"vscode:/vscode.git/clone" did not exist on "931746bc6d7c1c0ab40b2c4f58b51b855f0b2c94"
Commit 0971cffe authored by jeffhsu3's avatar jeffhsu3
Browse files

separated sciq and pubmedqa to different files

parent 620c0d26
......@@ -18,6 +18,7 @@ from . import race
from . import piqa
from . import triviaqa
from . import pubmedqa
from . import sciq
from . import webqs
......@@ -48,7 +49,7 @@ TASK_REGISTRY = {
"piqa": piqa.PiQA,
"pubmedqa" : pubmedqa.Pubmed_QA,
"sciq" : pubmedqa.SciQ,
"sciq" : sciq.SciQ,
#"triviaqa": triviaqa.TriviaQA,
"arc_easy": arc.ARCEasy,
......
"""
"""
import os
import numpy as np
import json
from ..utils import sh
from .common import HFTask, yesno
from lm_eval.base import MultipleChoiceTask, rf, mean
import zipfile
import random
from .common import HFTask
from lm_eval.base import rf, mean
class Pubmed_QA(HFTask):
......@@ -23,6 +18,11 @@ class Pubmed_QA(HFTask):
def has_test_docs(self):
return True
def test_docs(self):
if self.has_test_docs():
# HF is labelled as train but its really just for testing
return self.data["train"]
def fewshot_description(self):
# Average ctx length in labelled dataset is 238.9
# 2 few-shot exmamples pushes it beyond context window
......@@ -39,6 +39,12 @@ class Pubmed_QA(HFTask):
def doc_to_target(self, doc):
return " {}".format(doc["final_decision"])
def fewshot_examples(self, k):
# Since only test docs sample from test docs
if self._training_docs is None:
self._training_docs = list(self.test_docs())
return random.sample(self._training_docs, k)
def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns
an iterable of Requests which will be sent to the LM.
......@@ -65,71 +71,3 @@ class Pubmed_QA(HFTask):
return {
"acc" : True
}
def test_docs(self):
if self.has_test_docs():
# HF is labelled as train but its really just for testing
return self.data["train"]
class SciQ(MultipleChoiceTask):
def download(self):
if not os.path.exists('data/sciq'):
os.mkdir('data/sciq')
sh((
"wget https://ai2-public-datasets.s3.amazonaws.com/sciq/SciQ.zip -O data/sciq/SciQ.zip"
))
with zipfile.ZipFile("data/sciq/SciQ.zip", "r") as zf:
zf.extractall("data/sciq/")
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def _convert_standard(self, doc):
choices = [
doc["distractor1"],
doc["distractor2"],
doc["distractor3"],
doc["correct_answer"],
]
src = doc['support']
out_doc = {
"source" : src,
"query" : doc['question'],
"choices" : choices,
"gold" : 3,
}
return out_doc
def load_docs(self, textfilename):
with open(textfilename, 'r') as j:
docs = json.loads(j.read())
for record in docs:
yield self._convert_standard(record)
def fewshot_description(self):
# Average ctx length in labelled dataset is 238.9
# 2 few-shot exmamples pushes it beyond context window
return ""
def training_docs(self):
return self.load_docs("data/sciq/SciQ dataset-2 3/train.json")
def validation_docs(self):
return self.load_docs("data/sciq/SciQ dataset-2 3/valid.json")
def test_docs(self):
return self.load_docs("data/sciq/SciQ dataset-2 3/test.json")
def doc_to_text(self, doc):
return " {}\n{}".format(doc["source"], doc["query"])
class EmrQA():
def load_docs(self, textfilename):
pass
import os
import json
from ..utils import sh
from lm_eval.base import MultipleChoiceTask, rf, mean
import zipfile
class SciQ(MultipleChoiceTask):
# Multiple languages and multiple years
def download(self):
if not os.path.exists('data/sciq'):
os.mkdir('data/sciq')
sh((
"wget https://ai2-public-datasets.s3.amazonaws.com/sciq/SciQ.zip -O data/sciq/SciQ.zip"
))
with zipfile.ZipFile("data/sciq/SciQ.zip", "r") as zf:
zf.extractall("data/sciq/")
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def _convert_standard(self, doc):
choices = [
doc["distractor1"],
doc["distractor2"],
doc["distractor3"],
doc["correct_answer"],
]
src = doc['support']
out_doc = {
"source" : src,
"query" : doc['question'],
"choices" : choices,
"gold" : 3,
}
return out_doc
def load_docs(self, textfilename):
with open(textfilename, 'r') as j:
docs = json.loads(j.read())
for record in docs:
yield self._convert_standard(record)
def fewshot_description(self):
# Average ctx length in labelled dataset is 238.9
# 2 few-shot exmamples pushes it beyond context window
return ""
def training_docs(self):
return self.load_docs("data/sciq/SciQ dataset-2 3/train.json")
def validation_docs(self):
return self.load_docs("data/sciq/SciQ dataset-2 3/valid.json")
def test_docs(self):
return self.load_docs("data/sciq/SciQ dataset-2 3/test.json")
def doc_to_text(self, doc):
return " {}\n{}".format(doc["source"], doc["query"])
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment