Commit a01d1213 authored by Tri Dao's avatar Tri Dao
Browse files

[Gen] Add kernel from FasterTransformer for benchmarking

parent 4cab4de5
# Attention kernel from FasterTransformer
This CUDA extension wraps the single-query attention [kernel](https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp) from
FasterTransformer v5.2.1 for benchmarking purpose.
```sh
cd csrc/ft_attention && pip install .
```
// Downloaded from from FasterTransformer v5.2.1
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/utils/cuda_bf16_fallbacks.cuh
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "cuda_bf16_wrapper.h"
#include <cuda_fp16.h>
namespace fastertransformer {
#ifdef ENABLE_BF16
inline __device__ float2 bf1622float2(const __nv_bfloat162 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float2 f_val;
f_val.x = __low2float(val);
f_val.y = __high2float(val);
return f_val;
#else
return __bfloat1622float2(val);
#endif
}
inline __device__ int16_t bf1622int16(__nv_bfloat162 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float2 f_val;
f_val.x = max(min(__low2float(val), 127.f), -128.f);
f_val.y = max(min(__high2float(val), 127.f), -128.f);
union { int8_t int8[2]; int16_t int16; };
int8[0] = static_cast<int8_t>(static_cast<short>(f_val.x));
int8[1] = static_cast<int8_t>(static_cast<short>(f_val.y));
return int16;
#else
val = __hmin2(val, make_bfloat162(127., 127.));
val = __hmax2(val, make_bfloat162(-128., -128.));
union { int8_t int8[2]; int16_t int16; };
int8[0] = static_cast<int8_t>(static_cast<short>(val.x));
int8[1] = static_cast<int8_t>(static_cast<short>(val.y));
return int16;
#endif
}
inline __device__ __nv_bfloat162 float22bf162(const float2 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __floats2bfloat162_rn(val.x, val.y);
#else
return __float22bfloat162_rn(val);
#endif
}
inline __device__ __nv_bfloat162 bf162bf162(const __nv_bfloat16 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
__nv_bfloat162 val2;
val2.x = val;
val2.y = val;
return val2;
#else
return __bfloat162bfloat162(val);
#endif
}
inline __device__ __nv_bfloat162 bf16hadd2(const __nv_bfloat162 x, const __nv_bfloat162 y) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float fxl, fxh, fyl, fyh;
fxl = __low2float(x);
fxh = __high2float(x);
fyl = __low2float(y);
fyh = __high2float(y);
return __floats2bfloat162_rn(fxl + fyl, fxh + fyh);
#else
return __hadd2(x, y);
#endif
}
inline __device__ __nv_bfloat16 bf16hadd(const __nv_bfloat16 x, const __nv_bfloat16 y) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __float2bfloat16( __bfloat162float(x) + __bfloat162float(y) );
#else
return __hadd(x, y);
#endif
}
inline __device__ __nv_bfloat162 bf16hsub2(const __nv_bfloat162 x, const __nv_bfloat162 y) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float fxl, fxh, fyl, fyh;
fxl = __low2float(x);
fxh = __high2float(x);
fyl = __low2float(y);
fyh = __high2float(y);
return __floats2bfloat162_rn(fxl - fyl, fxh - fyh);
#else
return __hsub2(x, y);
#endif
}
inline __device__ __nv_bfloat16 bf16hsub(const __nv_bfloat16 x, const __nv_bfloat16 y) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __float2bfloat16( __bfloat162float(x) - __bfloat162float(y) );
#else
return __hsub(x, y);
#endif
}
inline __device__ __nv_bfloat162 bf16hmul2(const __nv_bfloat162 x, const __nv_bfloat162 y) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float fxl, fxh, fyl, fyh;
fxl = __low2float(x);
fxh = __high2float(x);
fyl = __low2float(y);
fyh = __high2float(y);
return __floats2bfloat162_rn(fxl * fyl, fxh * fyh);
#else
return __hmul2(x, y);
#endif
}
inline __device__ __nv_bfloat16 bf16hmul(const __nv_bfloat16 x, const __nv_bfloat16 y) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __float2bfloat16( __bfloat162float(x) * __bfloat162float(y) );
#else
return __hmul(x, y);
#endif
}
inline __device__ __nv_bfloat162 bf16hfma2(const __nv_bfloat162 x, const __nv_bfloat162 y, const __nv_bfloat162 z) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float fxl, fxh, fyl, fyh, fzl, fzh;
fxl = __low2float(x);
fxh = __high2float(x);
fyl = __low2float(y);
fyh = __high2float(y);
fzl = __low2float(z);
fzh = __high2float(z);
return __floats2bfloat162_rn(fxl * fyl + fzl, fxh * fyh + fzh);
#else
return __hfma2(x, y, z);
#endif
}
inline __device__ __nv_bfloat16 bf16hfma(const __nv_bfloat16 x, const __nv_bfloat16 y, const __nv_bfloat16 z) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __float2bfloat16( __bfloat162float(x) * __bfloat162float(y) + __bfloat162float(z));
#else
return __hfma(x, y, z);
#endif
}
inline __device__ __nv_bfloat162 bf16exp2(const __nv_bfloat162 x) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float fxl, fxh;
fxl = __low2float(x);
fxh = __high2float(x);;
return __floats2bfloat162_rn(expf(fxl), expf(fxh));
#else
return h2exp(x);
#endif
}
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800)
inline __device__ __nv_bfloat162 operator*(const __nv_bfloat162 x, const __nv_bfloat162 y) { return bf16hmul2(x, y); };
inline __device__ __nv_bfloat162 operator+(const __nv_bfloat162 x, const __nv_bfloat162 y) { return bf16hadd2(x, y); };
inline __device__ __nv_bfloat162 make_bfloat162(const __nv_bfloat16 x, const __nv_bfloat16 y)
{
__nv_bfloat162 t; t.x = x; t.y = y; return t;
}
#endif
inline __device__ __nv_bfloat16 bf16hadd(__nv_bfloat16 a, __nv_bfloat16 b, __nv_bfloat16 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __float2bfloat16(__bfloat162float(a) + __bfloat162float(b) + __bfloat162float(c));
#else
return a + b + c;
#endif
}
inline __device__ __nv_bfloat16 bf16hadd(__nv_bfloat16 a, __nv_bfloat16 b, __nv_bfloat16 c, __nv_bfloat16 d) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __float2bfloat16(__bfloat162float(a) + __bfloat162float(b) + __bfloat162float(c) + __bfloat162float(d));
#else
return (__nv_bfloat16)((float)a + (float)b + (float)c + (float)d);
#endif
}
inline __device__ __nv_bfloat162 bf16hadd2(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float fal, fah, fbl, fbh, fcl, fch;
fal = __low2float(a);
fah = __high2float(a);
fbl = __low2float(b);
fbh = __high2float(b);
fcl = __low2float(c);
fch = __high2float(c);
return __floats2bfloat162_rn(fal + fbl + fcl, fah + fbh + fch);
#else
return a + b + c;
#endif
}
inline __device__ __nv_bfloat16 bf16hmul(__nv_bfloat16 a, __nv_bfloat16 b, __nv_bfloat16 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __float2bfloat16(__bfloat162float(a) * __bfloat162float(b) * __bfloat162float(c));
#else
return a * b * c;
#endif
}
inline __device__ __nv_bfloat162 bf16hmul2(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float fal, fah, fbl, fbh, fcl, fch;
fal = __low2float(a);
fah = __high2float(a);
fbl = __low2float(b);
fbh = __high2float(b);
fcl = __low2float(c);
fch = __high2float(c);
return __floats2bfloat162_rn(fal * fbl * fcl, fah * fbh * fch);
#else
return a * b * c;
#endif
}
inline __device__ __nv_bfloat162 bf16hfma2(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c, __nv_bfloat162 d) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float fal, fah, fbl, fbh, fcl, fch, fdl, fdh;
fal = __low2float(a);
fah = __high2float(a);
fbl = __low2float(b);
fbh = __high2float(b);
fcl = __low2float(c);
fch = __high2float(c);
fdl = __low2float(d);
fdh = __high2float(d);
return __floats2bfloat162_rn(fal * fbl * fcl + fdl, fah * fbh * fch + fdh);
#else
return a * b * c + d;
#endif
}
#endif // ENABLE_BF16
} // namespace fastertransformer
// Downloaded from from FasterTransformer v5.2.1
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/utils/cuda_bf16_wrapper.h
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifdef ENABLE_BF16
#include <cuda_bf16.h>
#endif
// Adapted from from FasterTransformer v5.2.1
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_128.cu
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "decoder_masked_multihead_attention.h"
#include "decoder_masked_multihead_attention_utils.h"
#include "cuda_bf16_wrapper.h"
#include <assert.h>
#include <float.h>
#include <type_traits>
#include "decoder_masked_multihead_attention_template.hpp"
////////////////////////////////////////////////////////////////////////////////////////////////////
#define MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, THDS_PER_KEY, THDS_PER_VALUE, THDS_PER_BLOCK, DO_CROSS_ATTENTION, stream) \
size_t smem_sz = mmha::smem_size_in_bytes<T, DO_CROSS_ATTENTION>(params, THDS_PER_VALUE, THDS_PER_BLOCK); \
dim3 grid(params.num_heads, params.batch_size); \
mmha::masked_multihead_attention_kernel<T, \
Dh, \
Dh_MAX, \
THDS_PER_KEY, \
THDS_PER_VALUE, \
THDS_PER_BLOCK, \
DO_CROSS_ATTENTION><<<grid, THDS_PER_BLOCK, smem_sz, stream>>>(params)
////////////////////////////////////////////////////////////////////////////////////////////////////
// !!! Specialize the launcher for Cross attention
template<typename T, int Dh, int Dh_MAX, typename KERNEL_PARAMS_TYPE>
void mmha_launch_kernel(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream)
{
constexpr int THREADS_PER_VALUE = Dh_MAX * sizeof(T) / 16;
constexpr bool DO_CROSS_ATTENTION = std::is_same<KERNEL_PARAMS_TYPE, Cross_multihead_attention_params<T>>::value;
int tlength = (DO_CROSS_ATTENTION) ? params.memory_max_len : params.timestep;
// printf("tlength, CROSS_ATTENTION = %d, %d\n", tlength, DO_CROSS_ATTENTION);
if (tlength < 32) {
MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 4, THREADS_PER_VALUE, 64, DO_CROSS_ATTENTION, stream);
}
else if (tlength < 2048) {
MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 2, THREADS_PER_VALUE, 128, DO_CROSS_ATTENTION, stream);
}
else {
MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 1, THREADS_PER_VALUE, 256, DO_CROSS_ATTENTION, stream);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#undef MMHA_LAUNCH_KERNEL
template<typename T, typename KERNEL_PARAMS_TYPE>
void multihead_attention_(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream)
{
switch (params.hidden_size_per_head) {
case 32:
mmha_launch_kernel<T, 32, 32, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 48:
mmha_launch_kernel<T, 48, 64, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 64:
mmha_launch_kernel<T, 64, 64, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 80:
mmha_launch_kernel<T, 80, 128, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 96:
mmha_launch_kernel<T, 96, 128, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 128:
mmha_launch_kernel<T, 128, 128, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 160:
mmha_launch_kernel<T, 160, 256, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 192:
mmha_launch_kernel<T, 192, 256, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 224:
mmha_launch_kernel<T, 224, 256, KERNEL_PARAMS_TYPE>(params, stream);
break;
case 256:
mmha_launch_kernel<T, 256, 256, KERNEL_PARAMS_TYPE>(params, stream);
break;
default:
assert(false);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
void masked_multihead_attention(const Masked_multihead_attention_params<float>& params, const cudaStream_t& stream)
{
multihead_attention_<float, Masked_multihead_attention_params<float>>(params, stream);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
void masked_multihead_attention(const Masked_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream)
{
multihead_attention_<uint16_t, Masked_multihead_attention_params<uint16_t>>(params, stream);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
void masked_multihead_attention(const Masked_multihead_attention_params<__nv_bfloat16>& params,
const cudaStream_t& stream)
{
multihead_attention_<__nv_bfloat16, Masked_multihead_attention_params<__nv_bfloat16>>(params, stream);
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
void cross_multihead_attention(const Cross_multihead_attention_params<float>& params, const cudaStream_t& stream)
{
multihead_attention_<float, Cross_multihead_attention_params<float>>(params, stream);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
void cross_multihead_attention(const Cross_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream)
{
multihead_attention_<uint16_t, Cross_multihead_attention_params<uint16_t>>(params, stream);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
void cross_multihead_attention(const Cross_multihead_attention_params<__nv_bfloat16>& params,
const cudaStream_t& stream)
{
multihead_attention_<__nv_bfloat16, Cross_multihead_attention_params<__nv_bfloat16>>(params, stream);
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// Downloaded from from FasterTransformer v5.2.1
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention.h
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "cuda_bf16_wrapper.h"
#include <cuda_fp16.h>
#include <cuda_runtime_api.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
#define CHECK_CUDA(call) \
do { \
cudaError_t status_ = call; \
if (status_ != cudaSuccess) { \
fprintf(stderr, "CUDA error (%s:%d): %s\n", __FILE__, __LINE__, cudaGetErrorString(status_)); \
exit(1); \
} \
} while (0)
////////////////////////////////////////////////////////////////////////////////////////////////////
// The structure of parameters for the masked multihead attention kernel.
//
// We use the following terminology to describe the different dimensions.
//
// B: Batch size (number of sequences),
// L: Sequence length,
// D: Hidden dimension,
// H: Number of heads,
// Dh: Hidden dimension per head - Dh = D / H.
template<typename T>
struct Multihead_attention_params_base {
// The output buffer. Dimensions B x D.
T* out = nullptr;
// The input Qs and the associated bias. Dimensions B x D and D, resp.
const T *q = nullptr, *q_bias = nullptr;
// The input Ks and the associated bias. Dimensions B x D and D, resp.
const T *k = nullptr, *k_bias = nullptr;
// The input Vs and the associated bias. Dimensions B x D and D, resp.
const T *v = nullptr, *v_bias = nullptr;
// The cache for the Ks. The size must be at least B x L x D.
T* k_cache = nullptr;
// The cache for the Vs. The size must be at least B x L x D.
T* v_cache = nullptr;
// The indirections to use for cache when beam sampling.
const int* cache_indir = nullptr;
// Stride to handle the case when KQV is a single buffer
int stride = 0;
// The batch size.
int batch_size = 0;
// The beam width
int beam_width = 0;
// The sequence length.
int memory_max_len = 0;
// The number of heads (H).
int num_heads = 0;
// The hidden dimension per head (Dh).
int hidden_size_per_head = 0;
// The per-head latent space reserved for rotary embeddings.
int rotary_embedding_dim = 0;
bool neox_rotary_style = false;
// The maximum length of input sentences.
int max_input_length = 0;
// The current timestep. TODO(bhsueh) Check that do we only this param in cross attention?
int timestep = 0;
// The current timestep of each sentences (support different timestep for different sentences)
// The 1.f / sqrt(Dh). Computed on the host.
float inv_sqrt_dh = 0.0f;
// Used when we have some input context like gpt
const int* total_padding_tokens = nullptr;
const bool* masked_tokens = nullptr;
const int* prefix_prompt_lengths = nullptr;
int max_prefix_prompt_length = 0;
const T* relative_attention_bias = nullptr;
int relative_attention_bias_stride = 0;
// The slope per head of linear position bias to attention score (H).
const T* linear_bias_slopes = nullptr;
const T* ia3_key_weights = nullptr;
const T* ia3_value_weights = nullptr;
const int* ia3_tasks = nullptr;
const float* qkv_scale_out = nullptr;
const float* attention_out_scale = nullptr;
int int8_mode = 0;
};
template<typename T, bool CROSS_ATTENTION>
struct Multihead_attention_params: public Multihead_attention_params_base<T> {
// output cross attentions
float* cross_attention_out = nullptr;
int max_decoder_seq_len = 0;
bool is_return_cross_attentions = false;
// allows to exist attention eary
bool* finished = nullptr;
// required in case of cross attention
// will need it here till if constexpr in c++17
int* memory_length_per_sample = nullptr;
// required in case of masked attention with different length
const int* length_per_sample = nullptr;
};
template<typename T>
struct Multihead_attention_params<T, true>: public Multihead_attention_params_base<T> {
// output cross attentions
float* cross_attention_out = nullptr;
int max_decoder_seq_len = 0;
bool is_return_cross_attentions = false;
// allows to exist attention eary
bool* finished = nullptr;
// required in case of cross attention
int* memory_length_per_sample = nullptr;
// required in case of masked attention with different length
const int* length_per_sample = nullptr;
};
template<class T>
using Masked_multihead_attention_params = Multihead_attention_params<T, false>;
template<class T>
using Cross_multihead_attention_params = Multihead_attention_params<T, true>;
template<typename T>
struct outputCrossAttentionParam {
// max decoder output length
int max_decoder_seq_len = 0;
T* cross_attention_out = nullptr;
bool is_return_cross_attentions = false;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
void masked_multihead_attention(const Masked_multihead_attention_params<float>& params, const cudaStream_t& stream);
void masked_multihead_attention(const Masked_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream);
#ifdef ENABLE_BF16
void masked_multihead_attention(const Masked_multihead_attention_params<__nv_bfloat16>& params,
const cudaStream_t& stream);
#endif
void cross_multihead_attention(const Cross_multihead_attention_params<float>& params, const cudaStream_t& stream);
void cross_multihead_attention(const Cross_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream);
#ifdef ENABLE_BF16
void cross_multihead_attention(const Cross_multihead_attention_params<__nv_bfloat16>& params,
const cudaStream_t& stream);
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
This diff is collapsed.
#include <torch/extension.h>
#include "ATen/cuda/CUDAContext.h"
#include "decoder_masked_multihead_attention.h"
#define CHECK_DEVICE(x) TORCH_CHECK(x.device().type() == torch::kCUDA, #x " must be on CUDA")
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, NAME, ...) \
if (TYPE == at::ScalarType::Half) { \
using scalar_t = at::Half; \
__VA_ARGS__(); \
} else if (TYPE == at::ScalarType::BFloat16) { \
using scalar_t = at::BFloat16; \
__VA_ARGS__(); \
} else if (TYPE == at::ScalarType::Float) { \
using scalar_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for type '", toString(TYPE), "'"); \
}
// #define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, NAME, ...) \
// if (TYPE == at::ScalarType::Half) { \
// using scalar_t = at::Half; \
// __VA_ARGS__(); \
// } else if (TYPE == at::ScalarType::Float) { \
// using scalar_t = float; \
// __VA_ARGS__(); \
// } else { \
// AT_ERROR(#NAME, " not implemented for type '", toString(TYPE), "'"); \
// }
template<typename T>
void masked_multihead_attention(const Masked_multihead_attention_params<T>& params,
const cudaStream_t& stream);
template<typename T>
void cross_multihead_attention(const Masked_multihead_attention_params<T>& params,
const cudaStream_t& stream);
template<typename T>
struct SATypeConverter {
using Type = T;
};
template<>
struct SATypeConverter<at::Half> {
using Type = uint16_t;
};
template<>
struct SATypeConverter<at::BFloat16> {
using Type = __nv_bfloat16;
};
template <typename T>
void set_params(Masked_multihead_attention_params<T> &params,
const size_t batch_size,
const size_t nheads,
const size_t memory_max_seqlen,
const size_t headdim,
const int timestep,
const int rotary_embedding_dim,
const bool neox_rotary_style,
T *q_ptr,
T *k_ptr,
T *v_ptr,
T *k_cache_ptr,
T *v_cache_ptr,
int *length_per_sample,
T *out_ptr) {
// Reset the parameters
memset(&params, 0, sizeof(params));
params.q = q_ptr;
params.k = k_ptr;
params.v = v_ptr;
params.q_bias = nullptr;
params.k_bias = nullptr;
params.v_bias = nullptr;
params.k_cache = k_cache_ptr;
params.v_cache = v_cache_ptr;
params.out = out_ptr;
params.cache_indir = nullptr;
params.stride = 0;
params.batch_size = batch_size;
params.beam_width = 1;
params.memory_max_len = memory_max_seqlen;
params.num_heads = nheads;
params.hidden_size_per_head = headdim;
params.rotary_embedding_dim = rotary_embedding_dim;
params.neox_rotary_style = neox_rotary_style;
params.timestep = timestep;
params.inv_sqrt_dh = 1.f / sqrt(float(headdim));
params.total_padding_tokens = nullptr;
params.masked_tokens = nullptr;
params.prefix_prompt_lengths = nullptr;
// params.max_prefix_prompt_length = memory_max_seqlen; // TODO: waht should this be?
params.max_prefix_prompt_length = 0; // TODO: waht should this be?
params.relative_attention_bias = nullptr;
params.relative_attention_bias_stride = 0;
params.cross_attention_out = nullptr;
params.max_decoder_seq_len = 0;
params.is_return_cross_attentions = false;
params.finished = nullptr;
params.memory_length_per_sample = nullptr;
params.length_per_sample = length_per_sample;
}
torch::Tensor single_query_attention(const torch::Tensor q,
const torch::Tensor k,
const torch::Tensor v,
torch::Tensor k_cache,
torch::Tensor v_cache,
c10::optional<const torch::Tensor> length_per_sample_,
const int timestep,
const int rotary_embedding_dim = 0,
const bool neox_rotary_style=true) {
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(k_cache); CHECK_DEVICE(v_cache);
int batch_size = v_cache.size(0);
int nheads = v_cache.size(1);
int memory_max_seqlen = v_cache.size(2);
int headdim = v_cache.size(3);
CHECK_SHAPE(q, batch_size, nheads, headdim);
CHECK_SHAPE(k, batch_size, nheads, headdim);
CHECK_SHAPE(v, batch_size, nheads, headdim);
// TODO: Check shape of k_cache: [B, H, Dh/x, L, x] where x=8 for fp16 and x=4 for fp32
// TODO: avoid contiguous requirment by storing the stride
CHECK_CONTIGUOUS(q); CHECK_CONTIGUOUS(k); CHECK_CONTIGUOUS(v);
CHECK_CONTIGUOUS(v_cache);
if (length_per_sample_.has_value()) {
auto length_per_sample = length_per_sample_.value();
CHECK_DEVICE(length_per_sample);
CHECK_SHAPE(length_per_sample, batch_size);
CHECK_CONTIGUOUS(length_per_sample);
TORCH_CHECK(length_per_sample.dtype() == torch::kInt32);
}
torch::Tensor out = torch::empty_like(q);
DISPATCH_FLOAT_AND_HALF_AND_BF16(q.scalar_type(), out.scalar_type(), "single_query_attention", [&] {
using DataType = typename SATypeConverter<scalar_t>::Type;
Masked_multihead_attention_params<DataType> params;
set_params(params, batch_size, nheads, memory_max_seqlen, headdim, timestep,
rotary_embedding_dim, neox_rotary_style,
reinterpret_cast<DataType*>(q.data_ptr()),
reinterpret_cast<DataType*>(k.data_ptr()),
reinterpret_cast<DataType*>(v.data_ptr()),
reinterpret_cast<DataType*>(k_cache.data_ptr()),
reinterpret_cast<DataType*>(v_cache.data_ptr()),
length_per_sample_.has_value()
? length_per_sample_.value().data_ptr<int>() : nullptr,
reinterpret_cast<DataType*>(out.data_ptr()));
auto stream = at::cuda::getCurrentCUDAStream();
masked_multihead_attention(params, stream);
});
return out;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("single_query_attention", &single_query_attention, "Attention with a single query",
py::arg("q"), py::arg("k"), py::arg("v"), py::arg("k_cache"), py::arg("v_cache"),
py::arg("length_per_sample_"), py::arg("timestep"), py::arg("rotary_embedding_dim")=0,
py::arg("neox_rotary_style")=true);
}
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
from setuptools import setup, find_packages
import subprocess
import sys
import warnings
import os
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
raise RuntimeError(
"Cuda extensions are being compiled with a version of Cuda that does "
"not match the version used to compile Pytorch binaries. "
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
+ "In some cases, a minor-version mismatch will not cause later errors: "
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
"You can try commenting out this check (at your own risk)."
)
def raise_if_cuda_home_none(global_option: str) -> None:
if CUDA_HOME is not None:
return
raise RuntimeError(
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
"only images whose names contain 'devel' will provide nvcc."
)
def append_nvcc_threads(nvcc_extra_args):
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
return nvcc_extra_args + ["--threads", "4"]
return nvcc_extra_args
if not torch.cuda.is_available():
# https://github.com/NVIDIA/apex/issues/486
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
print(
"\nWarning: Torch did not find available GPUs on this system.\n",
"If your intention is to cross-compile, this is not an error.\n"
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
)
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
if int(bare_metal_minor) > 0:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
cmdclass = {}
ext_modules = []
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
generator_flag = ["-DOLD_GENERATOR_PATH"]
raise_if_cuda_home_none("--ft_attention")
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
# cc_flag.append("-gencode")
# cc_flag.append("arch=compute_70,code=sm_70")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
ext_modules.append(
CUDAExtension(
name="ft_attention",
sources=[
"ft_attention.cpp",
"decoder_masked_multihead_attention.cu",
],
extra_compile_args={
"cxx": ["-O3", "-DENABLE_BF16"] + generator_flag,
"nvcc": append_nvcc_threads(
[
"-DENABLE_BF16", # TODO
"-O3",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
]
+ generator_flag
+ cc_flag
),
},
include_dirs=[this_dir],
)
)
setup(
name="ft_attention",
version="0.1",
description="Attention for single query from FasterTransformer",
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension} if ext_modules else {},
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment