title={Natural Questions: a Benchmark for Question Answering Research},
author={Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov},
year={2019},
journal={Transactions of the Association of Computational Linguistics}
}
"""
classNaturalQs(HFTask):
classNaturalQs(HFTask):
VERSION=0
VERSION=0
# TODO: naturalqs has a *really* large train set that huggingface just
# automatically downloads even if you dont use it. we should try and only
# download the val set and not even bother with the train set.
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
https://arxiv.org/pdf/2101.00027.pdf
The Pile is a 825 GiB diverse, open source language modelling data set that consists
of 22 smaller, high-quality datasets combined together. To score well on Pile
BPB (bits per byte), a model must be able to understand many disparate domains
including books, github repositories, webpages, chat logs, and medical, physics,
math, computer science, and philosophy papers.
Homepage: https://pile.eleuther.ai/
"""
importos
importos
importlm_dataformat
importlm_dataformat
...
@@ -9,6 +21,16 @@ from ..utils import general_detokenize
...
@@ -9,6 +21,16 @@ from ..utils import general_detokenize
frombest_downloadimportdownload_file
frombest_downloadimportdownload_file
_CITATION="""
@article{pile,
title={The {P}ile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and Presser, Shawn and Leahy, Connor},
PubMedQA: A Dataset for Biomedical Research Question Answering
https://arxiv.org/pdf/1909.06146.pdf
PubMedQA is a novel biomedical question answering (QA) dataset collected from
PubMed abstracts. The task of PubMedQA is to answer research questions with
yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after
coronary artery bypass grafting?) using the corresponding abstracts. PubMedQA
has 1k expert-annotated, 61.2k unlabeled and 211.3k artificially generated QA
instances. Each PubMedQA instance is composed of (1) a question which is either
an existing research article title or derived from one, (2) a context which is
the corresponding abstract without its conclusion, (3) a long answer, which is
the conclusion of the abstract and, presumably, answers the research question,
and (4) a yes/no/maybe answer which summarizes the conclusion.
Homepage: https://pubmedqa.github.io/
"""
importnumpyasnp
importnumpyasnp
from.commonimportHFTask
from.commonimportHFTask
fromlm_eval.baseimportrf
fromlm_eval.baseimportrf
from..metricsimportmean
from..metricsimportmean
_CITATION="""
@inproceedings{jin2019pubmedqa,
title={PubMedQA: A Dataset for Biomedical Research Question Answering},
author={Jin, Qiao and Dhingra, Bhuwan and Liu, Zhengping and Cohen, William and Lu, Xinghua},
booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
title = "Tackling the Story Ending Biases in The Story Cloze Test",
author = "Sharma, Rishi and
Allen, James and
Bakhshandeh, Omid and
Mostafazadeh, Nasrin",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2119",
doi = "10.18653/v1/P18-2119",
pages = "752--757",
abstract = "The Story Cloze Test (SCT) is a recent framework for evaluating story comprehension and script learning. There have been a variety of models tackling the SCT so far. Although the original goal behind the SCT was to require systems to perform deep language understanding and commonsense reasoning for successful narrative understanding, some recent models could perform significantly better than the initial baselines by leveraging human-authorship biases discovered in the SCT dataset. In order to shed some light on this issue, we have performed various data analysis and analyzed a variety of top performing models presented for this task. Given the statistics we have aggregated, we have designed a new crowdsourcing scheme that creates a new SCT dataset, which overcomes some of the biases. We benchmark a few models on the new dataset and show that the top-performing model on the original SCT dataset fails to keep up its performance. Our findings further signify the importance of benchmarking NLP systems on various evolving test sets.",
SuperGLUE is a benchmark styled after GLUE with a new set of more difficult language
understanding tasks.
Homepage: https://super.gluebenchmark.com/
TODO: WSC requires free-form generation.
"""
"""
importnumpyasnp
importnumpyasnp
importsklearn
importsklearn
...
@@ -12,6 +18,21 @@ from ..metrics import mean, acc_all, metric_max_over_ground_truths
...
@@ -12,6 +18,21 @@ from ..metrics import mean, acc_all, metric_max_over_ground_truths
from..utilsimportgeneral_detokenize
from..utilsimportgeneral_detokenize
_CITATION="""
@inproceedings{NEURIPS2019_4496bf24,
author = {Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {},
publisher = {Curran Associates, Inc.},
title = {SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},