Commit 226a1b72 authored by Tri Dao's avatar Tri Dao
Browse files

Implement TensorParallel for FusedDense and FusedDenseGeluDense

parent dff68c2b
......@@ -2,6 +2,7 @@
// We make it work for bfloat16
#include <torch/extension.h>
#include <torch/torch.h>
#include <c10/cuda/CUDAGuard.h>
#include <vector>
#include <stdio.h>
......@@ -50,6 +51,10 @@ std::vector<at::Tensor> linear_bias_wgrad(at::Tensor input, at::Tensor d_output,
CHECK_SHAPE(input, batch_size, in_features);
CHECK_SHAPE(d_output, batch_size, out_features);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
// create output/workspace tensor
auto opts = input.options();
auto d_weight = at::empty({out_features, in_features}, opts);
......@@ -104,6 +109,10 @@ std::vector<at::Tensor> linear_gelu_forward(at::Tensor input, at::Tensor weight,
CHECK_SHAPE(bias, out_features);
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
// create output/workspace tensor
auto opts = input.options();
auto output = at::empty({batch_size, out_features}, opts);
......@@ -153,6 +162,10 @@ std::vector<at::Tensor> bias_gelu_linear_dgrad_bgrad(
CHECK_SHAPE(d_output, batch_size, out_features);
CHECK_SHAPE(gelu_in, batch_size, in_features);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)weight.get_device()};
// create output/workspace tensor
auto opts = weight.options();
auto d_bias = at::empty({in_features}, opts);
......
......@@ -5,9 +5,9 @@ import torch.nn as nn
import torch.nn.functional as F
try:
from flash_attn.ops.fused_dense import FusedDenseGeluDense
from flash_attn.ops.fused_dense import FusedDenseGeluDense, ParallelFusedDenseGeluDense
except ImportError:
FusedDenseGeluDense = None
FusedDenseGeluDense, ParallelFusedDenseGeluDense = None, None
class Mlp(nn.Module):
......
This diff is collapsed.
from typing import Optional
import torch
from torch import Tensor
from torch.distributed import ProcessGroup
# `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for
# `_all_gather_base` and `_reduce_scatter_base`. They require the most recent
# version of PyTorch. The following 4 lines are for backward compatibility with
# older PyTorch.
if "all_gather_into_tensor" not in dir(torch.distributed):
torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base
if "reduce_scatter_tensor" not in dir(torch.distributed):
torch.distributed.reduce_scatter_tensor = torch.distributed._reduce_scatter_base
# Raw operation, oes does support autograd, but does support async
def all_gather_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False):
world_size = torch.distributed.get_world_size(process_group)
output = torch.empty(world_size * input_.shape[0], *input_.shape[1:],
dtype=input_.dtype, device=input_.device)
handle = torch.distributed.all_gather_into_tensor(output, input_.contiguous(),
group=process_group, async_op=async_op)
return output, handle
# Raw operation, oes does support autograd, but does support async
def reduce_scatter_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False):
world_size = torch.distributed.get_world_size(process_group)
assert input_.shape[0] % world_size == 0
output = torch.empty(input_.shape[0] // world_size, *input_.shape[1:],
dtype=input_.dtype, device=input_.device)
handle = torch.distributed.reduce_scatter_tensor(output, input_.contiguous(),
group=process_group,
async_op=async_op)
return output, handle
class AllGatherFunc(torch.autograd.Function):
"""Gather the input from sequence parallel region and concatenate."""
@staticmethod
def forward(ctx, input_: Tensor, process_group: ProcessGroup) -> Tensor:
ctx.process_group = process_group
output, _ = all_gather_raw(input_, process_group)
return output
@staticmethod
def backward(ctx, grad_output: Tensor):
grad_input, _ = reduce_scatter_raw(grad_output, ctx.process_group)
return grad_input, None
# Supports autograd, but does not support async
all_gather = AllGatherFunc.apply
class ReduceScatterFunc(torch.autograd.Function):
"""Reduce scatter the input from the sequence parallel region and concatenate."""
@staticmethod
def forward(ctx, input_: Tensor, process_group: ProcessGroup) -> Tensor:
ctx.process_group = process_group
output, _ = reduce_scatter_raw(input_, process_group)
return output
@staticmethod
def backward(ctx, grad_output: Tensor):
grad_input, _ = all_gather_raw(grad_output, ctx.process_group)
return grad_input, None
# Supports autograd, but does not support async
reduce_scatter = ReduceScatterFunc.apply
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/ops/test_fused_dense_parallel.py
import math
import torch
import torch.nn.functional as F
import pytest
from apex.transformer import parallel_state
from apex.transformer import tensor_parallel
from flash_attn.ops.fused_dense import FusedDense, FusedDenseGeluDense
from flash_attn.ops.fused_dense import ColumnParallelLinear, ParallelFusedDenseGeluDense
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [8])
@pytest.mark.parametrize('has_bias', [True, False])
# @pytest.mark.parametrize('has_bias', [True])
@pytest.mark.parametrize('out_features', [1024, 4096])
# @pytest.mark.parametrize('out_features', [1024])
@pytest.mark.parametrize('in_features', [1024, 4096])
# @pytest.mark.parametrize('in_features', [4096])
def test_fused_linear_bias(in_features, out_features, has_bias, world_size, dtype):
assert out_features % world_size == 0
rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl', init_method='env://')
device = f'cuda:{torch.distributed.get_rank()}'
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
assert batch_size * seqlen % world_size == 0
x_pt = torch.randn(batch_size * seqlen, in_features, device=device, dtype=dtype,
requires_grad=True)
x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_()
model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype)
partition_out_features = out_features // world_size
model = ColumnParallelLinear(in_features, out_features,
parallel_state.get_tensor_model_parallel_group(), bias=has_bias,
device=device, dtype=dtype)
with torch.no_grad():
model.weight.copy_(
model_pt.weight[rank * partition_out_features:(rank + 1) * partition_out_features]
)
if has_bias:
model.bias.copy_(
model_pt.bias[rank * partition_out_features:(rank + 1) * partition_out_features]
)
out = model(x)
out_pt = model_pt(x_pt)
assert torch.allclose(
out, out_pt[:, rank * partition_out_features:(rank + 1) * partition_out_features],
rtol=rtol, atol=atol
)
# If we don't divide by batch_size, the gradient gets a bit too large.
g = torch.randn_like(out_pt) / 32
out_pt.backward(g)
out.backward(g[:, rank * partition_out_features:(rank + 1) * partition_out_features])
parallel_state.destroy_model_parallel()
partition_batch_dim = batch_size * seqlen // world_size
assert torch.allclose(
x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
# The error for d_weight and d_bias is quite a bit higher
assert torch.allclose(
model.weight.grad,
model_pt.weight.grad[rank * partition_out_features:(rank + 1) * partition_out_features],
rtol=rtol, atol=atol * 10
)
if has_bias:
assert torch.allclose(
model.bias.grad,
model_pt.bias.grad[rank * partition_out_features:(rank + 1) * partition_out_features],
rtol=rtol, atol=atol * 5
)
@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('has_bias2', [True, False])
# @pytest.mark.parametrize('has_bias2', [True])
@pytest.mark.parametrize('out_features', [1024, 4096])
# @pytest.mark.parametrize('out_features', [1024])
@pytest.mark.parametrize('in_features', [1024, 4096])
# @pytest.mark.parametrize('in_features', [1024])
def test_fused_dense_gelu_dense(in_features, out_features, has_bias2, world_size, dtype):
assert out_features % world_size == 0
rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl', init_method='env://')
device = f'cuda:{torch.distributed.get_rank()}'
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
assert batch_size * seqlen % world_size == 0
x_pt = torch.randn(batch_size * seqlen, in_features, device=device, dtype=dtype,
requires_grad=True)
# We need to generate g here so that all processes get the same gradient,
# as rank 0 will have an extra bias that changes the RNG.
# If we don't divide by batch_size, the gradient gets a bit too large.
g = torch.randn_like(x_pt) / 32
x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_()
model_pt_fc1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype)
model_pt_fc2 = torch.nn.Linear(out_features, in_features, bias=has_bias2, device=device,
dtype=dtype)
partition_out_features = out_features // world_size
partition_in_features = in_features // world_size
model = ParallelFusedDenseGeluDense(in_features, out_features, in_features,
process_group=parallel_state.get_tensor_model_parallel_group(),
bias2=has_bias2 and rank == 0, device=device, dtype=dtype)
with torch.no_grad():
model.fc1.weight.copy_(
model_pt_fc1.weight[rank * partition_out_features:(rank + 1) * partition_out_features]
)
model.fc1.bias.copy_(
model_pt_fc1.bias[rank * partition_out_features:(rank + 1) * partition_out_features]
)
model.fc2.weight.copy_(
model_pt_fc2.weight[:, rank * partition_out_features:(rank + 1) * partition_out_features]
)
if has_bias2 and rank == 0:
model.fc2.bias.copy_(model_pt_fc2.bias)
out = model(x)
out_pt = model_pt_fc2(F.gelu(model_pt_fc1(x_pt), approximate='tanh'))
partition_batch_dim = batch_size * seqlen // world_size
assert torch.allclose(
out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
out_pt.backward(g)
out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim])
parallel_state.destroy_model_parallel()
assert torch.allclose(
x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
# The error for d_weight and d_bias is quite a bit higher
assert torch.allclose(
model.fc1.weight.grad,
model_pt_fc1.weight.grad[rank * partition_out_features:(rank + 1) * partition_out_features],
rtol=rtol, atol=atol * 10
)
assert torch.allclose(
model.fc1.bias.grad,
model_pt_fc1.bias.grad[rank * partition_out_features:(rank + 1) * partition_out_features],
rtol=rtol, atol=atol * 5
)
assert torch.allclose(
model.fc2.weight.grad,
model_pt_fc2.weight.grad[:, rank * partition_out_features:(rank + 1) * partition_out_features],
rtol=rtol, atol=atol * 10
)
if has_bias2 and rank == 0:
assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment