Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
flash-attention
Commits
d38357dd
Commit
d38357dd
authored
Jul 23, 2023
by
Tri Dao
Browse files
[GPT] Implement Falcon
parent
684196b8
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
495 additions
and
0 deletions
+495
-0
flash_attn/models/falcon.py
flash_attn/models/falcon.py
+122
-0
flash_attn/models/gpt.py
flash_attn/models/gpt.py
+3
-0
tests/models/test_falcon.py
tests/models/test_falcon.py
+370
-0
No files found.
flash_attn/models/falcon.py
0 → 100644
View file @
d38357dd
# Copyright (c) 2023, Tri Dao.
import
math
import
re
from
collections
import
OrderedDict
import
torch
import
torch.nn.functional
as
F
from
einops
import
rearrange
from
transformers
import
GPT2Config
,
FalconConfig
def
remap_state_dict_hf_falcon
(
state_dict
,
config
):
def
key_mapping_layers
(
key
):
return
re
.
sub
(
r
'^transformer.h.'
,
'transformer.layers.'
,
key
)
state_dict
=
OrderedDict
((
key_mapping_layers
(
k
),
v
)
for
k
,
v
in
state_dict
.
items
())
# Word embedding
def
key_mapping_emb
(
key
):
return
re
.
sub
(
r
'^transformer.word_embeddings.'
,
'transformer.embeddings.word_embeddings.'
,
key
)
state_dict
=
OrderedDict
((
key_mapping_emb
(
k
),
v
)
for
k
,
v
in
state_dict
.
items
())
word_embeddings
=
state_dict
.
pop
(
'transformer.embeddings.word_embeddings.weight'
)
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple
=
getattr
(
config
,
'pad_vocab_size_multiple'
,
1
)
vocab_size
=
(
math
.
ceil
(
config
.
vocab_size
/
pad_vocab_size_multiple
)
*
pad_vocab_size_multiple
)
state_dict
[
'transformer.embeddings.word_embeddings.weight'
]
=
F
.
pad
(
word_embeddings
,
(
0
,
0
,
0
,
vocab_size
-
word_embeddings
.
shape
[
0
])
)
if
getattr
(
config
,
'tie_word_embeddings'
):
state_dict
[
'lm_head.weight'
]
=
state_dict
[
'transformer.embeddings.word_embeddings.weight'
]
else
:
output_embeddings
=
state_dict
.
pop
(
'lm_head.weight'
)
# It's possible that vocab_size is padded to be a multiple of 8, for example.
state_dict
[
'lm_head.weight'
]
=
F
.
pad
(
output_embeddings
,
(
0
,
0
,
0
,
vocab_size
-
output_embeddings
.
shape
[
0
])
)
output_embeddings_bias
=
state_dict
.
pop
(
'lm_head.bias'
)
state_dict
[
'lm_head.bias'
]
=
F
.
pad
(
output_embeddings_bias
,
(
0
,
vocab_size
-
output_embeddings_bias
.
shape
[
0
])
)
# LayerNorm
def
key_mapping_ln
(
key
):
key
=
re
.
sub
(
r
'^transformer.layers.(\d+).input_layernorm.'
,
r
'transformer.layers.\1.norm1.'
,
key
)
key
=
re
.
sub
(
r
'^transformer.layers.(\d+).post_attention_layernorm.'
,
r
'transformer.layers.\1.norm2.'
,
key
)
key
=
re
.
sub
(
r
'^transformer.layers.(\d+).ln_attn.'
,
r
'transformer.layers.\1.norm1.'
,
key
)
key
=
re
.
sub
(
r
'^transformer.layers.(\d+).ln_mlp.'
,
r
'transformer.layers.\1.norm2.'
,
key
)
return
key
state_dict
=
OrderedDict
((
key_mapping_ln
(
k
),
v
)
for
k
,
v
in
state_dict
.
items
())
# MLP
def
key_mapping_mlp
(
key
):
key
=
re
.
sub
(
r
'^transformer.layers.(\d+).mlp.dense_h_to_4h.'
,
r
'transformer.layers.\1.mlp.fc1.'
,
key
)
key
=
re
.
sub
(
r
'^transformer.layers.(\d+).mlp.dense_4h_to_h.'
,
r
'transformer.layers.\1.mlp.fc2.'
,
key
)
return
key
state_dict
=
OrderedDict
((
key_mapping_mlp
(
k
),
v
)
for
k
,
v
in
state_dict
.
items
())
def
key_mapping_attn
(
key
):
key
=
re
.
sub
(
r
'^transformer.layers.(\d+).self_attention.query_key_value.'
,
r
'transformer.layers.\1.mixer.Wqkv.'
,
key
)
key
=
re
.
sub
(
r
'^transformer.layers.(\d+).self_attention.dense.'
,
r
'transformer.layers.\1.mixer.out_proj.'
,
key
)
return
key
state_dict
=
OrderedDict
((
key_mapping_attn
(
k
),
v
)
for
k
,
v
in
state_dict
.
items
())
n_head
=
config
.
n_head
n_head_kv
=
getattr
(
config
,
"n_head_kv"
,
1
)
headdim
=
config
.
hidden_size
//
n_head
for
l
in
range
(
config
.
n_layer
):
# The weights are stored in a different layout compared to our implementation
Wqkv
=
rearrange
(
state_dict
.
pop
(
f
'transformer.layers.
{
l
}
.mixer.Wqkv.weight'
),
"(group ratio headdim) ... -> group ratio headdim ..."
,
ratio
=
n_head
//
n_head_kv
+
2
,
headdim
=
headdim
)
Wq
=
rearrange
(
Wqkv
[:,
:
-
2
],
"group ratio headdim ... -> (group ratio headdim) ..."
)
Wk
=
rearrange
(
Wqkv
[:,
[
-
2
]],
"group ratio headdim ... -> (group ratio headdim) ..."
)
Wv
=
rearrange
(
Wqkv
[:,
[
-
1
]],
"group ratio headdim ... -> (group ratio headdim) ..."
)
state_dict
[
f
'transformer.layers.
{
l
}
.mixer.Wqkv.weight'
]
=
torch
.
cat
([
Wq
,
Wk
,
Wv
],
dim
=
0
)
return
state_dict
def
falcon_config_to_gpt2_config
(
falcon_config
:
FalconConfig
)
->
GPT2Config
:
# The 40b config uses "n_head_kv" instead of "num_kv_heads"
n_head_kv
=
getattr
(
falcon_config
,
"n_head_kv"
,
1
if
getattr
(
falcon_config
,
"multi_query"
,
False
)
else
falcon_config
.
n_head
)
# HACK: the 40b config has 2 LN per layer instead of 1, but that's not reflected in the config.
# So we have to infer it from the number of heads in the key/value block
parallel_block_tied_norm
=
n_head_kv
==
1
return
GPT2Config
(
vocab_size
=
falcon_config
.
vocab_size
,
n_positions
=
0
,
# No absolute position embedding
n_embd
=
falcon_config
.
hidden_size
,
n_layer
=
falcon_config
.
n_layer
,
n_head
=
falcon_config
.
n_head
,
n_inner
=
falcon_config
.
hidden_size
*
4
,
activation_function
=
"gelu"
,
resid_pdrop
=
falcon_config
.
hidden_dropout
,
embd_pdrop
=
0.0
,
# There doesn't seem to be any embedding dropout
attn_pdrop
=
falcon_config
.
attention_dropout
,
layer_norm_epsilon
=
falcon_config
.
layer_norm_epsilon
,
initializer_range
=
falcon_config
.
initializer_range
,
bos_token_id
=
falcon_config
.
bos_token_id
,
eos_token_id
=
falcon_config
.
eos_token_id
,
# These are new arguments not in the original GPT2Config
parallel_block
=
falcon_config
.
parallel_attn
,
n_head_kv
=
n_head_kv
,
parallel_block_tied_norm
=
parallel_block_tied_norm
,
rotary_emb_fraction
=
1.0
,
rotary_emb_interleaved
=
False
,
tie_word_embeddings
=
True
,
qkv_proj_bias
=
falcon_config
.
bias
,
out_proj_bias
=
falcon_config
.
bias
,
mlp_fc1_bias
=
falcon_config
.
bias
,
mlp_fc2_bias
=
falcon_config
.
bias
,
lm_head_bias
=
False
,
)
flash_attn/models/gpt.py
View file @
d38357dd
...
...
@@ -27,6 +27,7 @@ from flash_attn.utils.generation import GenerationMixin
from
flash_attn.models.opt
import
remap_state_dict_hf_opt
from
flash_attn.models.gptj
import
remap_state_dict_hf_gptj
from
flash_attn.models.gpt_neox
import
remap_state_dict_hf_gpt_neox
from
flash_attn.models.falcon
import
remap_state_dict_hf_falcon
try
:
from
flash_attn.ops.fused_dense
import
ColumnParallelLinear
...
...
@@ -241,6 +242,8 @@ class GPTPreTrainedModel(nn.Module):
state_dict
=
remap_state_dict_hf_gptj
(
state_dict
,
config
)
elif
model_name
.
startswith
(
'EleutherAI/gpt-neox-'
):
state_dict
=
remap_state_dict_hf_gpt_neox
(
state_dict
,
config
)
elif
model_name
.
startswith
(
'tiiuae/falcon-'
):
state_dict
=
remap_state_dict_hf_falcon
(
state_dict
,
config
)
else
:
raise
NotImplementedError
(
f
'Model
{
model_name
}
not supported'
)
if
world_size
>
1
:
...
...
tests/models/test_falcon.py
0 → 100644
View file @
d38357dd
# Copyright (c) 2023, Tri Dao.
import
os
import
time
from
pathlib
import
Path
current_dir
=
Path
(
__file__
).
parent
.
absolute
()
import
torch
import
pytest
from
einops
import
rearrange
from
transformers
import
AutoConfig
,
AutoTokenizer
,
AutoModelForCausalLM
from
flash_attn.models.gpt
import
GPTLMHeadModel
,
combine_state_dicts_tp
,
shard_state_dict_tp
from
flash_attn.models.falcon
import
remap_state_dict_hf_falcon
,
falcon_config_to_gpt2_config
from
flash_attn.utils.distributed
import
all_gather_raw
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
flash_attn.utils.generation
import
update_graph_cache
@
pytest
.
mark
.
parametrize
(
'model_name'
,
[
"tiiuae/falcon-7b"
,
"tiiuae/falcon-40b"
])
def
test_falcon_state_dict
(
model_name
):
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
device
=
'meta'
)
# Without device='meta' init is very slow
state_dict
=
model
.
state_dict
()
assert
state_dict
.
keys
()
==
pretrained_state_dict
.
keys
()
for
k
in
state_dict
.
keys
():
assert
state_dict
[
k
].
shape
==
pretrained_state_dict
[
k
].
shape
@
pytest
.
mark
.
parametrize
(
'model_name'
,
[
"tiiuae/falcon-7b"
])
def
test_falcon_optimized
(
model_name
):
"""Check that our implementation (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'cuda'
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
config
.
use_flash_attn
=
True
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
False
# We don't have fused MLP for "gelu" activation
config
.
fused_dropout_add_ln
=
True
config
.
residual_in_fp32
=
True
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
device
=
device
,
dtype
=
dtype
)
model
.
eval
()
torch
.
manual_seed
(
0
)
batch_size
=
2
max_seqlen
=
256
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
with
torch
.
no_grad
():
out
=
model
.
transformer
(
input_ids
)
logits
=
model
(
input_ids
).
logits
del
model
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
device_map
=
{
""
:
device
},
trust_remote_code
=
True
)
model_ref
.
eval
()
with
torch
.
no_grad
():
out_ref
=
model_ref
.
transformer
(
input_ids
).
last_hidden_state
.
to
(
device
=
device
)
logits_ref
=
model_ref
(
input_ids
).
logits
.
to
(
device
=
device
)
del
model_ref
model_hf
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
},
trust_remote_code
=
True
)
model_hf
.
eval
()
out_hf
=
model_hf
.
transformer
(
input_ids
).
last_hidden_state
logits_hf
=
model_hf
(
input_ids
).
logits
del
model_hf
print
(
f
'Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
3
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_forward"
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough
# memory to run the model in fp32.
@
pytest
.
mark
.
parametrize
(
'world_size'
,
[
4
])
@
pytest
.
mark
.
parametrize
(
'model_name'
,
[
"tiiuae/falcon-40b"
])
def
test_falcon_parallel_forward
(
model_name
,
world_size
):
from
apex.transformer
import
parallel_state
dtype
=
torch
.
float16
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
config
.
use_flash_attn
=
False
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
False
# We don't have fused MLP for "gelu" activation
config
.
fused_dropout_add_ln
=
False
config
.
residual_in_fp32
=
True
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'nccl'
,
init_method
=
'env://'
)
device
=
f
'cuda:
{
torch
.
distributed
.
get_rank
()
}
'
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
process_group
=
parallel_state
.
get_tensor_model_parallel_group
()
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
process_group
=
process_group
,
device
=
device
,
dtype
=
dtype
)
model
.
load_state_dict
(
shard_state_dict_tp
(
pretrained_state_dict
,
config
,
world_size
,
rank
))
model
.
eval
()
torch
.
manual_seed
(
0
)
batch_size
=
2
max_seqlen
=
256
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
with
torch
.
no_grad
():
out
=
model
.
transformer
(
input_ids
)
out
,
_
=
all_gather_raw
(
out
,
process_group
=
process_group
)
out
=
rearrange
(
out
,
"(b s) d -> b s d"
,
b
=
batch_size
)
logits
=
model
(
input_ids
).
logits
logits
=
rearrange
(
logits
,
"(b s) d -> b s d"
,
b
=
batch_size
)
logits
,
_
=
all_gather_raw
(
logits
,
process_group
)
logits
=
rearrange
(
logits
,
'(n b) ... d -> b ... (n d)'
,
b
=
batch_size
)
del
model
if
rank
==
0
:
model_hf
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
"auto"
,
trust_remote_code
=
True
)
model_hf
.
eval
()
out_hf
=
model_hf
.
transformer
(
input_ids
).
last_hidden_state
.
to
(
device
=
device
)
logits_hf
=
model_hf
(
input_ids
).
logits
.
to
(
device
=
device
)
del
model_hf
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
device_map
=
"auto"
,
trust_remote_code
=
True
)
model_ref
.
eval
()
with
torch
.
no_grad
():
out_ref
=
model_ref
.
transformer
(
input_ids
).
last_hidden_state
.
to
(
device
=
device
)
logits_ref
=
model_ref
(
input_ids
).
logits
.
to
(
device
=
device
)
del
model_ref
print
(
f
'Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
2
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
@
pytest
.
mark
.
parametrize
(
'model_name'
,
[
"tiiuae/falcon-7b"
])
def
test_falcon_generation
(
model_name
):
"""Check that our implementation (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'cuda'
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
config
.
use_flash_attn
=
True
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
False
# We don't have fused MLP for "gelu" activation
config
.
fused_dropout_add_ln
=
True
config
.
residual_in_fp32
=
True
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
eos_token_id
=
tokenizer
.
eos_token_id
torch
.
manual_seed
(
0
)
batch_size
=
1
seqlen
=
100
max_length
=
150
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
model_hf
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
},
trust_remote_code
=
True
)
model_hf
.
eval
()
print
(
"HF fp16"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
torch
.
cuda
.
synchronize
()
print
(
f
'Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms'
)
del
model_hf
model_ref
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
device_map
=
{
""
:
device
},
trust_remote_code
=
True
)
model_ref
.
eval
()
with
torch
.
no_grad
():
logits_ref
=
model_ref
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
):
-
1
]
del
model_ref
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
device
=
device
,
dtype
=
dtype
)
model
.
eval
()
print
(
'Without CUDA graph'
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
eos_token_id
=
eos_token_id
,
fused_ft_kernel
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
)
torch
.
cuda
.
synchronize
()
print
(
f
'Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms'
)
# Capture graph outside the timing loop
batch_size
,
seqlen_og
=
input_ids
.
shape
model
.
_decoding_cache
=
update_graph_cache
(
model
,
None
,
batch_size
,
seqlen_og
,
max_length
)
print
(
'With CUDA graph'
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
True
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
)
torch
.
cuda
.
synchronize
()
print
(
f
'Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms'
)
with
torch
.
no_grad
():
logits_parallel
=
model
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
):
-
1
]
logits_hf
=
torch
.
stack
(
out_hf
.
scores
,
dim
=
1
)
logits
=
torch
.
stack
(
out
.
scores
,
dim
=
1
)
logits_cg
=
torch
.
stack
(
out_cg
.
scores
,
dim
=
1
)
del
model
hf_error
=
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
assert
(
logits_parallel
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
hf_error
print
(
f
'HF fp16 logits max diff:
{
hf_error
}
'
)
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
hf_error
print
(
f
'Logits CG max diff:
{
(
logits_cg
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
assert
torch
.
equal
(
logits_cg
,
logits
)
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_generation"
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough
# memory to run the model in fp32.
@
pytest
.
mark
.
parametrize
(
'world_size'
,
[
4
])
@
pytest
.
mark
.
parametrize
(
'model_name'
,
[
"tiiuae/falcon-40b"
])
def
test_falcon_parallel_generation
(
model_name
,
world_size
):
"""Check that our implementation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
from
apex.transformer
import
parallel_state
dtype
=
torch
.
float16
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
config
.
use_flash_attn
=
False
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
False
# We don't have fused MLP for "gelu" activation
config
.
fused_dropout_add_ln
=
False
config
.
residual_in_fp32
=
True
config
.
pad_vocab_size_multiple
=
8
*
world_size
config
.
sequence_parallel
=
False
# Need to set this to False for generation
os
.
environ
[
"NCCL_ASYNC_ERROR_HANDLING"
]
=
"0"
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'nccl'
,
init_method
=
'env://'
)
device
=
f
'cuda:
{
torch
.
distributed
.
get_rank
()
}
'
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
process_group
=
parallel_state
.
get_tensor_model_parallel_group
()
torch
.
manual_seed
(
0
)
batch_size
=
1
seqlen
=
100
max_length
=
150
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
torch
.
distributed
.
barrier
()
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch
.
cuda
.
set_device
(
device
)
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
process_group
=
process_group
,
device
=
device
,
dtype
=
dtype
)
model
.
load_state_dict
(
shard_state_dict_tp
(
pretrained_state_dict
,
config
,
world_size
,
rank
))
model
.
eval
()
print
(
'Without CUDA graph'
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
True
,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
)
# Capture graph outside the timing loop
batch_size
,
seqlen_og
=
input_ids
.
shape
model
.
_decoding_cache
=
update_graph_cache
(
model
,
None
,
batch_size
,
seqlen_og
,
max_length
)
print
(
'With CUDA graph'
)
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
True
,
cg
=
True
,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
)
del
model
parallel_state
.
destroy_model_parallel
()
if
rank
==
0
:
model_hf
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
"auto"
,
trust_remote_code
=
True
)
model_hf
.
eval
()
print
(
"HF fp16"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
with
torch
.
inference_mode
():
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
torch
.
cuda
.
synchronize
()
print
(
f
'Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms'
)
del
model_hf
model_ref
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
device_map
=
"auto"
,
trust_remote_code
=
True
)
model_ref
.
eval
()
with
torch
.
inference_mode
():
logits_ref
=
model_ref
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
):
-
1
]
del
model_ref
logits_hf
=
torch
.
stack
(
out_hf
.
scores
,
dim
=
1
)
logits
=
torch
.
stack
(
out
.
scores
,
dim
=
1
)
logits_cg
=
torch
.
stack
(
out_cg
.
scores
,
dim
=
1
)
hf_error
=
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
print
(
f
'HF fp16 logits max diff:
{
hf_error
}
'
)
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
hf_error
print
(
f
'Logits CG max diff:
{
(
logits_cg
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
assert
torch
.
equal
(
logits_cg
,
logits
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment