Commit 01771645 authored by Tri Dao's avatar Tri Dao
Browse files

[LayerNorm] Add postnorm residual + LayerNorm/RMSNorm in Triton

parent 79bd1a2d
...@@ -15,7 +15,7 @@ import triton ...@@ -15,7 +15,7 @@ import triton
import triton.language as tl import triton.language as tl
def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False): def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
dtype = x.dtype dtype = x.dtype
if upcast: if upcast:
weight = weight.float() weight = weight.float()
...@@ -25,11 +25,13 @@ def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False): ...@@ -25,11 +25,13 @@ def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
residual = residual.float() if residual is not None else residual residual = residual.float() if residual is not None else residual
if residual is not None: if residual is not None:
x = (x + residual).to(x.dtype) x = (x + residual).to(x.dtype)
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(dtype) out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
return out if residual is None else (out, x) dtype
)
return out if not prenorm else (out, x)
def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False): def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
dtype = x.dtype dtype = x.dtype
if upcast: if upcast:
weight = weight.float() weight = weight.float()
...@@ -42,7 +44,7 @@ def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False): ...@@ -42,7 +44,7 @@ def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps) rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight) out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
out = out.to(dtype) out = out.to(dtype)
return out if residual is None else (out, x) return out if not prenorm else (out, x)
@triton.autotune( @triton.autotune(
...@@ -54,7 +56,7 @@ def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False): ...@@ -54,7 +56,7 @@ def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
triton.Config({}, num_warps=16), triton.Config({}, num_warps=16),
triton.Config({}, num_warps=32), triton.Config({}, num_warps=32),
], ],
key=["N", "HAS_RESIDUAL", "IS_RMS_NORM", "HAS_BIAS"], key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
) )
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None}) # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
...@@ -77,6 +79,7 @@ def _layer_norm_fwd_1pass_kernel( ...@@ -77,6 +79,7 @@ def _layer_norm_fwd_1pass_kernel(
IS_RMS_NORM: tl.constexpr, IS_RMS_NORM: tl.constexpr,
BLOCK_N: tl.constexpr, BLOCK_N: tl.constexpr,
HAS_RESIDUAL: tl.constexpr, HAS_RESIDUAL: tl.constexpr,
STORE_RESIDUAL_OUT: tl.constexpr,
HAS_BIAS: tl.constexpr, HAS_BIAS: tl.constexpr,
): ):
# Map the program id to the row of X and Y it should compute. # Map the program id to the row of X and Y it should compute.
...@@ -85,21 +88,23 @@ def _layer_norm_fwd_1pass_kernel( ...@@ -85,21 +88,23 @@ def _layer_norm_fwd_1pass_kernel(
Y += row * stride_y_row Y += row * stride_y_row
if HAS_RESIDUAL: if HAS_RESIDUAL:
RESIDUAL += row * stride_res_row RESIDUAL += row * stride_res_row
if STORE_RESIDUAL_OUT:
RESIDUAL_OUT += row * stride_res_out_row RESIDUAL_OUT += row * stride_res_out_row
# Compute mean and variance # Compute mean and variance
cols = tl.arange(0, BLOCK_N) cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
if HAS_RESIDUAL: if HAS_RESIDUAL:
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.).to(tl.float32) residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
x += residual x += residual
if STORE_RESIDUAL_OUT:
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N) tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
if not IS_RMS_NORM: if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean) tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.) xbar = tl.where(cols < N, x - mean, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N var = tl.sum(xbar * xbar, axis=0) / N
else: else:
xbar = tl.where(cols < N, x, 0.) xbar = tl.where(cols < N, x, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps) rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd) tl.store(Rstd + row, rstd)
...@@ -114,7 +119,9 @@ def _layer_norm_fwd_1pass_kernel( ...@@ -114,7 +119,9 @@ def _layer_norm_fwd_1pass_kernel(
tl.store(Y + cols, y, mask=mask) tl.store(Y + cols, y, mask=mask)
def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False): def _layer_norm_fwd(x, weight, bias, eps, residual=None, residual_dtype=None, is_rms_norm=False):
if residual is not None:
residual_dtype = residual.dtype
M, N = x.shape M, N = x.shape
assert x.stride(-1) == 1 assert x.stride(-1) == 1
if residual is not None: if residual is not None:
...@@ -128,13 +135,13 @@ def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False): ...@@ -128,13 +135,13 @@ def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False):
# allocate output # allocate output
y = torch.empty_like(x) y = torch.empty_like(x)
assert y.stride(-1) == 1 assert y.stride(-1) == 1
if residual is not None: if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
residual_out = torch.empty_like(residual) residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
assert residual_out.stride(-1) == 1 assert residual_out.stride(-1) == 1
else: else:
residual_out = None residual_out = None
mean = torch.empty((M, ), dtype=torch.float32, device='cuda') if not is_rms_norm else None mean = torch.empty((M,), dtype=torch.float32, device="cuda") if not is_rms_norm else None
rstd = torch.empty((M, ), dtype=torch.float32, device='cuda') rstd = torch.empty((M,), dtype=torch.float32, device="cuda")
# Less than 64KB per feature: enqueue fused kernel # Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size() MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
...@@ -142,18 +149,29 @@ def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False): ...@@ -142,18 +149,29 @@ def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False):
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps # heuristics for number of warps
with torch.cuda.device(x.device.index): with torch.cuda.device(x.device.index):
_layer_norm_fwd_1pass_kernel[(M,)](x, y, weight, bias, residual, residual_out, _layer_norm_fwd_1pass_kernel[(M,)](
mean, rstd, x,
x.stride(0), y.stride(0), y,
weight,
bias,
residual,
residual_out,
mean,
rstd,
x.stride(0),
y.stride(0),
residual.stride(0) if residual is not None else 0, residual.stride(0) if residual is not None else 0,
residual_out.stride(0) if residual is not None else 0, residual_out.stride(0) if residual_out is not None else 0,
N, eps, N,
eps,
is_rms_norm, is_rms_norm,
BLOCK_N, BLOCK_N,
residual is not None, residual is not None,
residual_out is not None,
bias is not None, bias is not None,
) )
return y, mean, rstd, residual_out # residual_out is None if residual is None and residual_dtype == input_dtype
return y, mean, rstd, residual_out if residual_out is not None else x
@triton.autotune( @triton.autotune(
...@@ -218,7 +236,7 @@ def _layer_norm_bwd_kernel( ...@@ -218,7 +236,7 @@ def _layer_norm_bwd_kernel(
Y += row_start * stride_y_row Y += row_start * stride_y_row
w = tl.load(W + cols, mask=mask).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32)
if RECOMPUTE_OUTPUT and HAS_BIAS: if RECOMPUTE_OUTPUT and HAS_BIAS:
b = tl.load(B + cols, mask=mask, other=0.).to(tl.float32) b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
dw = tl.zeros((BLOCK_N,), dtype=tl.float32) dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
if HAS_BIAS: if HAS_BIAS:
db = tl.zeros((BLOCK_N,), dtype=tl.float32) db = tl.zeros((BLOCK_N,), dtype=tl.float32)
...@@ -232,7 +250,7 @@ def _layer_norm_bwd_kernel( ...@@ -232,7 +250,7 @@ def _layer_norm_bwd_kernel(
rstd = tl.load(Rstd + row) rstd = tl.load(Rstd + row)
# Compute dx # Compute dx
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
xhat = tl.where(mask, xhat, 0.) xhat = tl.where(mask, xhat, 0.0)
if RECOMPUTE_OUTPUT: if RECOMPUTE_OUTPUT:
y = xhat * w + b if HAS_BIAS else xhat * w y = xhat * w + b if HAS_BIAS else xhat * w
tl.store(Y + cols, y, mask=mask) tl.store(Y + cols, y, mask=mask)
...@@ -269,8 +287,20 @@ def _layer_norm_bwd_kernel( ...@@ -269,8 +287,20 @@ def _layer_norm_bwd_kernel(
tl.store(DB + row_block_id * N + cols, db, mask=mask) tl.store(DB + row_block_id * N + cols, db, mask=mask)
def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms_norm=False, x_dtype=None, def _layer_norm_bwd(
recompute_output=False): dy,
x,
weight,
bias,
eps,
mean,
rstd,
dresidual=None,
has_residual=False,
is_rms_norm=False,
x_dtype=None,
recompute_output=False,
):
M, N = x.shape M, N = x.shape
assert x.stride(-1) == 1 assert x.stride(-1) == 1
assert dy.stride(-1) == 1 assert dy.stride(-1) == 1
...@@ -284,8 +314,12 @@ def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms ...@@ -284,8 +314,12 @@ def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms
assert bias.stride(-1) == 1 assert bias.stride(-1) == 1
assert bias.shape == (N,) assert bias.shape == (N,)
# allocate output # allocate output
dx = torch.empty_like(x) if x_dtype is None else torch.empty(M, N, dtype=x_dtype, device=x.device) dx = (
dresidual_in = torch.empty_like(dresidual) if dresidual is not None and dx.dtype != dresidual.dtype else None torch.empty_like(x)
if x_dtype is None
else torch.empty(M, N, dtype=x_dtype, device=x.device)
)
dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
# Less than 64KB per feature: enqueue fused kernel # Less than 64KB per feature: enqueue fused kernel
...@@ -295,37 +329,64 @@ def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms ...@@ -295,37 +329,64 @@ def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device) _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
_db = torch.empty((sm_count, N), dtype=torch.float32, device=bias.device) if bias is not None else None _db = (
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
if bias is not None
else None
)
rows_per_program = math.ceil(M / sm_count) rows_per_program = math.ceil(M / sm_count)
grid = (sm_count,) grid = (sm_count,)
with torch.cuda.device(x.device.index): with torch.cuda.device(x.device.index):
_layer_norm_bwd_kernel[grid](x, weight, bias, y, _layer_norm_bwd_kernel[grid](
dy, dx, _dw, _db, dresidual, dresidual_in, x,
mean, rstd, weight,
bias,
y,
dy,
dx,
_dw,
_db,
dresidual,
dresidual_in,
mean,
rstd,
x.stride(0), x.stride(0),
0 if not recompute_output else y.stride(0), 0 if not recompute_output else y.stride(0),
dy.stride(0), dx.stride(0), dy.stride(0),
dx.stride(0),
dresidual.stride(0) if dresidual is not None else 0, dresidual.stride(0) if dresidual is not None else 0,
dresidual_in.stride(0) if dresidual_in is not None else 0, dresidual_in.stride(0) if dresidual_in is not None else 0,
M, N, eps, M,
N,
eps,
rows_per_program, rows_per_program,
is_rms_norm, is_rms_norm,
BLOCK_N, BLOCK_N,
dresidual is not None, dresidual is not None,
dresidual_in is not None, dresidual_in is not None,
bias is not None) bias is not None,
)
dw = _dw.sum(0).to(weight.dtype) dw = _dw.sum(0).to(weight.dtype)
db = _db.sum(0).to(bias.dtype) if bias is not None else None db = _db.sum(0).to(bias.dtype) if bias is not None else None
# Don't need to compute dresidual_in separately in this case # Don't need to compute dresidual_in separately in this case
if dresidual is not None and dx.dtype == dresidual.dtype: if has_residual and dx.dtype == x.dtype:
dresidual_in = dx dresidual_in = dx
return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y) return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y)
class LayerNormFn(torch.autograd.Function): class LayerNormFn(torch.autograd.Function):
@staticmethod @staticmethod
def forward(ctx, x, weight, bias, residual=None, eps=1e-6, is_rms_norm=False): def forward(
ctx,
x,
weight,
bias,
residual=None,
eps=1e-6,
prenorm=False,
residual_in_fp32=False,
is_rms_norm=False,
):
x_shape_og = x.shape x_shape_og = x.shape
# reshape input data into 2D tensor # reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1]) x = x.reshape(-1, x.shape[-1])
...@@ -339,17 +400,23 @@ class LayerNormFn(torch.autograd.Function): ...@@ -339,17 +400,23 @@ class LayerNormFn(torch.autograd.Function):
weight = weight.contiguous() weight = weight.contiguous()
if bias is not None: if bias is not None:
bias = bias.contiguous() bias = bias.contiguous()
y, mean, rstd, *rest = _layer_norm_fwd(x, weight, bias, eps, residual, is_rms_norm) residual_dtype = (
if residual is not None: residual.dtype
residual_out = rest[0] if residual is not None
ctx.save_for_backward(x if residual is None else residual_out, weight, bias, mean, rstd) else (torch.float32 if residual_in_fp32 else None)
)
y, mean, rstd, residual_out = _layer_norm_fwd(
x, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm
)
ctx.save_for_backward(residual_out, weight, bias, mean, rstd)
ctx.x_shape_og = x_shape_og ctx.x_shape_og = x_shape_og
ctx.eps = eps ctx.eps = eps
ctx.is_rms_norm = is_rms_norm ctx.is_rms_norm = is_rms_norm
ctx.has_residual = residual is not None ctx.has_residual = residual is not None
ctx.prenorm = prenorm
ctx.x_dtype = x.dtype ctx.x_dtype = x.dtype
y = y.reshape(x_shape_og) y = y.reshape(x_shape_og)
return y if residual is None else (y, residual_out.reshape(x_shape_og)) return y if not prenorm else (y, residual_out.reshape(x_shape_og))
@staticmethod @staticmethod
def backward(ctx, dy, *args): def backward(ctx, dy, *args):
...@@ -358,7 +425,7 @@ class LayerNormFn(torch.autograd.Function): ...@@ -358,7 +425,7 @@ class LayerNormFn(torch.autograd.Function):
if dy.stride(-1) != 1: if dy.stride(-1) != 1:
dy = dy.contiguous() dy = dy.contiguous()
assert dy.shape == x.shape assert dy.shape == x.shape
if ctx.has_residual: if ctx.prenorm:
dresidual = args[0] dresidual = args[0]
dresidual = dresidual.reshape(-1, dresidual.shape[-1]) dresidual = dresidual.reshape(-1, dresidual.shape[-1])
if dresidual.stride(-1) != 1: if dresidual.stride(-1) != 1:
...@@ -366,17 +433,46 @@ class LayerNormFn(torch.autograd.Function): ...@@ -366,17 +433,46 @@ class LayerNormFn(torch.autograd.Function):
assert dresidual.shape == x.shape assert dresidual.shape == x.shape
else: else:
dresidual = None dresidual = None
dx, dw, db, dresidual_in = _layer_norm_bwd(dy, x, weight, bias, ctx.eps, mean, rstd, dresidual, dx, dw, db, dresidual_in = _layer_norm_bwd(
ctx.is_rms_norm, x_dtype=ctx.x_dtype) dy,
return dx.reshape(ctx.x_shape_og), dw, db, dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, None, None x,
weight,
bias,
ctx.eps,
mean,
rstd,
dresidual,
ctx.has_residual,
ctx.is_rms_norm,
x_dtype=ctx.x_dtype,
)
return (
dx.reshape(ctx.x_shape_og),
dw,
db,
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
None,
None,
None,
None,
)
def layer_norm_fn(x, weight, bias, residual=None, eps=1e-6, is_rms_norm=False): def layer_norm_fn(
return LayerNormFn.apply(x, weight, bias, residual, eps, is_rms_norm) x,
weight,
bias,
residual=None,
eps=1e-6,
prenorm=False,
residual_in_fp32=False,
is_rms_norm=False,
):
return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, is_rms_norm)
def rms_norm_fn(x, weight, bias, residual=None, eps=1e-6): def rms_norm_fn(x, weight, bias, residual=None, prenorm=False, residual_in_fp32=False, eps=1e-6):
return LayerNormFn.apply(x, weight, bias, residual, eps, True) return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, True)
class RMSNorm(torch.nn.Module): class RMSNorm(torch.nn.Module):
...@@ -391,5 +487,14 @@ class RMSNorm(torch.nn.Module): ...@@ -391,5 +487,14 @@ class RMSNorm(torch.nn.Module):
def reset_parameters(self): def reset_parameters(self):
torch.nn.init.ones_(self.weight) torch.nn.init.ones_(self.weight)
def forward(self, x, residual=None): def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
return layer_norm_fn(x, self.weight, self.bias, residual=residual, eps=self.eps, is_rms_norm=True) return rms_norm_fn(
x,
self.weight,
self.bias,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32,
is_rms_norm=True,
)
...@@ -11,30 +11,32 @@ from flash_attn.ops.triton.layernorm import layer_norm_fn, layer_norm_ref, rms_n ...@@ -11,30 +11,32 @@ from flash_attn.ops.triton.layernorm import layer_norm_fn, layer_norm_ref, rms_n
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
@pytest.mark.parametrize("prenorm", [True, False])
# @pytest.mark.parametrize("prenorm", [True])
@pytest.mark.parametrize("is_rms_norm", [False, True]) @pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize("is_rms_norm", [True]) # @pytest.mark.parametrize("is_rms_norm", [True])
@pytest.mark.parametrize("has_residual", [True, False]) @pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize("has_residual", [True]) # @pytest.mark.parametrize("has_residual", [False])
@pytest.mark.parametrize( @pytest.mark.parametrize(
"weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else []) "weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else [])
) )
# @pytest.mark.parametrize("weight_dtype", [torch.float32]) # @pytest.mark.parametrize("weight_dtype", [torch.float32])
@pytest.mark.parametrize( @pytest.mark.parametrize(
"input_dtype,residual_dtype", "input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []), + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
) )
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)]) # @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)])
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 8192]) @pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 8192])
# @pytest.mark.parametrize("hidden_size", [256]) # @pytest.mark.parametrize("hidden_size", [256])
def test_layer_norm( def test_layer_norm(
hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm, prenorm
): ):
device = "cuda" device = "cuda"
if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]): if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
atol = 5e-2 atol = 5e-2
elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]): elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
atol = 5e-3 atol = 1e-2
else: else:
atol = 1e-4 atol = 1e-4
# set seed # set seed
...@@ -68,26 +70,36 @@ def test_layer_norm( ...@@ -68,26 +70,36 @@ def test_layer_norm(
weight_ref = weight.detach().clone().requires_grad_() weight_ref = weight.detach().clone().requires_grad_()
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, *rest = layer_norm_fn(x0, weight, bias, residual=res, eps=1e-6, is_rms_norm=is_rms_norm) residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out_pt, *rest_pt = layer_norm_ref_fn(x0_pt, weight_pt, bias_pt, residual=res_pt, eps=1e-6) out, *rest = layer_norm_fn(
x0,
weight,
bias,
residual=res,
eps=1e-6,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32,
is_rms_norm=is_rms_norm,
)
out_pt, *rest_pt = layer_norm_ref_fn(
x0_pt, weight_pt, bias_pt, residual=res_pt, eps=1e-6, prenorm=prenorm
)
out_ref, *rest_ref = layer_norm_ref_fn( out_ref, *rest_ref = layer_norm_ref_fn(
x0_ref, weight_ref, bias_ref, residual=res_ref, eps=1e-6, upcast=True x0_ref, weight_ref, bias_ref, residual=res_ref, eps=1e-6, prenorm=prenorm, upcast=True
) )
if has_residual: if prenorm:
residual = rest[0] residual = rest[0]
residual_pt = rest_pt[0] residual_pt = rest_pt[0]
residual_ref = rest_ref[0] residual_ref = rest_ref[0]
residual_ref = x0_ref + res_ref
assert out.dtype == input_dtype assert out.dtype == input_dtype
if has_residual: if prenorm:
assert residual.dtype == residual_dtype assert residual.dtype == residual_dtype
assert allclose(residual, residual_pt, residual_ref) assert allclose(residual, residual_pt, residual_ref)
assert allclose(out, out_pt, out_ref) assert allclose(out, out_pt, out_ref)
g = torch.randn_like(out) / batch_size g = torch.randn_like(out) / batch_size
if not has_residual: if not prenorm:
out.backward(g) out.backward(g)
out_pt.backward(g) out_pt.backward(g)
out_ref.backward(g) out_ref.backward(g)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment