
gem_xsum
from
.
import
gem_mlsum
from
.
import
gem_mlsum
from
.
import
wino_bias
from
.
import
wino_bias
from
.
import
e2e_nlg_cleaned
from
.
import
e2e_nlg_cleaned
from
.
import
gem_asset_turk
from
.
import
gem_asset_turk
from
.
import
crows_pairs_multilingual
from
.
import
crows_pairs_multilingual
from
.
import
lama
from
.
import
HuffPost
from
.
import
HuffPost
########################################
########################################
...
@@ -139,6 +143,10 @@ TASK_REGISTRY = {
...
@@ -139,6 +143,10 @@ TASK_REGISTRY = {
"arc_easy"
:
arc
.
ARCEasy
,
"arc_easy"
:
arc
.
ARCEasy
,
"arc_challenge"
:
arc
.
ARCChallenge
,
"arc_challenge"
:
arc
.
ARCChallenge
,
# "quac": quac.QuAC, # not implemented yet
# "quac": quac.QuAC, # not implemented yet
"lama_trex"
:
lama
.
Trex
,
"lama_squad"
:
lama
.
Squad
,
"lama_google_re"
:
lama
.
google_re
,
"lama_concptnet"
:
lama
.
Conceptnet
,
"logiqa"
:
logiqa
.
LogiQA
,
"logiqa"
:
logiqa
.
LogiQA
,
"hellaswag"
:
hellaswag
.
HellaSwag
,
"hellaswag"
:
hellaswag
.
HellaSwag
,
"openbookqa"
:
openbookqa
.
OpenBookQA
,
"openbookqa"
:
openbookqa
.
OpenBookQA
,
...
@@ -162,6 +170,8 @@ TASK_REGISTRY = {
...
@@ -162,6 +170,8 @@ TASK_REGISTRY = {
"ethics_utilitarianism_original"
:
hendrycks_ethics
.
EthicsUtilitarianismOriginal
,
"ethics_utilitarianism_original"
:
hendrycks_ethics
.
EthicsUtilitarianismOriginal
,
"ethics_utilitarianism"
:
hendrycks_ethics
.
EthicsUtilitarianism
,
"ethics_utilitarianism"
:
hendrycks_ethics
.
EthicsUtilitarianism
,
"ethics_virtue"
:
hendrycks_ethics
.
EthicsVirtue
,
"ethics_virtue"
:
hendrycks_ethics
.
EthicsVirtue
,
#"tydiqa_primary" : TyDiQA.Primary, not implemented yet
#"tydiqa_secondary" : TyDiQA.Secondary, not implemented yet
"truthfulqa_mc"
:
truthfulqa
.
TruthfulQAMultipleChoice
,
"truthfulqa_mc"
:
truthfulqa
.
TruthfulQAMultipleChoice
,
"truthfulqa_gen"
:
truthfulqa
.
TruthfulQAGeneration
,
"truthfulqa_gen"
:
truthfulqa
.
TruthfulQAGeneration
,
# dialogue
# dialogue
...
@@ -314,6 +324,12 @@ TASK_REGISTRY = {
...
@@ -314,6 +324,12 @@ TASK_REGISTRY = {
"gem_xsum_challenge_test_nopunc"
:
gem_xsum
.
GEMXSUMChallgeTestNopunc
,
"gem_xsum_challenge_test_nopunc"
:
gem_xsum
.
GEMXSUMChallgeTestNopunc
,
"gem_xsum_challenge_test_covid"
:
gem_xsum
.
GEMXSUMChallgeTestCovid
,
"gem_xsum_challenge_test_covid"
:
gem_xsum
.
GEMXSUMChallgeTestCovid
,
#LAMA
"lama-trex"
:
lama
.
Trex
,
"lama-squad"
:
lama
.
Squad
,
"lama-google_re"
:
lama
.
google_re
,
"lama-concptnet"
:
lama
.
Conceptnet
,
"bigscience-lama"
:
lama
.
BigScienceLAMA
,
# WinoBias
# WinoBias
"wino_bias_type1_pro"
:
wino_bias
.
WinoBiasType1Pro
,
"wino_bias_type1_pro"
:
wino_bias
.
WinoBiasType1Pro
,
"wino_bias_type1_anti"
:
wino_bias
.
WinoBiasType1Anti
,
"wino_bias_type1_anti"
:
wino_bias
.
WinoBiasType1Anti
,
...
...
lm_eval/tasks/lama.py
0 → 100644
View file @
372ca6f5
"""
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/2005.04611
LAMA is a prob dataset to test the factual and commonsense knowledge in language models. The dataset includes a subset of
Google_RE (https://code.google.com/archive/p/relation-extraction-corpus/), TRex (subset of wikidata triples),
Conceptnet (https://github.com/commonsense/conceptnet5/wiki) and Squad.
Homepage: https://github.com/facebookresearch/LAMA
"""
from
lm_eval.base
import
PromptSourceTask
import
numpy
as
np
from
lm_eval.metrics
import
mean
from
typing
import
Optional
_CITATION
=
"""
@inproceedings{petroni2019language, title={Language Models as Knowledge Bases?},
author={F. Petroni, T. Rockt{"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019}, year={2019} }
@inproceedings{petroni2020how,
title={How Context Affects Language Models' Factual Predictions},
author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},
booktitle={Automated Knowledge Base Construction}, year={2020}, url={https://openreview.net/forum?id=025X0zPfn} }
"""
class
BigScienceLAMA
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"janck/bigscience-lama"
DATASET_NAME
=
None
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
False
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
False
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
True
def
training_docs
(
self
):
if
self
.
has_training_docs
():
return
self
.
dataset
[
"train"
]
class
Trex
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"lama"
DATASET_NAME
=
"trex"
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
False
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
False
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
True
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"validation"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"train"
]
def
process_results
(
self
,
doc
,
results
):
out
=
{}
#gold = doc
pred
=
results
[
0
].
strip
()
target
=
self
.
doc_to_target
(
doc
)[
'obj_label'
]
#pred = np.argmax(results)
out
[
"acc"
]
=
pred
==
target
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
def
higher_is_better
(
self
):
return
{
"acc"
:
True
}
def
aggregation
(
self
):
return
{
"acc"
:
mean
}
def
doc_to_target
(
self
,
doc
):
return
doc
class
google_re
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"lama"
DATASET_NAME
=
"google_re"
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
False
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
False
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
True
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"validation"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"train"
]
def
process_results
(
self
,
doc
,
results
):
out
=
{}
pred
=
results
[
0
].
strip
()
target
=
self
.
doc_to_target
(
doc
)[
'obj_label'
]
out
[
"acc"
]
=
pred
==
target
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
def
higher_is_better
(
self
):
return
{
"acc"
:
True
}
def
aggregation
(
self
):
return
{
"acc"
:
mean
}
def
doc_to_target
(
self
,
doc
):
return
doc
class
Conceptnet
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"lama"
DATASET_NAME
=
"conceptnet"
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
False
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
False
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
True
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"validation"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"train"
]
def
process_results
(
self
,
doc
,
results
):
out
=
{}
pred
=
results
[
0
].
strip
()
target
=
self
.
doc_to_target
(
doc
)[
'obj_label'
]
out
[
"acc"
]
=
pred
==
target
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
def
higher_is_better
(
self
):
return
{
"acc"
:
True
}
def
aggregation
(
self
):
return
{
"acc"
:
mean
}
def
doc_to_target
(
self
,
doc
):
return
doc
class
Squad
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"lama"
DATASET_NAME
=
"squad"
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
False
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
False
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
True
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"validation"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
self
.
_test_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_test_docs
def
process_results
(
self
,
doc
,
results
):
out
=
{}
pred
=
results
[
0
].
strip
()
target
=
self
.
doc_to_target
(
doc
)[
'obj_label'
]
#pred = np.argmax(results)
out
[
"acc"
]
=
pred
==
target
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
def
higher_is_better
(
self
):
return
{
"acc"
:
True
}
def
aggregation
(
self
):
return
{
"acc"
:
mean
}
def
doc_to_target
(
self
,
doc
):
return
doc
def
max_generation_length
(
self
)
->
Optional
[
int
]:
"""Denote where the max length of the generation if it is obvious from the task."""
return
5
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment