Unverified Commit e4f726fc authored by Sanghun Cho's avatar Sanghun Cho Committed by GitHub
Browse files

Support alibi, by Sanghun Cho from Kakao Brain



* hard-code alibi in fwd

* use params.h as hun_heads

* hard-code alibi in bwd

* add alibi on/off option

* compute alibi_start, ratio outside of kernels

* fix minor merge conflict

* add test_alibi.py

* change apply_alibi() location before masking

* add alibi in splitkv kernel

* fix backward func # of returns

* add out-of-bound check in apply_alibi()

* update test_alibi.py

* update test_alibi.py for kvcache

* simplify alibi parameter interface

* fix performance issue
by computing alibi outside of branch

* update test_flash_attn_varlen_func() for left padding

* implement alibi_slopes (b, nh) loading

* optimize apply_alibi() a bit

* update test cases for alibi_slopes loading

* reflect stylistic comments

* disable "seqlenq_ngroups_swapped" when using alibi

---------
Co-authored-by: default avatarmonk.detective <monk.detective@kakaobrain.com>
parent cd089597
......@@ -258,6 +258,7 @@ mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
bool is_causal,
const int window_size_left,
int window_size_right,
c10::optional<at::Tensor> &alibi_slopes_, // batch_size x num_heads
const bool return_softmax,
c10::optional<at::Generator> gen_) {
......@@ -301,7 +302,8 @@ mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
// H/t Daniel Haziza
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0;
// TODO: how to make "seqlenq_ngroups_swapped" and ALiBi work together?
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !(alibi_slopes_.has_value());
if (seqlenq_ngroups_swapped) {
const int ngroups = num_heads / num_heads_k;
q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
......@@ -409,6 +411,19 @@ mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
params.philox_args = gen->philox_cuda_state(counter_offset);
}
if (alibi_slopes_.has_value()) {
auto alibi_slopes = alibi_slopes_.value();
TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
CHECK_DEVICE(alibi_slopes);
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
CHECK_SHAPE(alibi_slopes, batch_size, num_heads);
params.has_alibi = true;
params.alibi_slopes_ptr = alibi_slopes.data_ptr();
params.alibi_slopes_batch_stride = alibi_slopes.stride(0);
} else {
params.has_alibi = false;
}
if (seqlen_k > 0) {
auto stream = at::cuda::getCurrentCUDAStream().stream();
run_mha_fwd(params, stream);
......@@ -449,6 +464,7 @@ mha_varlen_fwd(const at::Tensor &q, // total_q x num_heads x head_size, total_q
const bool is_causal,
const int window_size_left,
int window_size_right,
c10::optional<at::Tensor> &alibi_slopes_, // b x num_heads
const bool return_softmax,
c10::optional<at::Generator> gen_) {
......@@ -591,6 +607,19 @@ mha_varlen_fwd(const at::Tensor &q, // total_q x num_heads x head_size, total_q
params.philox_args = gen->philox_cuda_state(counter_offset);
}
if (alibi_slopes_.has_value()) {
auto alibi_slopes = alibi_slopes_.value();
TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
CHECK_DEVICE(alibi_slopes);
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
CHECK_SHAPE(alibi_slopes, batch_size, num_heads);
params.has_alibi = true;
params.alibi_slopes_ptr = alibi_slopes.data_ptr();
params.alibi_slopes_batch_stride = alibi_slopes.stride(0);
} else {
params.has_alibi = false;
}
auto stream = at::cuda::getCurrentCUDAStream().stream();
run_mha_fwd(params, stream);
......@@ -640,6 +669,7 @@ mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x head_si
const bool is_causal,
const int window_size_left,
int window_size_right,
c10::optional<at::Tensor> &alibi_slopes_, // batch_size x num_heads
c10::optional<at::Generator> gen_,
c10::optional<at::Tensor> &rng_state) {
......@@ -813,6 +843,19 @@ mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x head_si
params.rng_state[1] = std::get<1>(seeds);
}
if (alibi_slopes_.has_value()) {
auto alibi_slopes = alibi_slopes_.value();
TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
CHECK_DEVICE(alibi_slopes);
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
CHECK_SHAPE(alibi_slopes, batch_size, num_heads);
params.has_alibi = true;
params.alibi_slopes_ptr = alibi_slopes.data_ptr();
params.alibi_slopes_batch_stride = alibi_slopes.stride(0);
} else {
params.has_alibi = false;
}
if (seqlen_q > 0) {
launch(params, stream, /*configure=*/false);
} else {
......@@ -856,6 +899,7 @@ mha_varlen_bwd(const at::Tensor &dout, // total_q x num_heads, x head_size
const bool is_causal,
const int window_size_left,
int window_size_right,
c10::optional<at::Tensor> &alibi_slopes_, // b x num_heads
c10::optional<at::Generator> gen_,
c10::optional<at::Tensor> &rng_state) {
......@@ -1045,6 +1089,19 @@ mha_varlen_bwd(const at::Tensor &dout, // total_q x num_heads, x head_size
params.rng_state[1] = std::get<1>(seeds);
}
if (alibi_slopes_.has_value()) {
auto alibi_slopes = alibi_slopes_.value();
TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
CHECK_DEVICE(alibi_slopes);
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
CHECK_SHAPE(alibi_slopes, batch_size, num_heads);
params.has_alibi = true;
params.alibi_slopes_ptr = alibi_slopes.data_ptr();
params.alibi_slopes_batch_stride = alibi_slopes.stride(0);
} else {
params.has_alibi = false;
}
launch(params, stream, /*configure=*/false);
// For MQA/GQA we need to sum dK and dV across the groups
......@@ -1077,7 +1134,8 @@ mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_he
const int window_size_left,
int window_size_right,
bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
int num_splits
int num_splits,
c10::optional<at::Tensor> &alibi_slopes_ // batch_size x num_heads
) {
auto dprops = at::cuda::getCurrentDeviceProperties();
......@@ -1121,7 +1179,8 @@ mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_he
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
// H/t Daniel Haziza
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0;
// TODO: how to make "seqlenq_ngroups_swapped" and ALiBi work together?
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !(alibi_slopes_.has_value());
if (seqlenq_ngroups_swapped) {
const int ngroups = num_heads / num_heads_k;
q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
......@@ -1283,6 +1342,19 @@ mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_he
params.oaccum_ptr = out_accum.data_ptr();
}
if (alibi_slopes_.has_value()) {
auto alibi_slopes = alibi_slopes_.value();
TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
CHECK_DEVICE(alibi_slopes);
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
CHECK_SHAPE(alibi_slopes, batch_size, num_heads);
params.has_alibi = true;
params.alibi_slopes_ptr = alibi_slopes.data_ptr();
params.alibi_slopes_batch_stride = alibi_slopes.stride(0);
} else {
params.has_alibi = false;
}
auto stream = at::cuda::getCurrentCUDAStream().stream();
// Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx
run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value() || cache_batch_idx_.has_value());
......
#include <cmath>
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include "utils.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Engine, typename Layout>
inline __device__ void apply_alibi(Tensor<Engine, Layout> &tensor,
const int col_idx_offset_,
const int max_seqlen_k,
const int row_idx_offset_,
const int max_seqlen_q,
const int warp_row_stride,
const int head_idx,
const float softmax_scale,
const float alibi_slope) {
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
static_assert(Layout::rank == 2, "Only support 2D Tensor");
const int lane_id = threadIdx.x % 32;
const int row_idx_offset = row_idx_offset_;
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
const float alibi_slope_unscaled = alibi_slope / softmax_scale;
#pragma unroll
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
const int row_idx_base = row_idx_offset + mi * warp_row_stride;
#pragma unroll
for (int i = 0; i < size<0, 0>(tensor); ++i) {
const int row_idx = row_idx_base + i * 8;
#pragma unroll
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
const int col_idx_base = col_idx_offset + nj * 8;
#pragma unroll
for (int j = 0; j < size<1, 0>(tensor); ++j) {
const int col_idx = col_idx_base + j;
const float alibi = alibi_slope_unscaled * col_idx;
if (col_idx < max_seqlen_k && row_idx < max_seqlen_q) {
tensor(make_coord(i, mi), make_coord(j, nj)) += alibi;
}
}
}
}
}
}
} // namespace flash
\ No newline at end of file
......@@ -130,6 +130,13 @@ struct Flash_fwd_params : public Qkv_params {
bool is_rotary_interleaved;
int num_splits; // For split-KV version
// float alibi_start;
// float alibi_ratio;
bool has_alibi;
void * __restrict__ alibi_slopes_ptr;
index_t alibi_slopes_batch_stride;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
......
......@@ -15,6 +15,8 @@
#include "utils.h"
#include "softmax.h"
#include "alibi.h"
namespace flash {
using namespace cute;
......@@ -422,7 +424,7 @@ inline __device__ void convert_dKV(const Params &params) {
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const int bidb, const int bidh, const int n_block) {
using Element = typename Kernel_traits::Element;
......@@ -790,6 +792,19 @@ inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const in
clear(acc_dv);
clear(acc_dk);
float alibi_slope = 0.0f;
if (Has_alibi) {
Tensor gAS = make_tensor(
make_gmem_ptr(
reinterpret_cast<ElementAccum *>(params.alibi_slopes_ptr)
+ bidb * params.alibi_slopes_batch_stride + bidh
),
Shape<_1>{});
Tensor rAS = make_fragment_like(gAS);
cute::copy(gAS, rAS);
alibi_slope = rAS(0);
}
for (; m_block >= m_block_min; --m_block) {
Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
clear(acc_s);
......@@ -813,6 +828,20 @@ inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const in
// Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
// if (cute::thread(32, 0)) { print(scores); }
if (Has_alibi) {
flash::apply_alibi(
scores,
n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
binfo.actual_seqlen_k,
m_block * kBlockM + get<0>(taccScS_row(0)),
binfo.actual_seqlen_q,
AtomLayoutMS * 16,
bidh, params.scale_softmax,
alibi_slope
);
}
// TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
// actual_seqlen_k, because acc_s would be some finite value for those indices.
// In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
......@@ -849,6 +878,7 @@ inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const in
}
}
// if (cute::thread(32, 0)) { print(scores); }
// Compute the exponential value.
flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
......@@ -1114,7 +1144,7 @@ inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const in
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K, typename Params>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_N, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {
using Element = typename Kernel_traits::Element;
......@@ -1373,6 +1403,19 @@ inline __device__ void compute_dq_dk_dv_1rowblock(const Params &params, const in
clear(acc_dq);
float alibi_slope = 0.0f;
if (Has_alibi) {
Tensor gAS = make_tensor(
make_gmem_ptr(
reinterpret_cast<ElementAccum *>(params.alibi_slopes_ptr)
+ bidb * params.alibi_slopes_batch_stride + bidh
),
Shape<_1>{});
Tensor rAS = make_fragment_like(gAS);
cute::copy(gAS, rAS);
alibi_slope = rAS(0);
}
for (; n_block >= 0; --n_block) {
Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M_SdP, MMA_N)
clear(acc_s);
......@@ -1384,6 +1427,20 @@ inline __device__ void compute_dq_dk_dv_1rowblock(const Params &params, const in
// Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
if (Has_alibi) {
flash::apply_alibi(
scores,
n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
binfo.actual_seqlen_k,
m_block * kBlockM + get<0>(taccScS_row(0)),
binfo.actual_seqlen_q,
AtomLayoutMS * 16,
bidh, params.scale_softmax,
alibi_slope
);
}
// We don't need to mask out the elements beyond actual_seqlen_k, because acc_s would
// be some finite value for those indices. In the end when we multiply with K to get dQ,
// the corresponding values of K would be 0, so the result would still be correct.
......@@ -1394,6 +1451,7 @@ inline __device__ void compute_dq_dk_dv_1rowblock(const Params &params, const in
binfo.actual_seqlen_q,
AtomLayoutMS * 16);
}
// Compute the exponential value.
flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
if (Is_dropout) {
......@@ -1536,7 +1594,7 @@ inline __device__ void compute_dq_dk_dv_1rowblock(const Params &params, const in
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_M, bool Is_even_K, typename Params>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv(const Params &params) {
// The block index for the batch.
......@@ -1550,20 +1608,20 @@ inline __device__ void compute_dq_dk_dv(const Params &params) {
const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
if (n_block_max == 1) {
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
} else {
// Iterating backward from n_block_max - 1 to 0 might save 1 register
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
}
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, typename Params>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params &params) {
const int n_block = blockIdx.x;
......@@ -1572,12 +1630,12 @@ inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params &params) {
// The block index for the head.
const int bidh = blockIdx.z;
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Is_even_MN, Is_even_K, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K, typename Params>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_N, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv_seqq_parallel(const Params &params) {
const int m_block = blockIdx.x;
......@@ -1586,7 +1644,7 @@ inline __device__ void compute_dq_dk_dv_seqq_parallel(const Params &params) {
// The block index for the head.
const int bidh = blockIdx.z;
compute_dq_dk_dv_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_even_N, Is_even_K>(params, bidb, bidh, m_block);
compute_dq_dk_dv_1rowblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_N, Is_even_K>(params, bidb, bidh, m_block);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
......
......@@ -18,20 +18,20 @@ __global__ void flash_bwd_clear_dkvaccum_kernel(Flash_bwd_params params) {
flash::clear_dKVaccum<Kernel_traits>(params);
}
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_M, bool Is_even_K>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K>
__global__ void flash_bwd_dq_dk_dv_loop_kernel(Flash_bwd_params params) {
flash::compute_dq_dk_dv<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K>(params);
flash::compute_dq_dk_dv<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K>(params);
}
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K>
__global__ void flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel(Flash_bwd_params params) {
static_assert(!(Is_causal && Is_local)); // If Is_local is true, Is_causal should be false
flash::compute_dq_dk_dv_seqk_parallel<Kernel_traits, Is_dropout, Is_causal, Is_local, Is_even_MN, Is_even_K>(params);
flash::compute_dq_dk_dv_seqk_parallel<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K>(params);
}
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_N, bool Is_even_K>
__global__ void flash_bwd_dq_dk_dv_loop_seqq_parallel_kernel(Flash_bwd_params params) {
flash::compute_dq_dk_dv_seqq_parallel<Kernel_traits, Is_dropout, Is_causal, Is_even_N, Is_even_K>(params);
flash::compute_dq_dk_dv_seqq_parallel<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_N, Is_even_K>(params);
}
template<typename Kernel_traits>
......@@ -64,11 +64,12 @@ void run_flash_bwd_seqk_parallel(Flash_bwd_params &params, cudaStream_t stream,
BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !params.is_causal, Is_local, [&] {
BOOL_SWITCH(params.has_alibi, Has_alibi, [&] {
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
// If head dim > 128, set IsEvenMNConst to false to reduce number of templates
// If Is_local, set Is_causal to false
auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, IsEvenMNConst && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst>;
// auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, IsEvenMNConst, true>;
auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout, Is_causal && !Is_local, Is_local, Has_alibi, IsEvenMNConst && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst>;
// auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout, IsCausalConst, IsEvenMNConst, true>;
if (smem_size_dq_dk_dv >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size_dq_dk_dv));
......@@ -79,6 +80,7 @@ void run_flash_bwd_seqk_parallel(Flash_bwd_params &params, cudaStream_t stream,
});
});
});
});
auto kernel_dq = &flash_bwd_convert_dq_kernel<Kernel_traits>;
if (Kernel_traits::kSmemdQSize >= 48 * 1024) {
......@@ -107,8 +109,9 @@ void run_flash_bwd_seqq_parallel(Flash_bwd_params &params, cudaStream_t stream,
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
BOOL_SWITCH(is_even_N, IsEvenNConst, [&] {
BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
BOOL_SWITCH(params.has_alibi, Has_alibi, [&] {
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
auto kernel = &flash_bwd_dq_dk_dv_loop_seqq_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, IsEvenNConst && IsEvenKConst, IsEvenKConst>;
auto kernel = &flash_bwd_dq_dk_dv_loop_seqq_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, Has_alibi, IsEvenNConst && IsEvenKConst, IsEvenKConst>;
// auto kernel = &flash_bwd_dq_dk_dv_loop_seqq_parallel_kernel<Kernel_traits, false, false, IsEvenNConst, IsEvenKConst>;
if (smem_size_dq_dk_dv >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
......@@ -119,6 +122,7 @@ void run_flash_bwd_seqq_parallel(Flash_bwd_params &params, cudaStream_t stream,
});
});
});
});
auto kernel_dkv = &flash_bwd_convert_dkv_kernel<Kernel_traits>;
if (Kernel_traits::kSmemKVSize >= 48 * 1024) {
......
......@@ -15,6 +15,8 @@
#include "utils.h"
#include "softmax.h"
#include "alibi.h"
namespace flash {
using namespace cute;
......@@ -71,7 +73,7 @@ inline __device__ void write_softmax_to_gmem(
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
inline __device__ void compute_attn_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {
using Element = typename Kernel_traits::Element;
......@@ -326,6 +328,22 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
// We will have at least 1 "masking" iteration.
float alibi_slope = 0.0f;
if (Has_alibi) {
Tensor gAS = make_tensor(
make_gmem_ptr(
reinterpret_cast<ElementAccum *>(params.alibi_slopes_ptr)
+ bidb * params.alibi_slopes_batch_stride + bidh
),
Shape<_1>{});
Tensor rAS = make_fragment_like(gAS);
cute::copy(gAS, rAS);
alibi_slope = rAS(0);
// if (m_block == 0 && tidx == 0) {
// printf("%d,%d,%f\n", bidb, bidh, alibi_slope);
// }
}
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
constexpr int n_masking_steps = (!Is_causal && !Is_local)
......@@ -362,6 +380,20 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
// We don't put the masking before the matmul S = Q K^T because we don't clear sK
// for rows outside actual_seqlen_k. So those rows could have Inf / NaN, and the matmul
// can produce Inf / NaN.
if (Has_alibi) {
flash::apply_alibi(
scores,
n_block * kBlockN,
binfo.actual_seqlen_k,
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
binfo.actual_seqlen_q,
kNWarps * 16,
bidh, params.scale_softmax,
alibi_slope
);
}
if (!Is_causal && !Is_local) {
if (!Is_even_MN) { flash::apply_mask(scores, binfo.actual_seqlen_k - n_block * kBlockN); }
} else {
......@@ -466,6 +498,20 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
// Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
if (Has_alibi) {
flash::apply_alibi(
scores,
n_block * kBlockN,
binfo.actual_seqlen_k,
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
binfo.actual_seqlen_q,
kNWarps * 16,
bidh, params.scale_softmax,
alibi_slope
);
}
if (Is_local && n_block * kBlockN < (m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right) {
flash::apply_mask_local(
scores, n_block * kBlockN, binfo.actual_seqlen_k,
......@@ -474,6 +520,7 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
params.window_size_left, params.window_size_right
);
}
softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
Tensor rP = flash::convert_type<Element>(scores);
......@@ -581,7 +628,7 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {
using Element = typename Kernel_traits::Element;
......@@ -909,6 +956,22 @@ inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, cons
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
// We will have at least 1 "masking" iteration.
float alibi_slope = 0.0f;
if (Has_alibi) {
Tensor gAS = make_tensor(
make_gmem_ptr(
reinterpret_cast<ElementAccum *>(params.alibi_slopes_ptr)
+ bidb * params.alibi_slopes_batch_stride + bidh
),
Shape<_1>{});
Tensor rAS = make_fragment_like(gAS);
cute::copy(gAS, rAS);
alibi_slope = rAS(0);
// if (m_block == 0 && tidx == 0) {
// printf("%d,%d,%f\n", bidb, bidh, alibi_slope);
// }
}
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
constexpr int n_masking_steps = (!Is_causal && !Is_local)
......@@ -941,6 +1004,20 @@ inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, cons
// Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
if (Has_alibi) {
flash::apply_alibi(
scores,
n_block * kBlockN,
binfo.actual_seqlen_k,
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
binfo.actual_seqlen_q,
kNWarps * 16,
bidh, params.scale_softmax,
alibi_slope
);
}
// if (cute::thread0()) { print(scores); }
// We don't put the masking before the matmul S = Q K^T because we don't clear sK
// for rows outside actual_seqlen_k. So those rows could have Inf / NaN, and the matmul
......@@ -1020,6 +1097,20 @@ inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, cons
// Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
if (Has_alibi) {
flash::apply_alibi(
scores,
n_block * kBlockN,
binfo.actual_seqlen_k,
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
binfo.actual_seqlen_q,
kNWarps * 16,
bidh, params.scale_softmax,
alibi_slope
);
}
if (Is_local && n_block * kBlockN < (m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right) {
flash::apply_mask_local(
scores, n_block * kBlockN, binfo.actual_seqlen_k,
......@@ -1131,7 +1222,7 @@ inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, cons
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
inline __device__ void compute_attn(const Params &params) {
const int m_block = blockIdx.x;
// The block index for the batch.
......@@ -1147,12 +1238,12 @@ inline __device__ void compute_attn(const Params &params) {
// the attention matrix. This way, as long as we have the batch, head, and the location of
// the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.
flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
inline __device__ void compute_attn_splitkv(const Params &params) {
const int m_block = blockIdx.x;
// The block index for the batch.
......@@ -1161,7 +1252,7 @@ inline __device__ void compute_attn_splitkv(const Params &params) {
const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
const int n_split_idx = Split ? blockIdx.y : 0;
const int num_n_splits = Split ? gridDim.y : 1;
flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Is_even_MN, Is_even_K, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
......
......@@ -10,15 +10,15 @@
#include "flash.h"
#include "flash_fwd_kernel.h"
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Return_softmax>
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax>
__global__ void flash_fwd_kernel(Flash_fwd_params params) {
static_assert(!(Is_causal && Is_local)); // If Is_local is true, Is_causal should be false
flash::compute_attn<Kernel_traits, Is_dropout, Is_causal, Is_local, Is_even_MN, Is_even_K, Return_softmax>(params);
flash::compute_attn<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params);
}
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV>
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV>
__global__ void flash_fwd_splitkv_kernel(Flash_fwd_params params) {
flash::compute_attn_splitkv<Kernel_traits, Is_causal, Is_local, Is_even_MN, Is_even_K, Split, Append_KV>(params);
flash::compute_attn_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Split, Append_KV>(params);
}
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K>
......@@ -45,12 +45,13 @@ void run_flash_fwd(Flash_fwd_params &params, cudaStream_t stream) {
BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !Is_causal, Is_local, [&] {
BOOL_SWITCH(return_softmax, ReturnSoftmaxConst, [&] {
BOOL_SWITCH(params.has_alibi, Has_alibi, [&] {
// Will only return softmax if dropout, to reduce compilation time.
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
// If return_softmax, set IsEvenMNConst to false to reduce number of templates
// If head dim > 128, set IsEvenMNConst to false to reduce number of templates
// If Is_local, set Is_causal to false
auto kernel = &flash_fwd_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, IsEvenMNConst && IsEvenKConst && !Is_local && !ReturnSoftmaxConst && Kernel_traits::kHeadDim <= 128, IsEvenKConst, ReturnSoftmaxConst && Is_dropout>;
auto kernel = &flash_fwd_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, Has_alibi, IsEvenMNConst && IsEvenKConst && !Is_local && !ReturnSoftmaxConst && Kernel_traits::kHeadDim <= 128, IsEvenKConst, ReturnSoftmaxConst && Is_dropout>;
// printf("IsEvenMNConst = %d, IsEvenKConst = %d, Is_local = %d, Is_causal = %d, ReturnSoftmaxConst = %d, Is_dropout = %d\n", int(IsEvenMNConst), int(IsEvenKConst), int(Is_local), int(Is_causal), int(ReturnSoftmaxConst), int(Is_dropout));
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, true, true, false>;
if (smem_size >= 48 * 1024) {
......@@ -67,6 +68,7 @@ void run_flash_fwd(Flash_fwd_params &params, cudaStream_t stream) {
});
});
});
});
}
template<typename Kernel_traits>
......@@ -84,10 +86,11 @@ void run_flash_splitkv_fwd(Flash_fwd_params &params, cudaStream_t stream) {
BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !Is_causal, Is_local, [&] {
BOOL_SWITCH(params.num_splits > 1, Split, [&] {
BOOL_SWITCH(params.knew_ptr != nullptr, Append_KV, [&] {
BOOL_SWITCH(params.has_alibi, Has_alibi, [&] {
// If Append_KV, then we must have seqlen_offsets, which means cu_seqlens_k != nullptr.
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
// If Is_local, set Is_causal to false
auto kernel = &flash_fwd_splitkv_kernel<Kernel_traits, Is_causal, Is_local && !Is_causal, IsEvenMNConst && !Append_KV && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst, Split, Append_KV>;
auto kernel = &flash_fwd_splitkv_kernel<Kernel_traits, Is_causal, Is_local && !Is_causal, Has_alibi, IsEvenMNConst && !Append_KV && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst, Split, Append_KV>;
// auto kernel = &flash_fwd_splitkv_kernel<Kernel_traits, Is_causal, false, true, Split, Append_KV>;
// auto kernel = &flash_fwd_splitkv_kernel<Kernel_traits, Is_causal, false, IsEvenKConst>;
if (smem_size >= 48 * 1024) {
......@@ -102,6 +105,7 @@ void run_flash_splitkv_fwd(Flash_fwd_params &params, cudaStream_t stream) {
});
});
});
});
if (params.num_splits > 1) {
// We want kBlockM to be as small as possible for more parallelism.
// With 128 threads we can load 512 elements at a time, so if headdim is divisible by 128, kBlockM = 4.
......
......@@ -43,7 +43,7 @@ def _get_block_size(device, head_dim, is_dropout, is_causal):
return (128, 64) if is_sm80 else (64, 64)
def _flash_attn_forward(q, k, v, dropout_p, softmax_scale, causal, window_size, return_softmax):
def _flash_attn_forward(q, k, v, dropout_p, softmax_scale, causal, window_size, alibi_slopes, return_softmax):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(
......@@ -56,6 +56,7 @@ def _flash_attn_forward(q, k, v, dropout_p, softmax_scale, causal, window_size,
causal,
window_size[0],
window_size[1],
alibi_slopes,
return_softmax,
None,
)
......@@ -74,6 +75,7 @@ def _flash_attn_varlen_forward(
softmax_scale,
causal,
window_size,
alibi_slopes,
return_softmax,
):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
......@@ -94,6 +96,7 @@ def _flash_attn_varlen_forward(
causal,
window_size[0],
window_size[1],
alibi_slopes,
return_softmax,
None,
)
......@@ -116,6 +119,7 @@ def _flash_attn_backward(
softmax_scale,
causal,
window_size,
alibi_slopes,
rng_state=None,
):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
......@@ -136,6 +140,7 @@ def _flash_attn_backward(
causal,
window_size[0],
window_size[1],
alibi_slopes,
None,
rng_state,
)
......@@ -160,6 +165,7 @@ def _flash_attn_varlen_backward(
softmax_scale,
causal,
window_size,
alibi_slopes,
rng_state=None,
):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
......@@ -185,6 +191,7 @@ def _flash_attn_varlen_backward(
causal,
window_size[0],
window_size[1],
alibi_slopes,
None,
rng_state,
)
......@@ -195,7 +202,7 @@ def _flash_attn_varlen_backward(
class FlashAttnQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, dropout_p, softmax_scale, causal, window_size, return_softmax):
def forward(ctx, qkv, dropout_p, softmax_scale, causal, window_size, alibi_slopes, return_softmax):
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
......@@ -206,6 +213,7 @@ class FlashAttnQKVPackedFunc(torch.autograd.Function):
softmax_scale,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
return_softmax=return_softmax and dropout_p > 0,
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
......@@ -213,6 +221,7 @@ class FlashAttnQKVPackedFunc(torch.autograd.Function):
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size = window_size
ctx.alibi_slopes = alibi_slopes
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
......@@ -234,10 +243,11 @@ class FlashAttnQKVPackedFunc(torch.autograd.Function):
ctx.softmax_scale,
ctx.causal,
ctx.window_size,
ctx.alibi_slopes,
rng_state=rng_state,
)
dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
return dqkv, None, None, None, None, None
return dqkv, None, None, None, None, None, None
class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
......@@ -251,6 +261,7 @@ class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
softmax_scale,
causal,
window_size,
alibi_slopes,
return_softmax,
):
if softmax_scale is None:
......@@ -267,6 +278,7 @@ class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
softmax_scale,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
return_softmax=return_softmax and dropout_p > 0,
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens, rng_state)
......@@ -275,6 +287,7 @@ class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size = window_size
ctx.alibi_slopes = alibi_slopes
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
......@@ -300,15 +313,16 @@ class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
ctx.softmax_scale,
ctx.causal,
ctx.window_size,
ctx.alibi_slopes,
rng_state=rng_state,
)
dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
return dqkv, None, None, None, None, None, None, None
return dqkv, None, None, None, None, None, None, None, None
class FlashAttnKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, kv, dropout_p, softmax_scale, causal, window_size, return_softmax):
def forward(ctx, q, kv, dropout_p, softmax_scale, causal, window_size, alibi_slopes, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
......@@ -319,6 +333,7 @@ class FlashAttnKVPackedFunc(torch.autograd.Function):
softmax_scale,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
return_softmax=return_softmax and dropout_p > 0,
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
......@@ -326,6 +341,7 @@ class FlashAttnKVPackedFunc(torch.autograd.Function):
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size = window_size
ctx.alibi_slopes = alibi_slopes
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
......@@ -348,11 +364,12 @@ class FlashAttnKVPackedFunc(torch.autograd.Function):
ctx.softmax_scale,
ctx.causal,
ctx.window_size,
ctx.alibi_slopes,
rng_state=rng_state,
)
dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
dkv = dkv[..., : dout.shape[-1]]
return dq, dkv, None, None, None, None, None
return dq, dkv, None, None, None, None, None, None
class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
......@@ -369,6 +386,7 @@ class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
softmax_scale,
causal,
window_size,
alibi_slopes,
return_softmax,
):
if softmax_scale is None:
......@@ -385,6 +403,7 @@ class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
softmax_scale,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
return_softmax=return_softmax and dropout_p > 0,
)
ctx.save_for_backward(
......@@ -396,6 +415,7 @@ class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size = window_size
ctx.alibi_slopes = alibi_slopes
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
......@@ -422,16 +442,17 @@ class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
ctx.softmax_scale,
ctx.causal,
ctx.window_size,
ctx.alibi_slopes,
rng_state=rng_state,
)
dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
dkv = dkv[..., : dout.shape[-1]]
return dq, dkv, None, None, None, None, None, None, None, None, None
return dq, dkv, None, None, None, None, None, None, None, None, None, None
class FlashAttnFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, dropout_p, softmax_scale, causal, window_size, return_softmax):
def forward(ctx, q, k, v, dropout_p, softmax_scale, causal, window_size, alibi_slopes, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
......@@ -442,6 +463,7 @@ class FlashAttnFunc(torch.autograd.Function):
softmax_scale,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
return_softmax=return_softmax and dropout_p > 0,
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
......@@ -449,6 +471,7 @@ class FlashAttnFunc(torch.autograd.Function):
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size = window_size
ctx.alibi_slopes = alibi_slopes
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
......@@ -469,12 +492,13 @@ class FlashAttnFunc(torch.autograd.Function):
ctx.softmax_scale,
ctx.causal,
ctx.window_size,
ctx.alibi_slopes,
rng_state=rng_state,
)
dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
dk = dk[..., : dout.shape[-1]]
dv = dv[..., : dout.shape[-1]]
return dq, dk, dv, None, None, None, None, None, None, None, None, None
return dq, dk, dv, None, None, None, None, None, None
class FlashAttnVarlenFunc(torch.autograd.Function):
......@@ -492,6 +516,7 @@ class FlashAttnVarlenFunc(torch.autograd.Function):
softmax_scale,
causal,
window_size,
alibi_slopes,
return_softmax,
):
if softmax_scale is None:
......@@ -508,6 +533,7 @@ class FlashAttnVarlenFunc(torch.autograd.Function):
softmax_scale,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
return_softmax=return_softmax and dropout_p > 0,
)
ctx.save_for_backward(
......@@ -519,6 +545,7 @@ class FlashAttnVarlenFunc(torch.autograd.Function):
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size = window_size
ctx.alibi_slopes = alibi_slopes
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
......@@ -543,12 +570,13 @@ class FlashAttnVarlenFunc(torch.autograd.Function):
ctx.softmax_scale,
ctx.causal,
ctx.window_size,
ctx.alibi_slopes,
rng_state=rng_state,
)
dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
dk = dk[..., : dout.shape[-1]]
dv = dv[..., : dout.shape[-1]]
return dq, dk, dv, None, None, None, None, None, None, None, None, None
return dq, dk, dv, None, None, None, None, None, None, None, None, None, None
def flash_attn_qkvpacked_func(
......@@ -557,6 +585,7 @@ def flash_attn_qkvpacked_func(
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
alibi_slopes=None,
return_attn_probs=False,
):
"""dropout_p should be set to 0.0 during evaluation
......@@ -589,7 +618,7 @@ def flash_attn_qkvpacked_func(
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnQKVPackedFunc.apply(
qkv, dropout_p, softmax_scale, causal, window_size, return_attn_probs
qkv, dropout_p, softmax_scale, causal, window_size, alibi_slopes, return_attn_probs
)
......@@ -600,6 +629,7 @@ def flash_attn_kvpacked_func(
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
alibi_slopes=None,
return_attn_probs=False,
):
"""dropout_p should be set to 0.0 during evaluation
......@@ -648,7 +678,7 @@ def flash_attn_kvpacked_func(
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnKVPackedFunc.apply(
q, kv, dropout_p, softmax_scale, causal, window_size, return_attn_probs
q, kv, dropout_p, softmax_scale, causal, window_size, alibi_slopes, return_attn_probs
)
......@@ -660,6 +690,7 @@ def flash_attn_func(
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
alibi_slopes=None,
return_attn_probs=False,
):
"""dropout_p should be set to 0.0 during evaluation
......@@ -706,7 +737,7 @@ def flash_attn_func(
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnFunc.apply(
q, k, v, dropout_p, softmax_scale, causal, window_size, return_attn_probs
q, k, v, dropout_p, softmax_scale, causal, window_size, alibi_slopes, return_attn_probs
)
......@@ -718,6 +749,7 @@ def flash_attn_varlen_qkvpacked_func(
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
alibi_slopes=None,
return_attn_probs=False,
):
"""dropout_p should be set to 0.0 during evaluation
......@@ -760,6 +792,7 @@ def flash_attn_varlen_qkvpacked_func(
softmax_scale,
causal,
window_size,
alibi_slopes,
return_attn_probs,
)
......@@ -775,6 +808,7 @@ def flash_attn_varlen_kvpacked_func(
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
alibi_slopes=None,
return_attn_probs=False,
):
"""dropout_p should be set to 0.0 during evaluation
......@@ -839,6 +873,7 @@ def flash_attn_varlen_kvpacked_func(
softmax_scale,
causal,
window_size,
alibi_slopes,
return_attn_probs,
)
......@@ -855,6 +890,7 @@ def flash_attn_varlen_func(
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
alibi_slopes=None,
return_attn_probs=False,
):
"""dropout_p should be set to 0.0 during evaluation
......@@ -918,6 +954,7 @@ def flash_attn_varlen_func(
softmax_scale,
causal,
window_size,
alibi_slopes,
return_attn_probs,
)
......@@ -937,6 +974,7 @@ def flash_attn_with_kvcache(
window_size=(-1, -1), # -1 means infinite context window
rotary_interleaved=True,
num_splits=0,
alibi_slopes=None,
):
"""
If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
......@@ -1041,5 +1079,6 @@ def flash_attn_with_kvcache(
window_size[1],
rotary_interleaved,
num_splits,
alibi_slopes
)
return out
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment