Commit 1f8a8c1d authored by jon-tow's avatar jon-tow
Browse files

Merge branch 'master' of https://github.com/EleutherAI/lm-evaluation-harness into remove-dataset

parents b4c0275d b0acb337
"""
QuAC: Question Answering in Context
https://arxiv.org/abs/1808.07036
Question Answering in Context (QuAC) is a dataset for modeling, understanding, and
participating in information seeking dialog. Data instances consist of an interactive
dialog between two crowd workers: (1) a student who poses a sequence of freeform
questions to learn as much as possible about a hidden Wikipedia text, and (2)
a teacher who answers the questions by providing short excerpts (spans) from the text.
Homepage: https://quac.ai/
"""
import inspect
import lm_eval.datasets.quac.quac
from lm_eval.base import Task
_CITATION = """
@article{choi2018quac,
title={Quac: Question answering in context},
author={Choi, Eunsol and He, He and Iyyer, Mohit and Yatskar, Mark and Yih, Wen-tau and Choi, Yejin and Liang, Percy and Zettlemoyer, Luke},
journal={arXiv preprint arXiv:1808.07036},
year={2018}
}
"""
class QuAC(Task):
VERSION = 0
DATASET_PATH = inspect.getfile(lm_eval.datasets.quac.quac)
DATASET_NAME = None
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(map(self._process_doc, self.dataset["train"]))
return self._training_docs
def validation_docs(self):
return map(self._process_doc, self.dataset["validation"])
def test_docs(self):
raise NotImplementedError("QuAC has no test docs.")
def _process_doc(self, doc):
doc["title"] = doc['title'] + ' - ' + doc['section_title']
return doc
def doc_to_text(self, doc):
return 'TITLE: ' + doc['title'] + '\n' + 'PARAGRAPH: ' + doc['paragraph'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: '
def doc_to_target(self, doc):
return doc['answer']
def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
# TODO: implement evaluation.
raise NotImplementedError('Evaluation not implemented')
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
# TODO: implement evaluation.
raise NotImplementedError('Evaluation not implemented')
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
# TODO: implement evaluation.
raise NotImplementedError('Evaluation not implemented')
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
# TODO: implement evaluation.
raise NotImplementedError('Evaluation not implemented')
"""
QuAC: Question Answering in Context
https://arxiv.org/abs/1808.07036
Question Answering in Context (QuAC) is a dataset for modeling, understanding, and
participating in information seeking dialog. Data instances consist of an interactive
dialog between two crowd workers: (1) a student who poses a sequence of freeform
questions to learn as much as possible about a hidden Wikipedia text, and (2)
a teacher who answers the questions by providing short excerpts (spans) from the text.
Homepage: https://quac.ai/
"""
import inspect
import lm_eval.datasets.quac.quac
from lm_eval.base import Task
_CITATION = """
@article{choi2018quac,
title={Quac: Question answering in context},
author={Choi, Eunsol and He, He and Iyyer, Mohit and Yatskar, Mark and Yih, Wen-tau and Choi, Yejin and Liang, Percy and Zettlemoyer, Luke},
journal={arXiv preprint arXiv:1808.07036},
year={2018}
}
"""
class QuAC(Task):
VERSION = 0
DATASET_PATH = inspect.getfile(lm_eval.datasets.quac.quac)
DATASET_NAME = None
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(map(self._process_doc, self.dataset["train"]))
return self._training_docs
def validation_docs(self):
return map(self._process_doc, self.dataset["validation"])
def test_docs(self):
raise NotImplementedError("QuAC has no test docs.")
def _process_doc(self, doc):
doc["title"] = doc["title"] + " - " + doc["section_title"]
return doc
def doc_to_text(self, doc):
return (
"TITLE: "
+ doc["title"]
+ "\n"
+ "PARAGRAPH: "
+ doc["paragraph"]
+ "\n\n"
+ "Q: "
+ doc["question"]
+ "\n\n"
+ "A: "
)
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["paragraph"]
def doc_to_target(self, doc):
return doc["answer"]
def construct_requests(self, doc, ctx):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
# TODO: implement evaluation.
raise NotImplementedError("Evaluation not implemented")
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
# TODO: implement evaluation.
raise NotImplementedError("Evaluation not implemented")
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
# TODO: implement evaluation.
raise NotImplementedError("Evaluation not implemented")
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
# TODO: implement evaluation.
raise NotImplementedError("Evaluation not implemented")
......@@ -20,7 +20,7 @@ _CITATION = """
@article{lai2017large,
title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
journal={arXiv preprint arXiv:1704.04683},
journal={arXiv preprint arXiv:1704.04683},
year={2017}
}
"""
......@@ -40,7 +40,7 @@ class RACE(Task):
DATASET_NAME = "high"
cache = {}
letter_to_num = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
letter_to_num = {"A": 0, "B": 1, "C": 2, "D": 3}
def has_training_docs(self):
return True
......@@ -59,17 +59,27 @@ class RACE(Task):
# is shown that one document is made per passage.
r = collections.defaultdict(list)
for item in datasets.load_dataset(path=self.DATASET_PATH, name=self.DATASET_NAME)[set]:
r[item['article']].append(item)
res = list(r.values() >> each(lambda x: {
'article': x[0]['article'],
'problems': x >> each(lambda y: {
'question': y['question'],
'answer': y['answer'],
'options': y['options'],
})
}))
for item in datasets.load_dataset(
path=self.DATASET_PATH, name=self.DATASET_NAME
)[set]:
r[item["article"]].append(item)
res = list(
r.values()
>> each(
lambda x: {
"article": x[0]["article"],
"problems": x
>> each(
lambda y: {
"question": y["question"],
"answer": y["answer"],
"options": y["options"],
}
),
}
)
)
self.cache[set] = res
return res
......@@ -85,49 +95,56 @@ class RACE(Task):
@classmethod
def get_answer_option(cls, problem):
answer = cls.letter_to_num[problem['answer']]
return problem['options'][answer]
answer = cls.letter_to_num[problem["answer"]]
return problem["options"][answer]
@classmethod
def last_problem(cls, doc):
return doc['problems'][-1]
return doc["problems"][-1]
def doc_to_text(self, doc):
text = 'Article: ' + doc['article'] + '\n\n'
for problem in doc['problems'][:-1]:
if problem['question'][-6:] == ' _ .':
text += problem['question'][-5:] + self.get_answer_option(problem) + '\n'
text = "Article: " + doc["article"] + "\n\n"
for problem in doc["problems"][:-1]:
if problem["question"][-6:] == " _ .":
text += (
problem["question"][-5:] + self.get_answer_option(problem) + "\n"
)
else:
question = 'Question: ' + problem['question'] + '\n'
answer = 'Answer: ' + self.get_answer_option(problem) + '\n'
question = "Question: " + problem["question"] + "\n"
answer = "Answer: " + self.get_answer_option(problem) + "\n"
text += question + answer
text += self.last_problem(doc)['question']
text += self.last_problem(doc)["question"]
return text
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["article"]
def doc_to_target(self, doc):
return " " + self.get_answer_option(self.last_problem(doc))
def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
part of the document for `doc`.
"""
problem = self.last_problem(doc)
ll_choices = [
rf.loglikelihood(ctx, " " + problem['options'][i])[0]
for i in range(4)
rf.loglikelihood(ctx, " " + problem["options"][i])[0] for i in range(4)
]
return ll_choices
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
......@@ -135,28 +152,22 @@ class RACE(Task):
:param results:
The results of the requests created in construct_requests.
"""
gold = self.letter_to_num[self.last_problem(doc)['answer']]
gold = self.letter_to_num[self.last_problem(doc)["answer"]]
pred = np.argmax(results)
return {
"acc": int(pred == gold)
}
return {"acc": int(pred == gold)}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {
"acc": mean
}
return {"acc": mean}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {
"acc": True
}
return {"acc": True}
......@@ -59,11 +59,19 @@ class SATAnalogies(MultipleChoiceTask):
def _process_doc(self, doc):
return {
'source': doc['source'],
'query': doc['stem'].split(' ')[:2],
'choices': ["{} is to {}".format(*c.split(' ')[:2]) for c in doc["choices"]],
'gold': ['a', 'b', 'c', 'd', 'e'].index(doc['solution'].strip()),
"source": doc["source"],
"query": doc["stem"].split(" ")[:2],
"choices": [
"{} is to {}".format(*c.split(" ")[:2]) for c in doc["choices"]
],
"gold": ["a", "b", "c", "d", "e"].index(doc["solution"].strip()),
}
def doc_to_text(self, doc):
return "{} is to {} as".format(*doc['query'])
return "{} is to {} as".format(*doc["query"])
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["source"] + "\n" + " ".join(doc["query"])
......@@ -54,10 +54,10 @@ class SciQ(MultipleChoiceTask):
doc["distractor3"],
doc["correct_answer"],
]
src = doc['support']
src = doc["support"]
out_doc = {
"source": src,
"query": doc['question'],
"query": doc["question"],
"choices": choices,
"gold": 3,
}
......@@ -65,3 +65,9 @@ class SciQ(MultipleChoiceTask):
def doc_to_text(self, doc):
return "{}\nQuestion: {}\nAnswer:".format(doc["source"], doc["query"]).strip()
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["source"] + " " + doc["query"]
"""
Know What You Don’t Know: Unanswerable Questions for SQuAD
https://arxiv.org/pdf/1806.03822.pdf
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset,
consisting of questions posed by crowdworkers on a set of Wikipedia articles,
where the answer to every question is a segment of text, or span, from the
corresponding reading passage, or the question might be unanswerable.
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable
questions written adversarially by crowdworkers to look similar to answerable ones.
To do well on SQuAD2.0, systems must not only answer questions when possible, but
also determine when no answer is supported by the paragraph and abstain from answering.
Homepage: https://rajpurkar.github.io/SQuAD-explorer/
"""
import datasets
from math import exp
from lm_eval.base import rf, Task
from functools import partial
from packaging import version
_CITATION = """
@misc{rajpurkar2018know,
title={Know What You Don't Know: Unanswerable Questions for SQuAD},
author={Pranav Rajpurkar and Robin Jia and Percy Liang},
year={2018},
eprint={1806.03822},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
def _squad_metric(predictions, references):
squad_metric = datasets.load_metric("squad_v2")
return squad_metric.compute(predictions=predictions, references=references)
def _squad_agg(key, items):
predictions, references = zip(*items)
return _squad_metric(predictions=predictions, references=references)[key]
class SQuAD2(Task):
VERSION = 1
DATASET_PATH = "squad_v2"
DATASET_NAME = None
# HF changed squad on us so we have to make sure we aren't running the old one
assert version.parse(datasets.__version__) >= version.parse("1.11.0"), "datasets v1.11.0 or later required for SQuAD"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
return self.dataset["train"]
def validation_docs(self):
return self.dataset["validation"]
def doc_to_text(self, doc):
return 'Title: ' + doc['title'] + '\n\n' + 'Background: ' + doc['context'] + '\n\n' + 'Question: ' + doc['question'] + '\n\n' + 'Answer:'
def doc_to_target(self, doc):
answer_list = doc['answers']['text']
if len(answer_list) > 0:
answer = answer_list[0]
else:
answer = 'unanswerable'
return " " + answer
def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
continuation = rf.greedy_until(ctx, ['\n'])
is_unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
return continuation, is_unanswerable
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
continuation, (logprob_unanswerable, _) = results
no_answer_probability = exp(logprob_unanswerable)
predictions = {
'id': doc['id'],
'prediction_text': continuation,
'no_answer_probability': no_answer_probability,
}
references = {
'id': doc['id'],
'answers': doc['answers'],
}
return {
'exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
'f1': (predictions, references), # The F-score of predicted tokens versus the gold answer
'HasAns_exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
'HasAns_f1': (predictions, references), # The F-score of predicted tokens versus the gold answer
'NoAns_exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
'NoAns_f1': (predictions, references), # The F-score of predicted tokens versus the gold answer
'best_exact': (predictions, references), # Best exact match (with varying threshold)
'best_f1': (predictions, references), # Best F1 (with varying threshold)
}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {
'exact': partial(_squad_agg, 'exact'), # Exact match (the normalized answer exactly match the gold answer)
'f1': partial(_squad_agg, 'f1'), # The F-score of predicted tokens versus the gold answer
'HasAns_exact': partial(_squad_agg, 'HasAns_exact'), # Exact match (the normalized answer exactly match the gold answer)
'HasAns_f1': partial(_squad_agg, 'HasAns_f1'), # The F-score of predicted tokens versus the gold answer
'NoAns_exact': partial(_squad_agg, 'NoAns_exact'), # Exact match (the normalized answer exactly match the gold answer)
'NoAns_f1': partial(_squad_agg, 'NoAns_f1'), # The F-score of predicted tokens versus the gold answer
'best_exact': partial(_squad_agg, 'best_exact'), # Best exact match (with varying threshold)
'best_f1': partial(_squad_agg, 'best_f1'), # Best F1 (with varying threshold)
}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {
'exact': True, # Exact match (the normalized answer exactly match the gold answer)
'f1': True, # The F-score of predicted tokens versus the gold answer
'HasAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
'HasAns_f1': True, # The F-score of predicted tokens versus the gold answer
'NoAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
'NoAns_f1': True, # The F-score of predicted tokens versus the gold answer
'best_exact': True, # Best exact match (with varying threshold)
'best_f1': True, # Best F1 (with varying threshold)
}
"""
Know What You Don’t Know: Unanswerable Questions for SQuAD
https://arxiv.org/pdf/1806.03822.pdf
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset,
consisting of questions posed by crowdworkers on a set of Wikipedia articles,
where the answer to every question is a segment of text, or span, from the
corresponding reading passage, or the question might be unanswerable.
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable
questions written adversarially by crowdworkers to look similar to answerable ones.
To do well on SQuAD2.0, systems must not only answer questions when possible, but
also determine when no answer is supported by the paragraph and abstain from answering.
Homepage: https://rajpurkar.github.io/SQuAD-explorer/
"""
import datasets
from math import exp
from lm_eval.base import rf, Task
from functools import partial
from packaging import version
_CITATION = """
@misc{rajpurkar2018know,
title={Know What You Don't Know: Unanswerable Questions for SQuAD},
author={Pranav Rajpurkar and Robin Jia and Percy Liang},
year={2018},
eprint={1806.03822},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
def _squad_metric(predictions, references):
squad_metric = datasets.load_metric("squad_v2")
return squad_metric.compute(predictions=predictions, references=references)
def _squad_agg(key, items):
predictions, references = zip(*items)
return _squad_metric(predictions=predictions, references=references)[key]
class SQuAD2(Task):
VERSION = 1
DATASET_PATH = "squad_v2"
DATASET_NAME = None
# HF changed squad on us so we have to make sure we aren't running the old one
assert version.parse(datasets.__version__) >= version.parse(
"1.11.0"
), "datasets v1.11.0 or later required for SQuAD"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
return self.dataset["train"]
def validation_docs(self):
return self.dataset["validation"]
def doc_to_text(self, doc):
return (
"Title: "
+ doc["title"]
+ "\n\n"
+ "Background: "
+ doc["context"]
+ "\n\n"
+ "Question: "
+ doc["question"]
+ "\n\n"
+ "Answer:"
)
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["context"]
def doc_to_target(self, doc):
answer_list = doc["answers"]["text"]
if len(answer_list) > 0:
answer = answer_list[0]
else:
answer = "unanswerable"
return " " + answer
def construct_requests(self, doc, ctx):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
continuation = rf.greedy_until(ctx, ["\n"])
is_unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
return continuation, is_unanswerable
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
continuation, (logprob_unanswerable, _) = results
no_answer_probability = exp(logprob_unanswerable)
predictions = {
"id": doc["id"],
"prediction_text": continuation,
"no_answer_probability": no_answer_probability,
}
references = {
"id": doc["id"],
"answers": doc["answers"],
}
return {
"exact": (
predictions,
references,
), # Exact match (the normalized answer exactly match the gold answer)
"f1": (
predictions,
references,
), # The F-score of predicted tokens versus the gold answer
"HasAns_exact": (
predictions,
references,
), # Exact match (the normalized answer exactly match the gold answer)
"HasAns_f1": (
predictions,
references,
), # The F-score of predicted tokens versus the gold answer
"NoAns_exact": (
predictions,
references,
), # Exact match (the normalized answer exactly match the gold answer)
"NoAns_f1": (
predictions,
references,
), # The F-score of predicted tokens versus the gold answer
"best_exact": (
predictions,
references,
), # Best exact match (with varying threshold)
"best_f1": (predictions, references), # Best F1 (with varying threshold)
}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {
"exact": partial(
_squad_agg, "exact"
), # Exact match (the normalized answer exactly match the gold answer)
"f1": partial(
_squad_agg, "f1"
), # The F-score of predicted tokens versus the gold answer
"HasAns_exact": partial(
_squad_agg, "HasAns_exact"
), # Exact match (the normalized answer exactly match the gold answer)
"HasAns_f1": partial(
_squad_agg, "HasAns_f1"
), # The F-score of predicted tokens versus the gold answer
"NoAns_exact": partial(
_squad_agg, "NoAns_exact"
), # Exact match (the normalized answer exactly match the gold answer)
"NoAns_f1": partial(
_squad_agg, "NoAns_f1"
), # The F-score of predicted tokens versus the gold answer
"best_exact": partial(
_squad_agg, "best_exact"
), # Best exact match (with varying threshold)
"best_f1": partial(
_squad_agg, "best_f1"
), # Best F1 (with varying threshold)
}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {
"exact": True, # Exact match (the normalized answer exactly match the gold answer)
"f1": True, # The F-score of predicted tokens versus the gold answer
"HasAns_exact": True, # Exact match (the normalized answer exactly match the gold answer)
"HasAns_f1": True, # The F-score of predicted tokens versus the gold answer
"NoAns_exact": True, # Exact match (the normalized answer exactly match the gold answer)
"NoAns_f1": True, # The F-score of predicted tokens versus the gold answer
"best_exact": True, # Best exact match (with varying threshold)
"best_f1": True, # Best F1 (with varying threshold)
}
......@@ -65,12 +65,27 @@ class StoryCloze(Task):
return self.dataset["test"]
def doc_to_text(self, doc):
return ' '.join([
doc["input_sentence_1"],
doc["input_sentence_2"],
doc["input_sentence_3"],
doc["input_sentence_4"],
])
return " ".join(
[
doc["input_sentence_1"],
doc["input_sentence_2"],
doc["input_sentence_3"],
doc["input_sentence_4"],
]
)
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return " ".join(
[
doc["input_sentence_1"],
doc["input_sentence_2"],
doc["input_sentence_3"],
doc["input_sentence_4"],
]
)
def doc_to_target(self, doc):
clozes = [doc["sentence_quiz1"], doc["sentence_quiz2"]]
......@@ -78,7 +93,7 @@ class StoryCloze(Task):
return " " + clozes[doc["answer_right_ending"] - 1]
def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
......@@ -89,10 +104,7 @@ class StoryCloze(Task):
part of the document for `doc`.
"""
clozes = [doc["sentence_quiz1"], doc["sentence_quiz2"]]
lls = [
rf.loglikelihood(ctx, " {}".format(choice))[0]
for choice in clozes
]
lls = [rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in clozes]
return lls
def process_results(self, doc, results):
......@@ -106,10 +118,8 @@ class StoryCloze(Task):
The results of the requests created in construct_requests.
"""
gold = doc["answer_right_ending"] - 1
acc = 1. if np.argmax(results) == gold else 0.
return {
"acc": acc
}
acc = 1.0 if np.argmax(results) == gold else 0.0
return {"acc": acc}
def aggregation(self):
"""
......@@ -117,9 +127,7 @@ class StoryCloze(Task):
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {
"acc": mean
}
return {"acc": mean}
def higher_is_better(self):
"""
......@@ -127,9 +135,7 @@ class StoryCloze(Task):
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {
"acc": True
}
return {"acc": True}
class StoryCloze2016(StoryCloze):
......
......@@ -56,14 +56,20 @@ class BoolQ(Task):
def doc_to_text(self, doc):
return f"{doc['passage']}\nQuestion: {doc['question']}?\nAnswer:"
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["passage"]
def doc_to_target(self, doc):
return " " + yesno(doc['label'])
return " " + yesno(doc["label"])
def construct_requests(self, doc, ctx):
ll_yes, _ = rf.loglikelihood(ctx, ' yes')
ll_no, _ = rf.loglikelihood(ctx, ' no')
ll_yes, _ = rf.loglikelihood(ctx, " yes")
ll_no, _ = rf.loglikelihood(ctx, " no")
return ll_yes, ll_no
......@@ -71,21 +77,15 @@ class BoolQ(Task):
ll_yes, ll_no = results
gold = doc["label"]
acc = 1. if (ll_yes > ll_no) == gold else 0.
acc = 1.0 if (ll_yes > ll_no) == gold else 0.0
return {"acc": acc}
return {
"acc": acc
}
def higher_is_better(self):
return {
"acc": True
}
return {"acc": True}
def aggregation(self):
return {
"acc": mean
}
return {"acc": mean}
class CommitmentBank(Task):
......@@ -123,27 +123,21 @@ class CommitmentBank(Task):
return " {}".format({0: "True", 1: "False", 2: "Neither"}[doc["label"]])
def construct_requests(self, doc, ctx):
ll_true, _ = rf.loglikelihood(ctx, ' True')
ll_false, _ = rf.loglikelihood(ctx, ' False')
ll_neither, _ = rf.loglikelihood(ctx, ' Neither')
ll_true, _ = rf.loglikelihood(ctx, " True")
ll_false, _ = rf.loglikelihood(ctx, " False")
ll_neither, _ = rf.loglikelihood(ctx, " Neither")
return ll_true, ll_false, ll_neither
def process_results(self, doc, results):
gold = doc["label"]
pred = np.argmax(results)
acc = 1. if pred == gold else 0.
acc = 1.0 if pred == gold else 0.0
return {"acc": acc, "f1": (pred, gold)}
return {
"acc": acc,
"f1": (pred, gold)
}
def higher_is_better(self):
return {
"acc": True,
"f1": True
}
return {"acc": True, "f1": True}
@classmethod
def cb_multi_fi(cls, items):
......@@ -155,7 +149,7 @@ class CommitmentBank(Task):
f13 = sklearn.metrics.f1_score(y_true=golds == 2, y_pred=preds == 2)
avg_f1 = mean([f11, f12, f13])
return avg_f1
def aggregation(self):
return {
"acc": mean,
......@@ -201,7 +195,7 @@ class Copa(Task):
def construct_requests(self, doc, ctx):
choice1 = " " + self.convert_choice(doc["choice1"])
choice2 = " " + self.convert_choice(doc["choice2"])
ll_choice1, _ = rf.loglikelihood(ctx, choice1)
ll_choice2, _ = rf.loglikelihood(ctx, choice2)
......@@ -210,21 +204,15 @@ class Copa(Task):
def process_results(self, doc, results):
gold = doc["label"]
pred = np.argmax(results)
acc = 1. if pred == gold else 0.
acc = 1.0 if pred == gold else 0.0
return {"acc": acc}
return {
"acc": acc
}
def higher_is_better(self):
return {
"acc": True
}
return {"acc": True}
def aggregation(self):
return {
"acc": mean
}
return {"acc": mean}
@staticmethod
def convert_choice(choice):
......@@ -267,28 +255,22 @@ class MultiRC(Task):
def construct_requests(self, doc, ctx):
true_choice = self.format_answer(answer=doc["answer"], label=True)
false_choice = self.format_answer(answer=doc["answer"], label=False)
ll_true_choice, _ = rf.loglikelihood(ctx, f' {true_choice}')
ll_false_choice, _ = rf.loglikelihood(ctx, f' {false_choice}')
ll_true_choice, _ = rf.loglikelihood(ctx, f" {true_choice}")
ll_false_choice, _ = rf.loglikelihood(ctx, f" {false_choice}")
return ll_true_choice, ll_false_choice
def process_results(self, doc, results):
ll_true_choice, ll_false_choice = results
pred = ll_true_choice > ll_false_choice
return {
"acc": (pred, doc)
}
return {"acc": (pred, doc)}
def higher_is_better(self):
return {
"acc": True
}
return {"acc": True}
def aggregation(self):
return {
"acc": acc_all
}
return {"acc": acc_all}
class ReCoRD(Task):
......@@ -337,7 +319,7 @@ class ReCoRD(Task):
@classmethod
def format_answer(cls, query, entity):
return f' - {query}'.replace("@placeholder", entity)
return f" - {query}".replace("@placeholder", entity)
def doc_to_target(self, doc):
# We only output the first correct entity in a doc
......@@ -359,8 +341,12 @@ class ReCoRD(Task):
prediction = doc["entities"][max_idx]
gold_label_set = doc["answers"]
f1 = metric_max_over_ground_truths(squad_metrics.compute_f1, prediction, gold_label_set)
em = metric_max_over_ground_truths(squad_metrics.compute_exact, prediction, gold_label_set)
f1 = metric_max_over_ground_truths(
squad_metrics.compute_f1, prediction, gold_label_set
)
em = metric_max_over_ground_truths(
squad_metrics.compute_exact, prediction, gold_label_set
)
return {
"f1": f1,
......@@ -403,19 +389,21 @@ class WordsInContext(Task):
return self.dataset["validation"]
def doc_to_text(self, doc):
return "Sentence 1: {}\nSentence 2: {}\nQuestion: Is the word '{}' used in the same way in the" \
" two sentences above?\nAnswer:".format(
doc["sentence1"],
doc["sentence2"],
doc["sentence1"][doc["start1"]:doc["end1"]],
)
return (
"Sentence 1: {}\nSentence 2: {}\nQuestion: Is the word '{}' used in the same way in the"
" two sentences above?\nAnswer:".format(
doc["sentence1"],
doc["sentence2"],
doc["sentence1"][doc["start1"] : doc["end1"]],
)
)
def doc_to_target(self, doc):
return " {}".format({0: "no", 1: "yes"}[doc["label"]])
def construct_requests(self, doc, ctx):
ll_yes, _ = rf.loglikelihood(ctx, ' yes')
ll_no, _ = rf.loglikelihood(ctx, ' no')
ll_yes, _ = rf.loglikelihood(ctx, " yes")
ll_no, _ = rf.loglikelihood(ctx, " no")
return ll_yes, ll_no
......@@ -423,21 +411,15 @@ class WordsInContext(Task):
ll_yes, ll_no = results
gold = doc["label"]
acc = 1. if (ll_yes > ll_no) == gold else 0.
acc = 1.0 if (ll_yes > ll_no) == gold else 0.0
return {
"acc": acc
}
return {"acc": acc}
def higher_is_better(self):
return {
"acc": True
}
return {"acc": True}
def aggregation(self):
return {
"acc": mean
}
return {"acc": mean}
class SGWinogradSchemaChallenge(Task):
......@@ -461,9 +443,7 @@ class SGWinogradSchemaChallenge(Task):
if self._training_docs is None:
# GPT-3 Paper's format only uses positive examples for fewshot "training"
self._training_docs = [
doc for doc in
self.dataset["train"]
if doc["label"]
doc for doc in self.dataset["train"] if doc["label"]
]
return self._training_docs
......@@ -473,25 +453,25 @@ class SGWinogradSchemaChallenge(Task):
def doc_to_text(self, doc):
raw_passage = doc["text"]
# NOTE: HuggingFace span indices are word-based not character-based.
pre = " ".join(raw_passage.split()[:doc["span2_index"]])
post = raw_passage[len(pre) + len(doc["span2_text"]) + 1:]
passage = general_detokenize(pre + " *{}*".format(doc['span2_text']) + post)
pre = " ".join(raw_passage.split()[: doc["span2_index"]])
post = raw_passage[len(pre) + len(doc["span2_text"]) + 1 :]
passage = general_detokenize(pre + " *{}*".format(doc["span2_text"]) + post)
noun = doc["span1_text"]
pronoun = doc["span2_text"]
text = (
f"Passage: {passage}\n"
+ f"Question: In the passage above, does the pronoun \"*{pronoun}*\" refer to \"*{noun}*\"?\n"
+ f'Question: In the passage above, does the pronoun "*{pronoun}*" refer to "*{noun}*"?\n'
+ "Answer:"
)
return text
def doc_to_target(self, doc):
return " " + yesno(doc['label'])
return " " + yesno(doc["label"])
def construct_requests(self, doc, ctx):
ll_yes, _ = rf.loglikelihood(ctx, ' yes')
ll_no, _ = rf.loglikelihood(ctx, ' no')
ll_yes, _ = rf.loglikelihood(ctx, " yes")
ll_no, _ = rf.loglikelihood(ctx, " no")
return ll_yes, ll_no
......@@ -499,18 +479,12 @@ class SGWinogradSchemaChallenge(Task):
ll_yes, ll_no = results
gold = doc["label"]
acc = 1. if (ll_yes > ll_no) == gold else 0.
acc = 1.0 if (ll_yes > ll_no) == gold else 0.0
return {
"acc": acc
}
return {"acc": acc}
def higher_is_better(self):
return {
"acc": True
}
return {"acc": True}
def aggregation(self):
return {
"acc": mean
}
return {"acc": mean}
......@@ -41,44 +41,57 @@ def create_tasks_from_benchmarks(benchmark_dict):
:return: {task_name: task}
e.g. {wmt14-fr-en: Task, wmt16-de-en: Task}
"""
def version_of(dataset, language_pair):
if language_pair[-2:] in ["zh", "ja"]:
return 1 # changed to use jieba/nagisa
return 1 # changed to use jieba/nagisa
return 0
return {
f"{dataset}-{language_pair}": create_translation_task(dataset, language_pair, version_of(dataset, language_pair))
f"{dataset}-{language_pair}": create_translation_task(
dataset, language_pair, version_of(dataset, language_pair)
)
for dataset, language_pairs in benchmark_dict.items()
for language_pair in language_pairs
}
########################################
# Language Specifics
########################################
def zh_split(zh_text: List[str]) -> List[str]:
"""Chinese splitting"""
import jieba
return [" ".join(jieba.cut(txt.strip())) for txt in zh_text]
def ja_split(ja_text: List[str]) -> List[str]:
"""Japanese splitting"""
import nagisa
return [" ".join(nagisa.tagging(txt.strip()).words) for txt in ja_text]
NO_SPACE_LANG = {"zh": zh_split, "ja": ja_split}
########################################
# Tasks
########################################
def create_translation_task(dataset, language_pair, version=0):
class TranslationTask(GeneralTranslationTask):
VERSION = version
def __init__(self):
super().__init__(dataset, language_pair)
return TranslationTask
class GeneralTranslationTask(Task):
VERSION = 0
......@@ -92,8 +105,9 @@ class GeneralTranslationTask(Task):
def download(self, data_dir=None, cache_dir=None, download_mode=None):
# This caches in the users home dir automatically
self.src_file, self.ref_file = \
sacrebleu.download_test_set(self.sacrebleu_dataset, self.sacrebleu_language_pair)
self.src_file, self.ref_file = sacrebleu.download_test_set(
self.sacrebleu_dataset, self.sacrebleu_language_pair
)
self.src_data, self.ref_data = [
[line.rstrip() for line in sacrebleu.smart_open(file)]
for file in (self.src_file, self.ref_file)
......@@ -117,10 +131,9 @@ class GeneralTranslationTask(Task):
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return [{
"src": src,
"ref": ref
} for src, ref in zip(self.src_data, self.ref_data)]
return [
{"src": src, "ref": ref} for src, ref in zip(self.src_data, self.ref_data)
]
def doc_to_text(self, doc):
language_codes = self.sacrebleu_language_pair.split("-")
......@@ -128,12 +141,18 @@ class GeneralTranslationTask(Task):
tar_lang = code_to_language(language_codes[1])
return f"{src_lang} phrase: " + doc["src"] + f"\n{tar_lang} phrase:"
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["src"]
def doc_to_target(self, doc):
# This shows a single target, though there may be multiple targets in a lang test
return " " + doc["ref"] if isinstance(doc["ref"], str) else doc["ref"][0]
def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
......
......@@ -43,10 +43,10 @@ class TriviaQA(Task):
return False
def training_docs(self):
return self.dataset['train']
return self.dataset["train"]
def validation_docs(self):
return self.dataset['validation']
return self.dataset["validation"]
def test_docs(self):
raise NotImplementedError()
......@@ -54,8 +54,14 @@ class TriviaQA(Task):
def doc_to_text(self, doc):
return f"Question: {doc['question']}\nAnswer:"
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["question"]
def doc_to_target(self, doc):
return " " + doc['answer']['value']
return " " + doc["answer"]["value"]
def _remove_prefixes(self, aliases):
# Optimization: Remove any alias that has a strict prefix elsewhere in the list
......@@ -69,15 +75,13 @@ class TriviaQA(Task):
def construct_requests(self, doc, ctx):
ret = []
for alias in self._remove_prefixes(doc['answer']['aliases']):
for alias in self._remove_prefixes(doc["answer"]["aliases"]):
_, is_prediction = rf.loglikelihood(ctx, " " + alias)
ret.append(is_prediction)
return ret
def process_results(self, doc, results):
return {
"acc": float(any(results))
}
return {"acc": float(any(results))}
def aggregation(self):
return {
......@@ -85,6 +89,4 @@ class TriviaQA(Task):
}
def higher_is_better(self):
return {
"acc": True
}
return {"acc": True}
......@@ -80,22 +80,29 @@ class TruthfulQAMultipleChoice(Task):
raise NotImplementedError()
def doc_to_text(self, doc):
return QA_PROMPT + "\n\nQ: " + doc['question'] + "\nA:"
return QA_PROMPT + "\n\nQ: " + doc["question"] + "\nA:"
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["question"]
def doc_to_target(self, doc):
return " "
def fewshot_context(self, doc, num_fewshot, provide_description=None, rnd=None, description=None):
assert num_fewshot == 0, "TruthfulQA is intended only for the zero-shot setting."
def fewshot_context(
self, doc, num_fewshot, provide_description=None, rnd=None, description=None
):
assert (
num_fewshot == 0
), "TruthfulQA is intended only for the zero-shot setting."
return super().fewshot_context(
doc=doc,
num_fewshot=num_fewshot,
rnd=rnd,
description=description
doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
)
def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
......@@ -105,11 +112,15 @@ class TruthfulQAMultipleChoice(Task):
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
def get_lls(targets):
return [rf.loglikelihood(ctx, " " + t)[0] for t in targets]
# MC1 and MC2 targets are not always the same set of strings so we collect
# likelihoods separately for simpler processing.
return get_lls(doc['mc1_targets']["choices"]) + get_lls(doc['mc2_targets']["choices"])
return get_lls(doc["mc1_targets"]["choices"]) + get_lls(
doc["mc2_targets"]["choices"]
)
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
......@@ -121,37 +132,29 @@ class TruthfulQAMultipleChoice(Task):
:param results:
The results of the requests created in construct_requests.
"""
def mc1(lls):
# The gold answers in `mc1_targets` are always first (index = `0`).
return np.argmax(lls) == 0
def mc2(lls):
# Split on the first `0` as everything before it is true (`1`).
split_idx = list(doc['mc2_targets']["labels"]).index(0)
split_idx = list(doc["mc2_targets"]["labels"]).index(0)
# Compute the normalized probability mass for the correct answer.
ll_true, ll_false = lls[:split_idx], lls[split_idx:]
p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))
p_true = p_true / (sum(p_true) + sum(p_false))
return sum(p_true)
split_idx = len(doc['mc1_targets']["choices"])
split_idx = len(doc["mc1_targets"]["choices"])
mc1_lls, mc2_lls = results[:split_idx], results[split_idx:]
return {
"mc1": mc1(mc1_lls),
"mc2": mc2(mc2_lls)
}
return {"mc1": mc1(mc1_lls), "mc2": mc2(mc2_lls)}
def aggregation(self):
return {
"mc1": mean,
"mc2": mean
}
return {"mc1": mean, "mc2": mean}
def higher_is_better(self):
return {
"mc1": True,
"mc2": True
}
return {"mc1": True, "mc2": True}
class TruthfulQAGeneration(Task):
......@@ -181,44 +184,45 @@ class TruthfulQAGeneration(Task):
answer = answer.strip()
if len(answer):
# Add a period after all answers.
if answer[-1] != '.':
formatted_answers.append(answer + '.')
if answer[-1] != ".":
formatted_answers.append(answer + ".")
else:
formatted_answers.append(answer)
return formatted_answers
def validation_docs(self):
for doc in self.dataset["validation"]:
incorrect_answers = self._format_answers(doc['incorrect_answers'])
correct_answers = self._format_answers(doc['correct_answers'])
incorrect_answers = self._format_answers(doc["incorrect_answers"])
correct_answers = self._format_answers(doc["correct_answers"])
if "I have no comment." not in correct_answers:
correct_answers.append("I have no comment.")
yield {
'question': doc['question'].strip(),
'correct_answers': correct_answers,
'incorrect_answers': incorrect_answers
"question": doc["question"].strip(),
"correct_answers": correct_answers,
"incorrect_answers": incorrect_answers,
}
def test_docs(self):
raise NotImplementedError()
def doc_to_text(self, doc):
return QA_PROMPT + "\n\nQ: " + doc['question']
return QA_PROMPT + "\n\nQ: " + doc["question"]
def doc_to_target(self, doc):
return " "
def fewshot_context(self, doc, num_fewshot, provide_description=None, rnd=None, description=None):
assert num_fewshot == 0, "TruthfulQA is intended only for the zero-shot setting."
def fewshot_context(
self, doc, num_fewshot, provide_description=None, rnd=None, description=None
):
assert (
num_fewshot == 0
), "TruthfulQA is intended only for the zero-shot setting."
return super().fewshot_context(
doc=doc,
num_fewshot=num_fewshot,
rnd=rnd,
description=description
doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
)
def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
......@@ -229,7 +233,7 @@ class TruthfulQAGeneration(Task):
part of the document for `doc`.
"""
# TODO: Find a way to cap the number of generated tokens to `50` as in the official implementation.
completion = rf.greedy_until(ctx, ['.'])
completion = rf.greedy_until(ctx, ["."])
return completion
def process_results(self, doc, results):
......@@ -243,18 +247,18 @@ class TruthfulQAGeneration(Task):
The results of the requests created in construct_requests.
"""
completion = results[0].strip()
true_refs, false_refs = doc['correct_answers'], doc['incorrect_answers']
true_refs, false_refs = doc["correct_answers"], doc["incorrect_answers"]
all_refs = true_refs + false_refs
# Process the sentence-level BLEURT, BLEU, and ROUGE for similarity measures.
# BLEURT
bleurt_scores_true = self.bleurt.compute(
predictions=[completion] * len(true_refs),
references=true_refs)['scores']
predictions=[completion] * len(true_refs), references=true_refs
)["scores"]
bleurt_scores_false = self.bleurt.compute(
predictions=[completion] * len(false_refs),
references=false_refs)['scores']
predictions=[completion] * len(false_refs), references=false_refs
)["scores"]
bleurt_correct = max(bleurt_scores_true)
bleurt_incorrect = max(bleurt_scores_false)
bleurt_max = bleurt_correct
......@@ -263,8 +267,8 @@ class TruthfulQAGeneration(Task):
# BLEU
bleu_scores = [self.bleu([[ref]], [completion]) for ref in all_refs]
bleu_correct = np.nanmax(bleu_scores[:len(true_refs)])
bleu_incorrect = np.nanmax(bleu_scores[len(true_refs):])
bleu_correct = np.nanmax(bleu_scores[: len(true_refs)])
bleu_incorrect = np.nanmax(bleu_scores[len(true_refs) :])
bleu_max = bleu_correct
bleu_diff = bleu_correct - bleu_incorrect
bleu_acc = int(bleu_correct > bleu_incorrect)
......@@ -272,23 +276,23 @@ class TruthfulQAGeneration(Task):
# ROUGE-N
rouge_scores = [self.rouge([ref], [completion]) for ref in all_refs]
# ROUGE-1
rouge1_scores = [score['rouge1'] for score in rouge_scores]
rouge1_correct = np.nanmax(rouge1_scores[:len(true_refs)])
rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs):])
rouge1_scores = [score["rouge1"] for score in rouge_scores]
rouge1_correct = np.nanmax(rouge1_scores[: len(true_refs)])
rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs) :])
rouge1_max = rouge1_correct
rouge1_diff = rouge1_correct - rouge1_incorrect
rouge1_acc = int(rouge1_correct > rouge1_incorrect)
# ROUGE-2
rouge2_scores = [score['rouge2'] for score in rouge_scores]
rouge2_correct = np.nanmax(rouge2_scores[:len(true_refs)])
rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs):])
rouge2_scores = [score["rouge2"] for score in rouge_scores]
rouge2_correct = np.nanmax(rouge2_scores[: len(true_refs)])
rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs) :])
rouge2_max = rouge2_correct
rouge2_diff = rouge2_correct - rouge2_incorrect
rouge2_acc = int(rouge2_correct > rouge2_incorrect)
# ROUGE-L
rougeL_scores = [score['rougeLsum'] for score in rouge_scores]
rougeL_correct = np.nanmax(rougeL_scores[:len(true_refs)])
rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs):])
rougeL_scores = [score["rougeLsum"] for score in rouge_scores]
rougeL_correct = np.nanmax(rougeL_scores[: len(true_refs)])
rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs) :])
rougeL_max = rougeL_correct
rougeL_diff = rougeL_correct - rougeL_incorrect
rougeL_acc = int(rougeL_correct > rougeL_incorrect)
......@@ -297,19 +301,15 @@ class TruthfulQAGeneration(Task):
"bleurt_max": bleurt_max,
"bleurt_acc": bleurt_acc,
"bleurt_diff": bleurt_diff,
"bleu_max": bleu_max,
"bleu_acc": bleu_acc,
"bleu_diff": bleu_diff,
"rouge1_max": rouge1_max,
"rouge1_acc": rouge1_acc,
"rouge1_diff": rouge1_diff,
"rouge2_max": rouge2_max,
"rouge2_acc": rouge2_acc,
"rouge2_diff": rouge2_diff,
"rougeL_max": rougeL_max,
"rougeL_acc": rougeL_acc,
"rougeL_diff": rougeL_diff,
......@@ -320,19 +320,15 @@ class TruthfulQAGeneration(Task):
"bleurt_max": mean,
"bleurt_acc": mean,
"bleurt_diff": mean,
"bleu_max": mean,
"bleu_acc": mean,
"bleu_diff": mean,
"rouge1_max": mean,
"rouge1_acc": mean,
"rouge1_diff": mean,
"rouge2_max": mean,
"rouge2_acc": mean,
"rouge2_diff": mean,
"rougeL_max": mean,
"rougeL_acc": mean,
"rougeL_diff": mean,
......@@ -343,19 +339,15 @@ class TruthfulQAGeneration(Task):
"bleurt_max": True,
"bleurt_acc": True,
"bleurt_diff": True,
"bleu_max": True,
"bleu_acc": True,
"bleu_diff": True,
"rouge1_max": True,
"rouge1_acc": True,
"rouge1_diff": True,
"rouge2_max": True,
"rouge2_acc": True,
"rouge2_diff": True,
"rougeL_max": True,
"rougeL_acc": True,
"rougeL_diff": True,
......@@ -379,7 +371,7 @@ class TruthfulQAGeneration(Task):
force=False,
lowercase=False,
tokenize="intl",
use_effective_order=False
use_effective_order=False,
).score
return score
......@@ -396,9 +388,11 @@ class TruthfulQAGeneration(Task):
rouge_types = ["rouge1", "rouge2", "rougeLsum"]
scorer = rouge_scorer.RougeScorer(rouge_types)
# Add newlines between sentences to correctly compute `rougeLsum`.
def _prepare_summary(summary):
summary = summary.replace(" . ", ".\n")
return summary
# Accumulate confidence intervals.
aggregator = scoring.BootstrapAggregator()
for ref, pred in zip(refs, preds):
......@@ -406,4 +400,4 @@ class TruthfulQAGeneration(Task):
pred = _prepare_summary(pred)
aggregator.add_scores(scorer.score(ref, pred))
result = aggregator.aggregate()
return {type: result[type].mid.fmeasure*100 for type in rouge_types}
return {type: result[type].mid.fmeasure * 100 for type in rouge_types}
......@@ -49,6 +49,12 @@ class WordUnscrambleTask(Task):
def doc_to_text(self, doc):
return doc["context"]
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["context"]
def doc_to_target(self, doc):
return doc["completion"]
......@@ -59,19 +65,13 @@ class WordUnscrambleTask(Task):
def process_results(self, doc, results):
pred = results[0]
gold = doc["completion"]
return {
"acc": int(pred == gold)
}
return {"acc": int(pred == gold)}
def aggregation(self):
return {
"acc": mean
}
return {"acc": mean}
def higher_is_better(self):
return {
"acc": True
}
return {"acc": True}
class Anagrams1(WordUnscrambleTask):
......
......@@ -54,14 +54,20 @@ class WebQs(Task):
return self.dataset["test"]
def doc_to_text(self, doc):
return "Question: " + doc['question'] + '\nAnswer:'
return "Question: " + doc["question"] + "\nAnswer:"
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["question"]
def doc_to_target(self, doc):
# this picks one answer to be the "correct" one, despite sometimes
# this picks one answer to be the "correct" one, despite sometimes
# multiple correct answers being possible.
# TODO: make sure we're actually handling multi-answer correctly
return " " + doc['answers'][0]
return " " + doc["answers"][0]
def _remove_prefixes(self, aliases):
# Optimization: Remove any alias that has a strict prefix elsewhere in the list
# we can do this because if the prefix is acceptable by isgreedy, we can stop looking
......@@ -75,15 +81,13 @@ class WebQs(Task):
def construct_requests(self, doc, ctx):
ret = []
for alias in self._remove_prefixes(doc['answers']):
for alias in self._remove_prefixes(doc["answers"]):
_, is_prediction = rf.loglikelihood(ctx, " " + alias)
ret.append(is_prediction)
return ret
def process_results(self, doc, results):
return {
"acc": float(any(results))
}
return {"acc": float(any(results))}
def aggregation(self):
return {
......@@ -91,6 +95,4 @@ class WebQs(Task):
}
def higher_is_better(self):
return {
"acc": True
}
return {"acc": True}
......@@ -2,7 +2,7 @@
Pointer Sentinel Mixture Models
https://arxiv.org/pdf/1609.07843.pdf
The WikiText language modeling dataset is a collection of over 100 million tokens
The WikiText language modeling dataset is a collection of over 100 million tokens
extracted from the set of verified Good and Featured articles on Wikipedia.
NOTE: This `Task` is based on WikiText-2.
......@@ -17,7 +17,7 @@ from lm_eval.base import PerplexityTask
_CITATION = """
@misc{merity2016pointer,
title={Pointer Sentinel Mixture Models},
title={Pointer Sentinel Mixture Models},
author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
year={2016},
eprint={1609.07843},
......@@ -90,6 +90,9 @@ class WikiText(PerplexityTask):
def doc_to_target(self, doc):
return wikitext_detokenizer(doc)
def should_decontaminate(self):
return True
def count_words(self, doc):
# count number of words in *original doc before detokenization*
return len(re.split(r"\s+", doc))
"""
WinoGrande: An Adversarial Winograd Schema Challenge at Scale
https://arxiv.org/pdf/1907.10641.pdf
WinoGrande is a collection of 44k problems, inspired by Winograd Schema Challenge
(Levesque, Davis, and Morgenstern 2011), but adjusted to improve the scale and
robustness against the dataset-specific bias. Formulated as a fill-in-a-blank
task with binary options, the goal is to choose the right option for a given
sentence which requires commonsense reasoning.
NOTE: This evaluation of Winogrande uses partial evaluation as described by
Trinh & Le in Simple Method for Commonsense Reasoning (2018).
See: https://arxiv.org/abs/1806.02847
Homepage: https://leaderboard.allenai.org/winogrande/submissions/public
"""
import numpy as np
from lm_eval.base import rf, Task
from lm_eval.metrics import mean
_CITATION = """
@article{sakaguchi2019winogrande,
title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin},
journal={arXiv preprint arXiv:1907.10641},
year={2019}
}
"""
class Winogrande(Task):
VERSION = 0
DATASET_PATH = "winogrande"
DATASET_NAME = "winogrande_xl"
answer_to_num = {'1': 0, '2': 1}
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(self.dataset["train"])
return self._training_docs
def validation_docs(self):
return self.dataset["validation"]
def doc_to_text(self, doc):
return self.partial_context(doc, doc["option" + doc["answer"]])
@classmethod
def partial_context(cls, doc, option):
# Substitute the pronoun in the sentence with the specified option
# and ignore everything after.
pronoun_loc = doc["sentence"].index("_")
return doc["sentence"][:pronoun_loc] + option
def doc_to_target(self, doc):
return self.partial_target(doc)
@classmethod
def partial_target(cls, doc):
# The target is everything after the document specified pronoun.
pronoun_loc = doc["sentence"].index("_") + 1
return " " + doc["sentence"][pronoun_loc:].strip()
def construct_requests(self, doc, ctx):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
target = self.partial_target(doc)
lls = []
for option in [doc["option1"], doc["option2"]]:
partial_ctx = self.partial_context(doc, option)
full_ctx = self.append_context(ctx, partial_ctx)
lls.append(rf.loglikelihood(full_ctx, target)[0])
return lls
@classmethod
def append_context(cls, ctx, partial_ctx):
ctx = ctx.split("\n\n") # Each fewshot context is on its own new line.
ctx.pop() # Remove the correct context put in by `doc_to_text`.
return "\n\n".join([*ctx, partial_ctx]) if ctx else partial_ctx
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
return {
"acc": np.argmax(results) == self.answer_to_num[doc["answer"]]
}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {
"acc": mean
}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {
"acc": True
}
"""
WinoGrande: An Adversarial Winograd Schema Challenge at Scale
https://arxiv.org/pdf/1907.10641.pdf
WinoGrande is a collection of 44k problems, inspired by Winograd Schema Challenge
(Levesque, Davis, and Morgenstern 2011), but adjusted to improve the scale and
robustness against the dataset-specific bias. Formulated as a fill-in-a-blank
task with binary options, the goal is to choose the right option for a given
sentence which requires commonsense reasoning.
NOTE: This evaluation of Winogrande uses partial evaluation as described by
Trinh & Le in Simple Method for Commonsense Reasoning (2018).
See: https://arxiv.org/abs/1806.02847
Homepage: https://leaderboard.allenai.org/winogrande/submissions/public
"""
import numpy as np
from lm_eval.base import rf, Task
from lm_eval.metrics import mean
_CITATION = """
@article{sakaguchi2019winogrande,
title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin},
journal={arXiv preprint arXiv:1907.10641},
year={2019}
}
"""
class Winogrande(Task):
VERSION = 0
DATASET_PATH = "winogrande"
DATASET_NAME = "winogrande_xl"
answer_to_num = {"1": 0, "2": 1}
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(self.dataset["train"])
return self._training_docs
def validation_docs(self):
return self.dataset["validation"]
def doc_to_text(self, doc):
return self.partial_context(doc, doc["option" + doc["answer"]])
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["sentence"]
@classmethod
def partial_context(cls, doc, option):
# Substitute the pronoun in the sentence with the specified option
# and ignore everything after.
pronoun_loc = doc["sentence"].index("_")
return doc["sentence"][:pronoun_loc] + option
def doc_to_target(self, doc):
return self.partial_target(doc)
@classmethod
def partial_target(cls, doc):
# The target is everything after the document specified pronoun.
pronoun_loc = doc["sentence"].index("_") + 1
return " " + doc["sentence"][pronoun_loc:].strip()
def construct_requests(self, doc, ctx):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
target = self.partial_target(doc)
lls = []
for option in [doc["option1"], doc["option2"]]:
partial_ctx = self.partial_context(doc, option)
full_ctx = self.append_context(ctx, partial_ctx)
lls.append(rf.loglikelihood(full_ctx, target)[0])
return lls
@classmethod
def append_context(cls, ctx, partial_ctx):
ctx = ctx.split("\n\n") # Each fewshot context is on its own new line.
ctx.pop() # Remove the correct context put in by `doc_to_text`.
return "\n\n".join([*ctx, partial_ctx]) if ctx else partial_ctx
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
return {"acc": np.argmax(results) == self.answer_to_num[doc["answer"]]}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {"acc": mean}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {"acc": True}
......@@ -40,8 +40,19 @@ class WinogradSchemaChallenge273(Task):
DATASET_PATH = "winograd_wsc"
DATASET_NAME = "wsc273"
upper_pronouns = ["A", "An", "The", "She", "He",
"It", "They", "My", "His", "Her", "Their"]
upper_pronouns = [
"A",
"An",
"The",
"She",
"He",
"It",
"They",
"My",
"His",
"Her",
"Their",
]
def has_training_docs(self):
return False
......@@ -68,7 +79,7 @@ class WinogradSchemaChallenge273(Task):
option += "'s"
# Appropriately lowercase the pronoun in the option.
pronoun = option.split()[0]
start_of_sentence = doc["text"][doc['pronoun_loc'] - 2] == '.'
start_of_sentence = doc["text"][doc["pronoun_loc"] - 2] == "."
if not start_of_sentence and pronoun in self.upper_pronouns:
return option.replace(pronoun, pronoun.lower())
return option
......@@ -85,11 +96,17 @@ class WinogradSchemaChallenge273(Task):
def doc_to_text(self, doc):
return self.partial_context(doc, doc["options"][doc["label"]])
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["text"]
@classmethod
def partial_context(cls, doc, option):
# Substitute the pronoun in the original text with the specified
# option and ignore everything after.
return doc["text"][:doc["pronoun_loc"]] + option
return doc["text"][: doc["pronoun_loc"]] + option
def doc_to_target(self, doc):
return self.partial_target(doc)
......@@ -135,9 +152,7 @@ class WinogradSchemaChallenge273(Task):
:param results:
The results of the requests created in construct_requests.
"""
return {
"acc": np.argmax(results) == doc["label"]
}
return {"acc": np.argmax(results) == doc["label"]}
def aggregation(self):
"""
......@@ -145,9 +160,7 @@ class WinogradSchemaChallenge273(Task):
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {
"acc": mean
}
return {"acc": mean}
def higher_is_better(self):
"""
......@@ -155,6 +168,4 @@ class WinogradSchemaChallenge273(Task):
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {
"acc": True
}
return {"acc": True}
......@@ -34,6 +34,7 @@ def simple_parse_args_string(args_string):
args_dict[k] = v
return args_dict
def join_iters(iters):
for iter in iters:
yield from iter
......@@ -46,23 +47,26 @@ def chunks(iter, n):
if len(arr) == n:
yield arr
arr = []
if arr: yield arr
if arr:
yield arr
def group(arr, fn):
res = collections.defaultdict(list)
for ob in arr:
res[fn(ob)].append(ob)
return list(res.values())
def general_detokenize(string):
string = string.replace(" n't", "n't")
string = string.replace(" )", ")")
string = string.replace("( ", "(")
string = string.replace("\" ", "\"")
string = string.replace(" \"", "\"")
string = string.replace('" ', '"')
string = string.replace(' "', '"')
string = re.sub(r" (['.,])", r"\1", string)
return string
......@@ -94,10 +98,7 @@ def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len
# Special handling for first window: predict all tokens
first_seq_len = min(max_seq_len, len(token_list))
yield (
[prefix_token] + token_list[:first_seq_len - 1],
token_list[:first_seq_len]
)
yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
predicted += first_seq_len
while predicted < len(token_list):
......@@ -105,61 +106,66 @@ def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len
window_end = predicted + window_pred_len
yield (
token_list[window_end - max_seq_len - 1:window_end - 1],
token_list[window_end - window_pred_len:window_end],
token_list[window_end - max_seq_len - 1 : window_end - 1],
token_list[window_end - window_pred_len : window_end],
)
predicted += window_pred_len
def make_disjoint_window(pair):
""" Takes output from get_rolling_token_windows and makes the context not overlap with the continuation """
"""Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
a, b = pair
return a[:-(len(b) - 1)], b
return a[: -(len(b) - 1)], b
class Reorderer:
def __init__(self, arr, fn):
self.size = len(arr)
arr = list(enumerate(arr))
arr = group(arr, lambda x: fn(x[1]))
arr = [
([y[0] for y in x], x[0][1]) for x in arr
]
arr = [([y[0] for y in x], x[0][1]) for x in arr]
arr.sort(key=lambda x: fn(x[1]))
self.arr = arr
def get_reordered(self):
return [x[1] for x in self.arr]
def get_original(self, newarr):
res = [None] * self.size
cov = [False] * self.size
for (inds, _), v in zip(self.arr, newarr):
for ind in inds:
for ind in inds:
res[ind] = v
cov[ind] = True
assert all(cov)
return res
def positional_deprecated(fn):
"""
A decorator to nudge users into passing only keyword args (`kwargs`) to the
A decorator to nudge users into passing only keyword args (`kwargs`) to the
wrapped function, `fn`.
"""
@functools.wraps(fn)
def _wrapper(*args, **kwargs):
if len(args) != 1 if inspect.ismethod(fn) else 0:
print(f"WARNING: using {fn.__name__} with positional arguments is "
if len(args) != 1 if inspect.ismethod(fn) else 0:
print(
f"WARNING: using {fn.__name__} with positional arguments is "
"deprecated and will be disallowed in a future version of "
"lm-evaluation-harness!")
"lm-evaluation-harness!"
)
return fn(*args, **kwargs)
return _wrapper
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
"""
......@@ -169,12 +175,14 @@ def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
cur_path = start_path.resolve()
max_layers = 3
for _ in range(max_layers):
if (cur_path / 'tests' / 'test_version_stable.py').exists():
if (cur_path / "tests" / "test_version_stable.py").exists():
return cur_path
else:
cur_path = cur_path.parent.resolve()
raise FileNotFoundError(f"Unable to find package root within {max_layers} upwards" +\
f"of {start_path}")
raise FileNotFoundError(
f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
)
@positional_deprecated
def run_task_tests(task_list: List[str]):
......@@ -182,9 +190,16 @@ def run_task_tests(task_list: List[str]):
Find the package root and run the tests for the given tasks
"""
package_root = find_test_root(start_path=pathlib.Path(__file__))
task_string = ' or '.join(task_list)
args = [f'{package_root}/tests/test_version_stable.py', f'--rootdir={package_root}', '-k', f'{task_string}']
task_string = " or ".join(task_list)
args = [
f"{package_root}/tests/test_version_stable.py",
f"--rootdir={package_root}",
"-k",
f"{task_string}",
]
sys.path.append(str(package_root))
pytest_return_val = pytest.main(args)
if pytest_return_val:
raise ValueError(f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}")
\ No newline at end of file
raise ValueError(
f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
)
import argparse
import json
import logging
import fnmatch
from lm_eval import tasks, evaluator
logging.getLogger("openai").setLevel(logging.WARNING)
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
return False
return True
def __iter__(self):
for choice in self.choices:
yield choice
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model', required=True)
parser.add_argument('--model_args', default="")
parser.add_argument('--tasks', default="all_tasks")
parser.add_argument('--provide_description', action="store_true")
parser.add_argument('--num_fewshot', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=None)
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--output_path', default=None)
parser.add_argument('--limit', type=int, default=None)
parser.add_argument('--no_cache', action="store_true")
parser.add_argument('--description_dict_path', default=None)
parser.add_argument('--check_integrity', action="store_true")
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--tasks", default=None, choices=MultiChoice(tasks.ALL_TASKS))
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None)
parser.add_argument("--limit", type=int, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
return parser.parse_args()
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
task_names = set()
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return list(task_names)
def main():
args = parse_args()
assert not args.provide_description # not implemented
if args.limit:
print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
if args.tasks == "all_tasks":
if args.tasks is None:
task_names = tasks.ALL_TASKS
else:
task_names = args.tasks.split(",")
task_names = pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, 'r') as f:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
results = evaluator.simple_evaluate(
......@@ -51,11 +86,11 @@ def main():
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
check_integrity=args.check_integrity
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
)
dumped = json.dumps(results, indent=2)
print(dumped)
if args.output_path:
......
{
"Data": "Pile statistics",
"Document Count": 210607728,
"Total Pile Characters": 421215456,
"File Start Offsets": [
0,
7021438,
14042822,
21066113,
28086515,
35106072,
42123306,
49145091,
56165817,
63185587,
70211208,
77234322,
84249267,
91267634,
98285983,
105305110,
112322489,
119342491,
126367373,
133389153,
140412039,
147432373,
154452516,
161470190,
168492733,
175512521,
182526939,
189547478,
196565318,
203583306
]
}
janitor.py contains a script to remove benchmark data contamination from training data sets.
janitor.py contains a script to remove benchmark data contamination from training data sets.
It uses the approach described in the [GPT-3 paper](https://arxiv.org/abs/2005.14165).
## Algorithm
1) Collects all contamination text files that are to be removed from training data
2) Filters training data by finding `N`gram matches between the training data
2) Filters training data by finding `N`gram matches between the training data
and any contamination
1) `N`grams ignore case and punctation and are split on whitespace.
2) Matching `N`gram substrings are removed, as is a `window_to_remove` character window around
1) `N`grams ignore case and punctuation and are split on whitespace.
2) Matching `N`gram substrings are removed, as is a `window_to_remove` character window around
the match, splitting the training data into chunks
3) Any chunks less than `minimum_slice_length` are removed
4) Training data sets split into more than `too_dirty_cutoff` are considered
completey contaminated and removed
OpenAI used:
```
ngram_n = 13
......@@ -20,7 +20,7 @@ minimum_slice_length = 200
too_dirty_cutoff = 10
```
## Compling
## Compiling
Janitor can be used as a pure python program, but it is much faster if the ngram
code is run in C++. To compile the C++ code, run
......@@ -31,4 +31,3 @@ c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) janitor
```
If your your compiler isn't linked to python, you may need to add to the above `-undefined dynamic_lookup`
import glob
import argparse
import os
import subprocess
import shutil
from tqdm import tqdm
from tqdm_multiprocess import TqdmMultiProcessPool
import logging
from tqdm_multiprocess.logger import setup_logger_tqdm
logger = logging.getLogger(__name__)
def process_task(
working_directory, output_directory, bucket_file_path, tqdm_func, global_tqdm
):
command = f"zstd {bucket_file_path}"
logger.info(command)
subprocess.call(command, shell=True)
compressed_file = bucket_file_path + ".zst"
if output_directory:
shutil.move(compressed_file, output_directory)
os.remove(bucket_file_path)
global_tqdm.update()
def compress_and_move(working_directory, output_directory, process_count):
os.makedirs(output_directory, exist_ok=True)
original_info_file_path = os.path.join(working_directory, "info.json")
assert os.path.exists(original_info_file_path)
tasks = []
bucket_file_paths = glob.glob(
os.path.join(working_directory, "output", f"*.bkt.txt.sorted")
)
for bucket_file_path in bucket_file_paths:
task = (process_task, (working_directory, output_directory, bucket_file_path))
tasks.append(task)
pool = TqdmMultiProcessPool(process_count)
def on_done(_):
return None
def on_error(_):
return None
global_progress = tqdm(
total=len(bucket_file_paths), dynamic_ncols=True, unit="file"
)
_ = pool.map(global_progress, tasks, on_error, on_done)
shutil.copy(original_info_file_path, os.path.join(output_directory, "info.json"))
parser = argparse.ArgumentParser(description="sort 13gram buckets")
parser.add_argument("-dir", "--working_directory", required=True)
parser.add_argument("-output", "--output_directory", required=True)
parser.add_argument("-procs", "--process_count", type=int, default=8)
if __name__ == "__main__":
version = 1.00
print(f"Running version {version}")
logfile_path = "compress_and_package.log"
setup_logger_tqdm(logfile_path)
args = parser.parse_args()
compress_and_move(args.working_directory, args.output_directory, args.process_count)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment