huggingface.py 38.1 KB
Newer Older
1
2
import torch
import transformers
3
4
5
6
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
7
from peft import __version__ as PEFT_VERSION, PeftModel
8
9

import copy
10
from collections import defaultdict
11
from tqdm import tqdm
12
from pathlib import Path
13
14
15
16
17
18
19
20
21
22

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

23
from accelerate import Accelerator, find_executable_batch_size, DistributedType
24
from typing import List, Optional, Union
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
50
51


52
@register_model("hf-auto", "hf", "huggingface")
53
class HFLM(LM):
54
55
56
57
58
59
60
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

61
    AUTO_MODEL_CLASS = None
62
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
63

64
65
    def __init__(
        self,
66
67
68
69
70
71
        pretrained: Optional[str] = "gpt2",
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
        tokenizer: Optional[str] = None,
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
72
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
73
74
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
75
76
        low_cpu_mem_usage: Optional[bool] = True,
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
77
        use_fast_tokenizer: Optional[bool] = True,
78
        # arguments used for splitting a model across GPUs naively.
79
80
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
81
82
83
84
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
85
86
87
88
89
90
91
92
        # PEFT and quantization options
        peft: Optional[str] = None,
        load_in_8bit: Optional[bool] = False,
        load_in_4bit: Optional[bool] = False,
        bnb_4bit_quant_type: Optional[str] = None,
        bnb_4bit_compute_dtype: Optional[Union[str, torch.dtype]] = None,
        gptq: Optional[Union[bool, str]] = False,
        gptq_use_triton: Optional[bool] = False,
93
94
95
96
97
    ):
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
Benjamin Fattori's avatar
Benjamin Fattori committed
98
        assert isinstance(batch_size, (int, str))
99
100

        gpus = torch.cuda.device_count()
101
        accelerator = Accelerator()
haileyschoelkopf's avatar
haileyschoelkopf committed
102

103
        if not (parallelize or accelerator.num_processes > 1):
104
            # use user-passed device
105
            device_list = set(
baberabb's avatar
add mps  
baberabb committed
106
                ["cuda", "cpu", "mps"]
107
108
                + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
            )
109
            if device:
110
                if device not in device_list:
111
112
113
                    device = int(device)
                self._device = torch.device(device)
                eval_logger.info(f"Using device '{device}'")
114
115
                if device == "mps":
                    eval_logger.info(
baberabb's avatar
baberabb committed
116
                        "MPS is still in beta and only supports float32; setting dtype to float32."
117
                    )
118
119
120
121
122
123
124
125
            else:
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
126
        else:
127
128
129
130
            if device != "cuda":
                eval_logger.info(
                    f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                )
131
            # TODO: include in warning that `load_in_8bit` etc. affect this too
132
133
134
            self._device = device

        model_kwargs = {}
135
        if parallelize:
136
137
138
139
140
141
            model_kwargs = _get_accelerate_args(
                device_map_option,
                max_memory_per_gpu,
                max_cpu_memory,
                offload_folder,
            )
142
143
144
145
146
147
148

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
149
            trust_remote_code=trust_remote_code,
150
151
152
153
        )

        if getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
154
155
156
157
158
159
160
161
162
163
164
165
        elif (
            not getattr(self._config, "model_type")
            in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
        ):
            if not trust_remote_code:
                eval_logger.warning(
                    "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                )
            # if model type is neither in HF transformers causal or seq2seq model registries
            # then we default to AutoModelForCausalLM
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
166
        else:
haileyschoelkopf's avatar
haileyschoelkopf committed
167
            self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
168

haileyschoelkopf's avatar
haileyschoelkopf committed
169
170
171
172
        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        if not gptq:
            if load_in_4bit:
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                model_kwargs["load_in_4bit"] = load_in_4bit
                if load_in_4bit:
                    if bnb_4bit_quant_type:
                        model_kwargs["bnb_4bit_quant_type"] = bnb_4bit_quant_type
                    if bnb_4bit_compute_dtype:
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            bnb_4bit_compute_dtype
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                load_in_8bit=load_in_8bit,
                **model_kwargs,
            )
        else:
gk's avatar
gk committed
198
199
200
201
202
203
204
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                model_basename=None if gptq is True else Path(gptq).stem,
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                use_safetensors=True if gptq is True else gptq.endswith(".safetensors"),
                use_triton=gptq_use_triton,
                warmup_triton=gptq_use_triton,
                **model_kwargs,
            )

        if peft:
            if load_in_4bit:
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

224
        # forever after, access self._model through self.model property
225
        self.model.eval()
226
227
228
        self.model.tie_weights()
        if gpus <= 1 and not parallelize:
            # place model onto device, if not using HF Accelerate in any form
229
230
231
232
233
234
            try:
                self.model.to(self.device)
            except ValueError:
                eval_logger.info(
                    "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
235

236
237
238
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
239
            trust_remote_code=trust_remote_code,
haileyschoelkopf's avatar
haileyschoelkopf committed
240
            use_fast=use_fast_tokenizer,
241
242
243
        )

        self.vocab_size = self.tokenizer.vocab_size
haileyschoelkopf's avatar
haileyschoelkopf committed
244
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
245

246
247
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
248
249
250
251
252
253
254
255
256
257
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
258
259
260
261
262
263
264
265
266
267
268

        # multigpu data-parallel support when launched with accelerate
        if gpus > 1:
            if parallelize:
                if accelerator.num_processes > 1:
                    raise RuntimeError(
                        "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                    )
                else:
                    pass
            elif gpus > accelerator.num_processes:
269
                # TODO: make sure there's still never an edge case where we unintentionally default to CPU
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                eval_logger.warning(
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
285
286
287
288
289
290
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.info(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                    )
291
            else:
292
293
294
295
296
297
298
299
300
                assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU], "Unsupported distributed type provided. Only DDP and FSDP are supported."
                if accelerator.distributed_type == DistributedType.FSDP:
                    self._model = accelerator.prepare(
                        self.model
                    )
                else:
                    self._model = accelerator.prepare_model(
                        self.model, evaluation_mode = True 
                    )
301
302
303
304
305
306
307
308
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    eval_logger.info(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
haileyschoelkopf's avatar
haileyschoelkopf committed
309

310
311
312
313
314
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

315
316
317
318
319
320
321
322
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

323
324
325
326
327
328
329
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
330
331
332
333
334
335
336
337
338
339
340
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

Benjamin Fattori's avatar
Benjamin Fattori committed
362
363
364
365
366
367
    def _detect_batch_size(self, requests=None, pos=0):
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
368
369
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
370
371
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
372

Benjamin Fattori's avatar
Benjamin Fattori committed
373
374
375
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
376
377
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
378
379
380
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
381
382
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
383
384
385
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
386
387
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
388
389
390
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
391
            for _ in range(5):
392
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
lintangsutawika's avatar
lintangsutawika committed
393
394
                out = out  # Identity process so that it passes pre-commit

Benjamin Fattori's avatar
Benjamin Fattori committed
395
396
397
398
            return batch_size

        batch_size = forward_batch()

399
400
401
402
403
404
405
406
407
408
409
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
410
411
        return batch_size

412
    def tok_encode(self, string: str, left_truncate_len=None):
haileyschoelkopf's avatar
haileyschoelkopf committed
413
        """ """
414
415
416
417
418
419
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
420

421
422
423
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
424

425
426
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def tok_batch_encode(
        self, strings: List[str], padding_side="left", left_truncate_len=None
    ):
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

454
455
456
457
458
459
460
461
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
462
        :param inps: torch.Tensor
463
464
465
466
467
468
469
470
471
472
473
474
475
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
476
477
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
478
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
479
480
481
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
482
483
484
485
486
487
488
489
490
491
492
493
494
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
495
496
497
498
499
500
501
502
        return self.model.generate(
            context,
            max_length=max_length,
            stopping_criteria=stopping_criteria,
            pad_token_id=self.eot_token_id,
            use_cache=True,
            **generation_kwargs,
        )
503
504
505

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
506
507
508
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
509
510
511
512
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
513
514
515
516
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
517
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
518
519
            logits = logits[:contlen]

520
521
        return logits

522
523
524
525
526
527
528
529
530
531
532
    def _encode_pair(self, context, continuation):
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

533
534
535
536
537
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
538
539
540
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
541
            else:
542
                context_enc, continuation_enc = self._encode_pair(context, continuation)
543
544
545
546
547
548
549

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
550
551
552
553
554
555
556
557
558

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

559
560
561
562
563
564
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
565
                        prefix_token=self.eot_token_id,
566
567
568
569
570
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
571
572

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
588
589
590
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
591
592
593
594
595
596
597
598
599
600
601
602
603
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

Benjamin Fattori's avatar
Benjamin Fattori committed
604
    def _loglikelihood_tokens(self, requests, disable_tqdm=False, override_bs=None):
605
606
607
608
609
610
611
612
613
614
615
616
617
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)
lintangsutawika's avatar
lintangsutawika committed
618

619
        re_ord = utils.Reorderer(requests, _collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
620
621
622
623

        n_reordered_requests = len(re_ord.get_reordered())
        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
lintangsutawika's avatar
lintangsutawika committed
624

Benjamin Fattori's avatar
Benjamin Fattori committed
625
626
627
628
        def _batch_scheduler(pos):
            sched = pos // int(n_reordered_requests / self.batch_schedule)
            if sched in self.batch_sizes:
                return self.batch_sizes[sched]
lintangsutawika's avatar
lintangsutawika committed
629
630
631
            if (len(self.batch_sizes) > 1) and (
                self.batch_sizes[sched - 1] == self.max_batch_size
            ):
632
633
634
                # if previous batch size is already maximal, skip recomputation
                self.batch_sizes[sched] = self.max_batch_size
                return self.batch_sizes[sched]
Benjamin Fattori's avatar
Benjamin Fattori committed
635
636
637
            print(
                f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
            )
lintangsutawika's avatar
lintangsutawika committed
638
639
640
            self.batch_sizes[sched] = self._detect_batch_size(
                re_ord.get_reordered(), pos
            )
Benjamin Fattori's avatar
Benjamin Fattori committed
641
            print(f"Determined largest batch size: {self.batch_sizes[sched]}")
lintangsutawika's avatar
lintangsutawika committed
642
            return self.batch_sizes[sched]
Benjamin Fattori's avatar
Benjamin Fattori committed
643

644
645
        for chunk in utils.chunks(
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
Benjamin Fattori's avatar
Benjamin Fattori committed
646
647
648
649
650
651
            n=self.batch_size
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
            else 0,
            fn=_batch_scheduler
lintangsutawika's avatar
lintangsutawika committed
652
653
654
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Benjamin Fattori's avatar
Benjamin Fattori committed
655
            else None,
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        ):
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
676
                # how this all works (illustrated on a causal decoder-only setup):
677
678
679
680
681
682
683
684
685
686
687
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
688
689
                        device=self.device,
                    )
690
691
692
693
694
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
695
                        device=self.device,
696
                    )
697
                    (inplen,) = inp.shape
698
699
700
701

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

702
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
703
                        (continuation_enc)[-self.max_length :],
704
705
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
706
                        dtype=torch.long,
707
708
                        device=self.device,
                    )
709
710
                    (contlen,) = cont.shape

711
712
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
713
714
715
716
717
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
718

haileyschoelkopf's avatar
haileyschoelkopf committed
719
720
721
722
723
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
724
725
726
727

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
728

729
730
731
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
732
733
734
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
735
736
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
737
738
739
740
741
742
743
744
745
746
747
748
749
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
750
751
752

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
753
            )  # [batch, padding_length (inp or cont), vocab]
754
755
756
757
758
759

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
760
                # take only logits in the continuation
761
                # (discard context toks if decoder-only ; discard right-padding)
762
763
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
764
                ctx_len = (
765
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
766
767
768
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
769
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
770
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
771
772
773

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
774
775
776
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
                ).unsqueeze(
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
792
793
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)

794
795
796
        return re_ord.get_original(res)

    def greedy_until(self, requests):
797
798
        res = defaultdict(list)
        re_ords = {}
799
800

        def _collate(x):
801
802
803
804
805
806
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
807
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
808
            return -len(toks), x[0]
809

810
811
812
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
813
814
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
815
            # within each set of reqs for given kwargs, we reorder by token length, descending.
816
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
817

818
819
820
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))

        # for each different set of kwargs, we execute all requests, by batch.
821
822
        for key, re_ord in re_ords.items():
            for chunk in utils.chunks(
haileyschoelkopf's avatar
haileyschoelkopf committed
823
                re_ord.get_reordered(),
824
825
826
                self.batch_size,
            ):
                contexts, all_gen_kwargs = zip(*chunk)
827
828
829
830
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
831
832
833
834
835
836
837
838
839
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
840
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
841
842
843
                            )
                else:
                    raise ValueError(
844
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
845
846
847
848
849
850
851
852
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
                # first stop sequence is used to halt generation upon encountering
853
                primary_until = [until[0]]
854

855
                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
856
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
857
858
859
860
861
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
862

863
                # encode, pad, and truncate contexts for this batch
864
865
866
867
868
869
                context_enc, attn_masks = self.tok_batch_encode(
                    contexts, left_truncate_len=max_ctx_len
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

870
                if "max_length" not in kwargs:
Lintang Sutawika's avatar
Lintang Sutawika committed
871
                    kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
872

873
                # perform batched generation
874
875
876
877
878
879
                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
                    stop=primary_until,
                    **kwargs,
                )
880

881
882
883
884
885
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
886

887
                    s = self.tok_decode(cont_toks)
888

889
890
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
891
892
893
                        if len(term) > 0:
                            # ignore '' separator,
                            # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
894
                            s = s.split(term)[0]
895

896
                    res[key].append(s)
897

898
899
900
901
                    self.cache_hook.add_partial(
                        "greedy_until", (context, gen_kwargs), s
                    )
                    pbar.update(1)
902
            # reorder this group of results back to original unsorted form
903
            res[key] = re_ord.get_original(res[key])
904

905
        pbar.close()
906

907
        return grouper.get_original(res)