translation.py 7.15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
"""
NOTE: This file implements translation tasks using datasets from WMT conferences,
provided by sacrebleu. Traditionally they are evaluated with BLEU scores. TER
and CHRF are other options.

We defer citations and descriptions of the many translations tasks used
here to the SacreBLEU repo from which we've obtained the datasets:
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/dataset.py

Homepage: https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/dataset.py
"""
12
import pycountry
13
from pprint import pprint
14
15
16
from sacrebleu import sacrebleu
from lm_eval import metrics
from lm_eval.base import Task, rf
Muennighoff's avatar
Muennighoff committed
17
18
19
from typing import List


20
21
22
23
24
25
26
27
28
29
30
31
_CITATION = """
@inproceedings{post-2018-call,
    title = "A Call for Clarity in Reporting {BLEU} Scores",
    author = "Post, Matt",
    booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
    month = oct,
    year = "2018",
    address = "Belgium, Brussels",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W18-6319",
    pages = "186--191",
}
32
33
"""

34

35
36
37
sacrebleu_datasets = sacrebleu.DATASETS


&'s avatar
& committed
38
def create_tasks_from_benchmarks(benchmark_dict):
&'s avatar
& committed
39
    """Creates a dictionary of tasks from a dict
&'s avatar
& committed
40
    :param benchmark_dict: { dataset: [lang_pair, ...], }
&'s avatar
& committed
41
42
43
    :return: {task_name: task}
        e.g. {wmt14-fr-en: Task, wmt16-de-en: Task}
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
44

Leo Gao's avatar
Leo Gao committed
45
46
    def version_of(dataset, language_pair):
        if language_pair[-2:] in ["zh", "ja"]:
Fabrizio Milo's avatar
Fabrizio Milo committed
47
            return 1  # changed to use jieba/nagisa
Leo Gao's avatar
Leo Gao committed
48
49
        return 0

&'s avatar
& committed
50
    return {
Fabrizio Milo's avatar
Fabrizio Milo committed
51
52
53
        f"{dataset}-{language_pair}": create_translation_task(
            dataset, language_pair, version_of(dataset, language_pair)
        )
&'s avatar
& committed
54
55
56
57
        for dataset, language_pairs in benchmark_dict.items()
        for language_pair in language_pairs
    }

Fabrizio Milo's avatar
Fabrizio Milo committed
58

Muennighoff's avatar
Muennighoff committed
59
60
61
62
########################################
# Language Specifics
########################################

Fabrizio Milo's avatar
Fabrizio Milo committed
63

Muennighoff's avatar
Muennighoff committed
64
65
def zh_split(zh_text: List[str]) -> List[str]:
    """Chinese splitting"""
66
    import jieba
Fabrizio Milo's avatar
Fabrizio Milo committed
67

Muennighoff's avatar
Muennighoff committed
68
69
    return [" ".join(jieba.cut(txt.strip())) for txt in zh_text]

Fabrizio Milo's avatar
Fabrizio Milo committed
70

Muennighoff's avatar
Muennighoff committed
71
72
def ja_split(ja_text: List[str]) -> List[str]:
    """Japanese splitting"""
73
    import nagisa
Fabrizio Milo's avatar
Fabrizio Milo committed
74

Muennighoff's avatar
Muennighoff committed
75
76
    return [" ".join(nagisa.tagging(txt.strip()).words) for txt in ja_text]

Fabrizio Milo's avatar
Fabrizio Milo committed
77

Muennighoff's avatar
Muennighoff committed
78
79
NO_SPACE_LANG = {"zh": zh_split, "ja": ja_split}

&'s avatar
& committed
80
81
82
83
########################################
# Tasks
########################################

Fabrizio Milo's avatar
Fabrizio Milo committed
84

Leo Gao's avatar
Leo Gao committed
85
def create_translation_task(dataset, language_pair, version=0):
86
    class TranslationTask(GeneralTranslationTask):
Leo Gao's avatar
Leo Gao committed
87
        VERSION = version
Fabrizio Milo's avatar
Fabrizio Milo committed
88

89
90
        def __init__(self):
            super().__init__(dataset, language_pair)
Fabrizio Milo's avatar
Fabrizio Milo committed
91

92
93
    return TranslationTask

Fabrizio Milo's avatar
Fabrizio Milo committed
94

95
class GeneralTranslationTask(Task):
Leo Gao's avatar
Leo Gao committed
96
    VERSION = 0
97
98
99
100
101
102
103
104
105

    # e.g. ("wmt14", "fr-en")
    def __init__(self, sacrebleu_dataset, sacrebleu_language_pair=None):
        self.sacrebleu_dataset = sacrebleu_dataset
        self.sacrebleu_language_pair = sacrebleu_language_pair
        self.src_file = self.ref_file = self.src_data = self.ref_data = None

        super().__init__()

Jon Tow's avatar
Jon Tow committed
106
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
107
        # This caches in the users home dir automatically
Fabrizio Milo's avatar
Fabrizio Milo committed
108
109
110
        self.src_file, self.ref_file = sacrebleu.download_test_set(
            self.sacrebleu_dataset, self.sacrebleu_language_pair
        )
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        self.src_data, self.ref_data = [
            [line.rstrip() for line in sacrebleu.smart_open(file)]
            for file in (self.src_file, self.ref_file)
        ]

    def has_training_docs(self):
        """Whether the task has a training set"""
        # TODO In the future we could be more discerning. Some more recent tests have train and dev sets
        return False

    def has_validation_docs(self):
        """Whether the task has a validation set"""
        return False

    def has_test_docs(self):
        """Whether the task has a test set"""
        return True

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Fabrizio Milo's avatar
Fabrizio Milo committed
134
135
136
        return [
            {"src": src, "ref": ref} for src, ref in zip(self.src_data, self.ref_data)
        ]
137
138

    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
139
140
141
142
        language_codes = self.sacrebleu_language_pair.split("-")
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"{src_lang} phrase: " + doc["src"] + f"\n{tar_lang} phrase:"
143

144
145
146
147
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
jon-tow's avatar
jon-tow committed
148
        return doc["src"]
149

150
    def doc_to_target(self, doc):
&'s avatar
& committed
151
        # This shows a single target, though there may be multiple targets in a lang test
Leo Gao's avatar
Leo Gao committed
152
        return " " + doc["ref"] if isinstance(doc["ref"], str) else doc["ref"][0]
153
154

    def construct_requests(self, doc, ctx):
Fabrizio Milo's avatar
Fabrizio Milo committed
155
        """Uses RequestFactory to construct Requests and returns an iterable of
156
157
158
159
160
161
162
163
164
165
166
167
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        return rf.greedy_until(ctx, ["\n"])

    def process_results(self, doc, results):
Muennighoff's avatar
Muennighoff committed
168
169
170
171
172
173
        # Add spaces between words for BLEU score calculation of target languages like Chinese
        tar_lang_code = self.sacrebleu_language_pair.split("-")[-1]
        if tar_lang_code in NO_SPACE_LANG:
            doc["ref"] = NO_SPACE_LANG[tar_lang_code]([doc["ref"]])[0]
            results = NO_SPACE_LANG[tar_lang_code](results)

174
175
        # These metrics are corpus-level not sentence level, so we'll hide the
        # results in this dict and compute the corpus score in the aggregate method
&'s avatar
& committed
176
        ref_pred = (doc["ref"], results)
177
        return {
&'s avatar
& committed
178
179
180
            "bleu": ref_pred,
            "chrf": ref_pred,
            "ter": ref_pred,
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {
            "bleu": metrics.bleu,
            "chrf": metrics.chrf,
            "ter": metrics.ter,
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {
            "bleu": True,
            "chrf": True,
            "ter": False,
        }

&'s avatar
& committed
207
208
209
210
211
212
    def __str__(self):
        language_codes = self.sacrebleu_language_pair.split("-")
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"{self.sacrebleu_dataset.upper()} {src_lang} to {tar_lang} Task"

213
214
215
216
217
218
219
220

########################################
# Util
########################################


def code_to_language(code):
    # key is alpha_2 or alpha_3 depending on the code length
&'s avatar
& committed
221
    language_tuple = pycountry.languages.get(**{f"alpha_{len(code)}": code})
222
    return language_tuple.name