{"wikitext-103-v1":{"description":" The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n","citation":"@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n","homepage":"https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/","license":"Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)","features":{"page":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"task_templates":null,"builder_name":"wikitext","config_name":"wikitext-103-v1","version":{"version_str":"1.0.0","description":null,"major":1,"minor":0,"patch":0},"splits":{"test":{"name":"test","num_bytes":1281262,"num_examples":62,"dataset_name":"wikitext"},"train":{"name":"train","num_bytes":539297488,"num_examples":29444,"dataset_name":"wikitext"},"validation":{"name":"validation","num_bytes":1142488,"num_examples":60,"dataset_name":"wikitext"}},"download_checksums":{"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip":{"num_bytes":190229076,"checksum":"242ba0f20b329cfdf1ccc61e9e9e5b59becf189db7f7a81cd2a0e2fc31539590"}},"download_size":190229076,"post_processing_size":null,"dataset_size":541721238,"size_in_bytes":731950314},"wikitext-2-v1":{"description":" The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n","citation":"@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n","homepage":"https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/","license":"Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)","features":{"page":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"task_templates":null,"builder_name":"wikitext","config_name":"wikitext-2-v1","version":{"version_str":"1.0.0","description":null,"major":1,"minor":0,"patch":0},"splits":{"test":{"name":"test","num_bytes":1256634,"num_examples":62,"dataset_name":"wikitext"},"train":{"name":"train","num_bytes":10799034,"num_examples":629,"dataset_name":"wikitext"},"validation":{"name":"validation","num_bytes":1121860,"num_examples":60,"dataset_name":"wikitext"}},"download_checksums":{"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip":{"num_bytes":4475746,"checksum":"92675f1d63015c1c8b51f1656a52d5bdbc33aafa60cc47a218a66e7ee817488c"}},"download_size":4475746,"post_processing_size":null,"dataset_size":13177528,"size_in_bytes":17653274},"wikitext-103-raw-v1":{"description":" The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n","citation":"@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n","homepage":"https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/","license":"Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)","features":{"page":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"task_templates":null,"builder_name":"wikitext","config_name":"wikitext-103-raw-v1","version":{"version_str":"1.0.0","description":null,"major":1,"minor":0,"patch":0},"splits":{"test":{"name":"test","num_bytes":1290775,"num_examples":62,"dataset_name":"wikitext"},"train":{"name":"train","num_bytes":540656522,"num_examples":29444,"dataset_name":"wikitext"},"validation":{"name":"validation","num_bytes":1147025,"num_examples":60,"dataset_name":"wikitext"}},"download_checksums":{"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip":{"num_bytes":191984949,"checksum":"91c00ae287f0d699e18605c84afc9e45c192bc6b7797ff8837e5474655a33794"}},"download_size":191984949,"post_processing_size":null,"dataset_size":543094322,"size_in_bytes":735079271},"wikitext-2-raw-v1":{"description":" The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n","citation":"@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n","homepage":"https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/","license":"Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)","features":{"page":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"task_templates":null,"builder_name":"wikitext","config_name":"wikitext-2-raw-v1","version":{"version_str":"1.0.0","description":null,"major":1,"minor":0,"patch":0},"splits":{"test":{"name":"test","num_bytes":1290775,"num_examples":62,"dataset_name":"wikitext"},"train":{"name":"train","num_bytes":10942633,"num_examples":629,"dataset_name":"wikitext"},"validation":{"name":"validation","num_bytes":1147025,"num_examples":60,"dataset_name":"wikitext"}},"download_checksums":{"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip":{"num_bytes":4721645,"checksum":"ef7edb566e3e2b2d31b29c1fdb0c89a4cc683597484c3dc2517919c615435a11"}},"download_size":4721645,"post_processing_size":null,"dataset_size":13380433,"size_in_bytes":18102078}}
{"wikitext-103-v1":{"description":" The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n","citation":"@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n","homepage":"https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/","license":"Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)","features":{"page":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"task_templates":null,"builder_name":"wikitext","config_name":"wikitext-103-v1","version":{"version_str":"1.0.0","description":null,"major":1,"minor":0,"patch":0},"splits":{"test":{"name":"test","num_bytes":1281262,"num_examples":62,"dataset_name":"wikitext"},"train":{"name":"train","num_bytes":539297488,"num_examples":29444,"dataset_name":"wikitext"},"validation":{"name":"validation","num_bytes":1142488,"num_examples":60,"dataset_name":"wikitext"}},"download_checksums":{"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip":{"num_bytes":190229076,"checksum":"242ba0f20b329cfdf1ccc61e9e9e5b59becf189db7f7a81cd2a0e2fc31539590"}},"download_size":190229076,"post_processing_size":null,"dataset_size":541721238,"size_in_bytes":731950314},"wikitext-2-v1":{"description":" The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n","citation":"@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n","homepage":"https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/","license":"Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)","features":{"page":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"task_templates":null,"builder_name":"wikitext","config_name":"wikitext-2-v1","version":{"version_str":"1.0.0","description":null,"major":1,"minor":0,"patch":0},"splits":{"test":{"name":"test","num_bytes":1256634,"num_examples":62,"dataset_name":"wikitext"},"train":{"name":"train","num_bytes":10799034,"num_examples":629,"dataset_name":"wikitext"},"validation":{"name":"validation","num_bytes":1121860,"num_examples":60,"dataset_name":"wikitext"}},"download_checksums":{"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip":{"num_bytes":4475746,"checksum":"92675f1d63015c1c8b51f1656a52d5bdbc33aafa60cc47a218a66e7ee817488c"}},"download_size":4475746,"post_processing_size":null,"dataset_size":13177528,"size_in_bytes":17653274},"wikitext-103-raw-v1":{"description":" The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n","citation":"@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n","homepage":"https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/","license":"Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)","features":{"page":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"task_templates":null,"builder_name":"wikitext","config_name":"wikitext-103-raw-v1","version":{"version_str":"1.0.0","description":null,"major":1,"minor":0,"patch":0},"splits":{"test":{"name":"test","num_bytes":1290775,"num_examples":62,"dataset_name":"wikitext"},"train":{"name":"train","num_bytes":540656522,"num_examples":29444,"dataset_name":"wikitext"},"validation":{"name":"validation","num_bytes":1147025,"num_examples":60,"dataset_name":"wikitext"}},"download_checksums":{"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip":{"num_bytes":191984949,"checksum":"91c00ae287f0d699e18605c84afc9e45c192bc6b7797ff8837e5474655a33794"}},"download_size":191984949,"post_processing_size":null,"dataset_size":543094322,"size_in_bytes":735079271},"wikitext-2-raw-v1":{"description":" The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n","citation":"@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n","homepage":"https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/","license":"Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)","features":{"page":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"task_templates":null,"builder_name":"wikitext","config_name":"wikitext-2-raw-v1","version":{"version_str":"1.0.0","description":null,"major":1,"minor":0,"patch":0},"splits":{"test":{"name":"test","num_bytes":1290775,"num_examples":62,"dataset_name":"wikitext"},"train":{"name":"train","num_bytes":10942633,"num_examples":629,"dataset_name":"wikitext"},"validation":{"name":"validation","num_bytes":1147025,"num_examples":60,"dataset_name":"wikitext"}},"download_checksums":{"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip":{"num_bytes":4721645,"checksum":"ef7edb566e3e2b2d31b29c1fdb0c89a4cc683597484c3dc2517919c615435a11"}},"download_size":4721645,"post_processing_size":null,"dataset_size":13380433,"size_in_bytes":18102078}}
abstract = { We introduce The Benchmark of Linguistic Minimal Pairs (BLiMP),1 a challenge set for evaluating the linguistic knowledge of language models (LMs) on major grammatical phenomena in English. BLiMP consists of 67 individual datasets, each containing 1,000 minimal pairs—that is, pairs of minimally different sentences that contrast in grammatical acceptability and isolate specific phenomenon in syntax, morphology, or semantics. We generate the data according to linguist-crafted grammar templates, and human aggregate agreement with the labels is 96.4\%. We evaluate n-gram, LSTM, and Transformer (GPT-2 and Transformer-XL) LMs by observing whether they assign a higher probability to the acceptable sentence in each minimal pair. We find that state-of-the-art models identify morphological contrasts related to agreement reliably, but they struggle with some subtle semantic and syntactic phenomena, such as negative polarity items and extraction islands. }
abstract = { We introduce The Benchmark of Linguistic Minimal Pairs (BLiMP),1 a challenge set for evaluating the linguistic knowledge of language models (LMs) on major grammatical phenomena in English. BLiMP consists of 67 individual datasets, each containing 1,000 minimal pairs—that is, pairs of minimally different sentences that contrast in grammatical acceptability and isolate specific phenomenon in syntax, morphology, or semantics. We generate the data according to linguist-crafted grammar templates, and human aggregate agreement with the labels is 96.4\%. We evaluate n-gram, LSTM, and Transformer (GPT-2 and Transformer-XL) LMs by observing whether they assign a higher probability to the acceptable sentence in each minimal pair. We find that state-of-the-art models identify morphological contrasts related to agreement reliably, but they struggle with some subtle semantic and syntactic phenomena, such as negative polarity items and extraction islands. }