/****************************************************************************** * Copyright (c) 2023, Tri Dao. ******************************************************************************/ #pragma once #include #include #include #include "philox.cuh" #include "utils.h" namespace flash { using namespace cute; //////////////////////////////////////////////////////////////////////////////////////////////////// template __device__ inline void thread_reduce_(Tensor const &tensor, Tensor &summary, Operator &op) { static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 1, "Only support 1D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor)); #pragma unroll for (int mi = 0; mi < size<0>(tensor); mi++) { summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0)); #pragma unroll for (int ni = 1; ni < size<1>(tensor); ni++) { summary(mi) = op(summary(mi), tensor(mi, ni)); } } } template __device__ inline void quad_allreduce_(Tensor &dst, Tensor &src, Operator &op) { CUTE_STATIC_ASSERT_V(size(dst) == size(src)); #pragma unroll for (int i = 0; i < size(dst); i++){ dst(i) = Allreduce<4>::run(src(i), op); } } template __device__ inline void reduce_(Tensor const& tensor, Tensor &summary, Operator &op) { thread_reduce_(tensor, summary, op); quad_allreduce_(summary, summary, op); } template __device__ inline void reduce_max(Tensor const& tensor, Tensor &max){ MaxOp max_op; reduce_(tensor, max, max_op); } template __device__ inline void reduce_sum(Tensor const& tensor, Tensor &sum){ SumOp sum_op; reduce_(tensor, sum, sum_op); } // Apply the exp to all the elements. template inline __device__ void scale_apply_exp2(Tensor &tensor, Tensor const &max, const float scale) { static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 1, "Only support 1D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor)); #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { // If max is -inf, then all elements must have been -inf (possibly due to masking). // We don't want (-inf - (-inf)) since that would give NaN. // If we don't have float around M_LOG2E the multiplication is done in fp64. const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E)); #pragma unroll for (int ni = 0; ni < size<1>(tensor); ++ni) { // Instead of computing exp(x - max), we compute exp2(x * log_2(e) - // max * log_2(e)) This allows the compiler to use the ffma // instruction instead of fadd and fmul separately. tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled); } } } // Apply the exp to all the elements. template inline __device__ void max_scale_exp2_sum(Tensor &tensor, Tensor &max, Tensor &sum, const float scale) { static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 1, "Only support 1D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor)); #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { MaxOp max_op; max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0)); #pragma unroll for (int ni = 1; ni < size<1>(tensor); ni++) { max(mi) = max_op(max(mi), tensor(mi, ni)); } max(mi) = Allreduce<4>::run(max(mi), max_op); // If max is -inf, then all elements must have been -inf (possibly due to masking). // We don't want (-inf - (-inf)) since that would give NaN. const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale; sum(mi) = 0; #pragma unroll for (int ni = 0; ni < size<1>(tensor); ++ni) { // Instead of computing exp(x - max), we compute exp2(x * log_2(e) - // max * log_2(e)) This allows the compiler to use the ffma // instruction instead of fadd and fmul separately. tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled); sum(mi) += tensor(mi, ni); } SumOp sum_op; sum(mi) = Allreduce<4>::run(sum(mi), sum_op); } } template inline __device__ void apply_mask(Tensor &tensor, const int max_seqlen_k, const int col_idx_offset_ = 0) { // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) static_assert(Layout::rank == 2, "Only support 2D Tensor"); const int lane_id = threadIdx.x % 32; const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2; #pragma unroll for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { const int col_idx_base = col_idx_offset + nj * 8; #pragma unroll for (int j = 0; j < size<1, 0>(tensor); ++j) { const int col_idx = col_idx_base + j; if (col_idx >= max_seqlen_k) { // Without the "make_coord" we get wrong results #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { tensor(mi, make_coord(j, nj)) = -INFINITY; } } } } } template inline __device__ void apply_mask_local(Tensor &tensor, const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset, const int max_seqlen_q, const int warp_row_stride, const int window_size_left, const int window_size_right) { // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) static_assert(Layout::rank == 2, "Only support 2D Tensor"); const int lane_id = threadIdx.x % 32; const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2; #pragma unroll for (int mi = 0; mi < size<0, 1>(tensor); ++mi) { const int row_idx_base = row_idx_offset + mi * warp_row_stride; #pragma unroll for (int i = 0; i < size<0, 0>(tensor); ++i) { const int row_idx = row_idx_base + i * 8; const int col_idx_limit_left = std::max(0, row_idx + max_seqlen_k - max_seqlen_q - window_size_left); const int col_idx_limit_right = std::min(max_seqlen_k, row_idx + 1 + max_seqlen_k - max_seqlen_q + window_size_right); #pragma unroll for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { const int col_idx_base = col_idx_offset + nj * 8; #pragma unroll for (int j = 0; j < size<1, 0>(tensor); ++j) { const int col_idx = col_idx_base + j; if (col_idx >= col_idx_limit_right || (HasWSLeft && col_idx < col_idx_limit_left)) { tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY; } } } // if (cute::thread0()) { // printf("mi = %d, i = %d, row_idx = %d, max_seqlen_k = %d\n", mi, i, row_idx, max_seqlen_k); // print(tensor(make_coord(i, mi), _)); // // print(tensor(_, j + nj * size<1, 0>(tensor))); // } } } } template inline __device__ void apply_mask_causal(Tensor &tensor, const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset, const int max_seqlen_q, const int warp_row_stride) { // Causal masking is equivalent to local masking with window_size_left = infinity and window_size_right = 0 apply_mask_local(tensor, col_idx_offset_, max_seqlen_k, row_idx_offset, max_seqlen_q, warp_row_stride, -1, 0); } template inline __device__ void apply_mask_causal_w_idx( Tensor &tensor, Tensor const &idx_rowcol, const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset) { // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 2, "Only support 2D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(tensor) == size<0>(idx_rowcol)); CUTE_STATIC_ASSERT_V(size<1>(tensor) == size<1>(idx_rowcol)); #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { const int col_idx_limit = std::min(max_seqlen_k, 1 + row_idx_offset + get<0>(idx_rowcol(mi, 0))); #pragma unroll for (int ni = 0; ni < size<1, 1>(tensor); ++ni) { if (col_idx_offset_ + get<1>(idx_rowcol(0, ni)) >= col_idx_limit) { tensor(mi, ni) = -INFINITY; } } // if (cute::thread0()) { // printf("ni = %d, j = %d, col_idx = %d, max_seqlen_k = %d\n", ni, j, col_idx, max_seqlen_k); // print(tensor(_, make_coord(j, ni))); // // print(tensor(_, j + ni * size<1, 0>(tensor))); // } } } } // namespace flash