sglang_causallms.py 20.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import copy
import logging
from importlib.util import find_spec
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union

from tqdm import tqdm

from lm_eval.api.instance import Instance
from lm_eval.api.model import TemplateLM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import (
    Collator,
    handle_stop_sequences,
14
    postprocess_generated_text,
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
)
from lm_eval.utils import (
    get_rolling_token_windows,
    make_disjoint_window,
)


eval_logger = logging.getLogger(__name__)

try:
    import sglang as sgl
except ModuleNotFoundError:
    pass

if TYPE_CHECKING:
    pass


@register_model("sglang")
class SGLangLM(TemplateLM):
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained: str,
        # batch args from lm-eval interface:  https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md
        batch_size: Union[str, int] = 1,
        max_batch_size=None,
        max_model_len: int = None,
        max_gen_toks: int = 256,
        add_bos_token: Optional[bool] = False,
        ########## SGlang native args ##########
        # Todo(Jinwei): Include more args of SGLang Engine if needed. Refer to https://docs.sglang.ai/backend/server_arguments.html .
        tokenizer_path: Optional[str] = None,
        tokenizer_mode: str = "auto",
        load_format: str = "auto",
        trust_remote_code: bool = True,
        dtype: str = "auto",
        kv_cache_dtype: str = "auto",
        context_length: Optional[int] = None,
        device: str = "cuda",
        chunked_prefill_size: int = -1,
        # Memory and scheduling
        mem_fraction_static: Optional[float] = None,
        # parallelism
        dp_size: int = 1,
        tp_size: int = 1,
        prefix_token_id: Optional[int] = None,
63
64
        # End marker for thinking tags - splits to get response after this token (if provided).
        think_end_token: Optional[str] = None,
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        **kwargs,
    ):
        super().__init__()

        if not find_spec("sglang"):
            raise ModuleNotFoundError(
                "attempted to use 'sglang' LM type, but package `sglang` is not installed. "
                "Please install sglang via official document here:https://docs.sglang.ai/start/install.html#install-sglang"
            )

        assert "cuda" in device or device is None, "SGLang only supports CUDA"
        assert context_length is None or max_model_len is None, (
            "Either context_length or max_model_len may be provided, but not both"
        )
        # Initialize your sglang model here
80
        self.think_end_token = think_end_token
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        self._max_length = (
            max_model_len if max_model_len is not None else context_length
        )
        self.tensor_parallel_size = int(tp_size)
        self.data_parallel_size = int(dp_size)
        self.model_args = {
            "model_path": pretrained,
            "tokenizer_path": tokenizer_path,
            "tokenizer_mode": tokenizer_mode,
            "load_format": load_format,
            "trust_remote_code": trust_remote_code,
            "dtype": dtype,
            "kv_cache_dtype": kv_cache_dtype,
            "device": device,
            "mem_fraction_static": mem_fraction_static,
            "tp_size": self.tensor_parallel_size,
            "dp_size": self.data_parallel_size,
            "chunked_prefill_size": chunked_prefill_size,
        }

        self.model_args.update(kwargs)
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
            else int(batch_size)
        )
        if self.data_parallel_size > 1:
            eval_logger.warning(
                "Data parallelism will be deprecated in the future version of SGLang. See here: https://docs.sglang.ai/backend/server_arguments.html#data-parallelism ."
            )
        self.model = sgl.Engine(**self.model_args)

        # Todo(Jinwei): check tokenizer and other settings.
        self.tokenizer = self.model.tokenizer_manager.tokenizer
        self._max_gen_toks = max_gen_toks
        self.add_bos_token = add_bos_token
        if "gemma" in pretrained.lower():
            self.add_bos_token = True
            eval_logger.info(
                "Found 'gemma' in model name, a BOS token will be used as Gemma series models underperform without it."
            )
        self.custom_prefix_token_id = prefix_token_id

    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
        adaptive_batch_size = None
        if self.batch_size == "auto":
            adaptive_batch_size = len(requests)

        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
        ):
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
                map(
                    make_disjoint_window,
                    get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.prefix_token_id,
                        # max_seq_len - (1 for context)
                        max_seq_len=self.max_length - 1,
                        context_len=1,
                    ),
                )
            )

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            windows = [(None,) + x for x in rolling_token_windows]

            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))

        all_nlls = []
        batch_size = adaptive_batch_size or int(self.batch_size)
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
            )
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))

        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )

        return loglikelihoods

    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
        res = []

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
        context_encoding: List[List[int]] = self.tok_encode(
            context, add_special_tokens=self.add_bos_token
        )
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
            return -len(_requests[0][1]), _requests[0][0]

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
219
        re_ords = Collator(requests, _collate_gen, group_by=None)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )

        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running generate_until requests",
        )
        # for each different set of kwargs, we execute all requests, by batch.
        eos = self.tokenizer.decode(self.eot_token_id)
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
            context_encoding_truncated = []
            sampling_params = []
            for x, gen_kwargs in zip(context_encoding, all_gen_kwargs):
                # unpack our keyword arguments.
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    # add EOS token to stop sequences
                    until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
                else:
                    raise ValueError(
                        f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
                    )
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks

                # set the max length in tokens of inputs ("context_enc")
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
                if len(x) > max_ctx_len:
                    context_encoding_truncated.append(x[-max_ctx_len:])
                else:
                    context_encoding_truncated.append(x)
                # create sampling params
                kwargs = self.modify_gen_kwargs(kwargs)
                sampling_params.append(
                    kwargs | {"max_tokens": max_gen_toks, "stop": until}
263
264
265
266
                )
            # perform batched generation
            # cont is a list of dic. See here https://github.com/sgl-project/sglang/blob/0a6f18f068e4095fc228e798454e8496c9749214/python/sglang/srt/entrypoints/engine.py#L111 .
            cont = self._model_generate(
267
                requests=context_encoding_truncated,
268
                generate=True,
269
                sampling_params=sampling_params,
270
271
272
273
274
            )

            # cache generations
            for output, context in zip(cont, context):
                generated_text = output.get("text", "")
275
276
277
                generated_text = postprocess_generated_text(
                    generated_text, until, self.think_end_token
                )
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)

        pbar.close()
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)

    def _model_generate(
        self,
        requests: List[List[int]] = None,
        generate: bool = False,
292
        sampling_params: Union[List[Dict], Dict, None] = None,
293
294
295
296
297
        return_logprob: bool = False,
        top_logprobs_num: int = 1,
        logprob_start_len: int = -1,
    ):
        # check sglang sampling parameters: https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/sampling/sampling_params.py#L21  and https://docs.sglang.ai/references/sampling_params.html.
298
299
300
301
302
303
304
305
306
307
        if not generate:
            sampling_params = sampling_params if sampling_params else {}
            sampling_params.update(
                {
                    "temperature": 0,
                    "max_new_tokens": 1,
                }
            )
        if not isinstance(sampling_params, List):
            sampling_params = [sampling_params] * len(requests)
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        # Refer to:  https://docs.sglang.ai/backend/offline_engine_api.html
        outputs = self.model.generate(
            input_ids=requests,
            sampling_params=sampling_params,
            return_logprob=return_logprob,
            top_logprobs_num=top_logprobs_num,
            logprob_start_len=logprob_start_len,
        )
        return outputs

    @property
    def eot_token_id(self):
        # Return the EOT (End of Text) token ID
        return self.tokenizer.eos_token_id

    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        if hasattr(self.model, "tokenizer_manager") and hasattr(
            self.model.tokenizer_manager, "context_len"
        ):
            return self.model.tokenizer_manager.context_len
        return self._DEFAULT_MAX_LENGTH

    @property
    def max_gen_toks(self):
        # Return the maximum number of tokens for generation
        return self._max_gen_toks

    def tok_encode(
        self,
        string: Union[str, List[str]],
        left_truncate_len: int = None,
        add_special_tokens: bool = False,
        truncation: bool = False,
    ) -> Union[List[int], List[List[int]]]:
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
        encoding: Union[List[List[int]], List[int]] = self.tokenizer(
            string,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            return_attention_mask=False,
        ).input_ids

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            if not isinstance(string, str):
                encoding = [enc[-left_truncate_len:] for enc in encoding]
            else:
                encoding = encoding[-left_truncate_len:]

        return encoding

    def tok_decode(self, tokens: List[int]) -> str:
        # Implement token-to-text decoding
        pass

    @property
    def tokenizer_name(self) -> str:
        """
        Return the name of the model's tokenizer and/or the accompanying chat template.
        The returned string is used to cache requests.

        Returns:
            str: The name of the model's tokenizer and/or chat template.
        """
        pass

    def chat_template(self, chat_template: Union[bool, str] = False) -> str:
        """
        Get the appropriate chat template for the model based on the `chat_template` argument.

        This method returns the chat template string to build the prompt from a chat history.
        The chat template is saved in the evaluation results for reproducibility.
        Boolean arguments should be used with models that have only one chat template,
        while string arguments are used with models that have multiple chat templates.
        For the reference implementation, see HFLM class in `lm_eval.models.huggingface`.

        Args:
            chat_template (Union[bool, str]): Specifies whether to apply a chat template:
                - If False: Do not apply any chat template.
                - If True: Apply the default chat template.
                - If str: Apply the specified chat template by name.

        Returns:
            str: The selected chat template in Jinja format.
        """
        pass

    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
        chat_templated = self.tokenizer.apply_chat_template(
            chat_history,
            tokenize=False,
            add_generation_prompt=add_generation_prompt,
            continue_final_message=not add_generation_prompt,
        )

        return chat_templated

    def _loglikelihood_tokens(
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
        for chunk in chunks:
            inputs = []
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

                inputs.append(inp)
                ctxlens.append(ctxlen)

            outputs = self._model_generate(
                requests=inputs,
                generate=False,
                return_logprob=True,
                top_logprobs_num=2,
                logprob_start_len=0,
            )
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
            ):
                answer = self._parse_logprobs(
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
                )
                res.append(answer)

                if cache_key is not None:
                    # special case: loglikelihood_rolling produces a number of loglikelihood requests
                    # all with cache key None. instead do add_partial on the per-example level
                    # in the loglikelihood_rolling() function for those.
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
                pbar.update(1)
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
        """Process logprobs and tokens.

        :param tokens: list
            Input tokens (potentially left-truncated)
        :param outputs:
            Contains input_token_logprobs and input_top_logprobs
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
        # [(logprob, token_id, token_text)]
        continuation_logprobs_lists = outputs["meta_info"]["input_token_logprobs"]
        continuation_logprobs = sum(
            logprob for logprob, _, _ in continuation_logprobs_lists[ctxlen:]
        )

        top_logprobs_lists = outputs["meta_info"]["input_top_logprobs"]

        # Determine if is_greedy
        is_greedy = True
        for token, top_logprobs in zip(tokens[ctxlen:], top_logprobs_lists[ctxlen:]):
            if top_logprobs:
                top_token = max(top_logprobs, key=lambda x: x[0])[1]
                if top_token != token:
                    is_greedy = False
                    break
        return continuation_logprobs, is_greedy

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
521
        kwargs["temperature"] = kwargs.get("temperature", 0.0)
522
523
524
525
526
527
528
529
530
531
532
533
        do_sample = kwargs.pop("do_sample", None)
        if do_sample is False and "temperature" not in kwargs:
            eval_logger.debug(
                "Got `do_sample=False` and no temperature value, setting VLLM temperature to 0.0 ..."
            )
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs