Commit 01771645 authored by Tri Dao's avatar Tri Dao
Browse files

[LayerNorm] Add postnorm residual + LayerNorm/RMSNorm in Triton

parent 79bd1a2d
......@@ -15,7 +15,7 @@ import triton
import triton.language as tl
def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
dtype = x.dtype
if upcast:
weight = weight.float()
......@@ -25,11 +25,13 @@ def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
residual = residual.float() if residual is not None else residual
if residual is not None:
x = (x + residual).to(x.dtype)
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(dtype)
return out if residual is None else (out, x)
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
dtype
)
return out if not prenorm else (out, x)
def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
dtype = x.dtype
if upcast:
weight = weight.float()
......@@ -42,7 +44,7 @@ def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
out = out.to(dtype)
return out if residual is None else (out, x)
return out if not prenorm else (out, x)
@triton.autotune(
......@@ -54,7 +56,7 @@ def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
triton.Config({}, num_warps=16),
triton.Config({}, num_warps=32),
],
key=["N", "HAS_RESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
)
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
......@@ -77,6 +79,7 @@ def _layer_norm_fwd_1pass_kernel(
IS_RMS_NORM: tl.constexpr,
BLOCK_N: tl.constexpr,
HAS_RESIDUAL: tl.constexpr,
STORE_RESIDUAL_OUT: tl.constexpr,
HAS_BIAS: tl.constexpr,
):
# Map the program id to the row of X and Y it should compute.
......@@ -85,21 +88,23 @@ def _layer_norm_fwd_1pass_kernel(
Y += row * stride_y_row
if HAS_RESIDUAL:
RESIDUAL += row * stride_res_row
if STORE_RESIDUAL_OUT:
RESIDUAL_OUT += row * stride_res_out_row
# Compute mean and variance
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
if HAS_RESIDUAL:
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.).to(tl.float32)
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
x += residual
if STORE_RESIDUAL_OUT:
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.)
xbar = tl.where(cols < N, x - mean, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N
else:
xbar = tl.where(cols < N, x, 0.)
xbar = tl.where(cols < N, x, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd)
......@@ -114,7 +119,9 @@ def _layer_norm_fwd_1pass_kernel(
tl.store(Y + cols, y, mask=mask)
def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False):
def _layer_norm_fwd(x, weight, bias, eps, residual=None, residual_dtype=None, is_rms_norm=False):
if residual is not None:
residual_dtype = residual.dtype
M, N = x.shape
assert x.stride(-1) == 1
if residual is not None:
......@@ -128,13 +135,13 @@ def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False):
# allocate output
y = torch.empty_like(x)
assert y.stride(-1) == 1
if residual is not None:
residual_out = torch.empty_like(residual)
if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
assert residual_out.stride(-1) == 1
else:
residual_out = None
mean = torch.empty((M, ), dtype=torch.float32, device='cuda') if not is_rms_norm else None
rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
mean = torch.empty((M,), dtype=torch.float32, device="cuda") if not is_rms_norm else None
rstd = torch.empty((M,), dtype=torch.float32, device="cuda")
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
......@@ -142,18 +149,29 @@ def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False):
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
with torch.cuda.device(x.device.index):
_layer_norm_fwd_1pass_kernel[(M,)](x, y, weight, bias, residual, residual_out,
mean, rstd,
x.stride(0), y.stride(0),
_layer_norm_fwd_1pass_kernel[(M,)](
x,
y,
weight,
bias,
residual,
residual_out,
mean,
rstd,
x.stride(0),
y.stride(0),
residual.stride(0) if residual is not None else 0,
residual_out.stride(0) if residual is not None else 0,
N, eps,
residual_out.stride(0) if residual_out is not None else 0,
N,
eps,
is_rms_norm,
BLOCK_N,
residual is not None,
residual_out is not None,
bias is not None,
)
return y, mean, rstd, residual_out
# residual_out is None if residual is None and residual_dtype == input_dtype
return y, mean, rstd, residual_out if residual_out is not None else x
@triton.autotune(
......@@ -218,7 +236,7 @@ def _layer_norm_bwd_kernel(
Y += row_start * stride_y_row
w = tl.load(W + cols, mask=mask).to(tl.float32)
if RECOMPUTE_OUTPUT and HAS_BIAS:
b = tl.load(B + cols, mask=mask, other=0.).to(tl.float32)
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
if HAS_BIAS:
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
......@@ -232,7 +250,7 @@ def _layer_norm_bwd_kernel(
rstd = tl.load(Rstd + row)
# Compute dx
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
xhat = tl.where(mask, xhat, 0.)
xhat = tl.where(mask, xhat, 0.0)
if RECOMPUTE_OUTPUT:
y = xhat * w + b if HAS_BIAS else xhat * w
tl.store(Y + cols, y, mask=mask)
......@@ -269,8 +287,20 @@ def _layer_norm_bwd_kernel(
tl.store(DB + row_block_id * N + cols, db, mask=mask)
def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms_norm=False, x_dtype=None,
recompute_output=False):
def _layer_norm_bwd(
dy,
x,
weight,
bias,
eps,
mean,
rstd,
dresidual=None,
has_residual=False,
is_rms_norm=False,
x_dtype=None,
recompute_output=False,
):
M, N = x.shape
assert x.stride(-1) == 1
assert dy.stride(-1) == 1
......@@ -284,8 +314,12 @@ def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
dx = torch.empty_like(x) if x_dtype is None else torch.empty(M, N, dtype=x_dtype, device=x.device)
dresidual_in = torch.empty_like(dresidual) if dresidual is not None and dx.dtype != dresidual.dtype else None
dx = (
torch.empty_like(x)
if x_dtype is None
else torch.empty(M, N, dtype=x_dtype, device=x.device)
)
dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
# Less than 64KB per feature: enqueue fused kernel
......@@ -295,37 +329,64 @@ def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
_db = torch.empty((sm_count, N), dtype=torch.float32, device=bias.device) if bias is not None else None
_db = (
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
if bias is not None
else None
)
rows_per_program = math.ceil(M / sm_count)
grid = (sm_count,)
with torch.cuda.device(x.device.index):
_layer_norm_bwd_kernel[grid](x, weight, bias, y,
dy, dx, _dw, _db, dresidual, dresidual_in,
mean, rstd,
_layer_norm_bwd_kernel[grid](
x,
weight,
bias,
y,
dy,
dx,
_dw,
_db,
dresidual,
dresidual_in,
mean,
rstd,
x.stride(0),
0 if not recompute_output else y.stride(0),
dy.stride(0), dx.stride(0),
dy.stride(0),
dx.stride(0),
dresidual.stride(0) if dresidual is not None else 0,
dresidual_in.stride(0) if dresidual_in is not None else 0,
M, N, eps,
M,
N,
eps,
rows_per_program,
is_rms_norm,
BLOCK_N,
dresidual is not None,
dresidual_in is not None,
bias is not None)
bias is not None,
)
dw = _dw.sum(0).to(weight.dtype)
db = _db.sum(0).to(bias.dtype) if bias is not None else None
# Don't need to compute dresidual_in separately in this case
if dresidual is not None and dx.dtype == dresidual.dtype:
if has_residual and dx.dtype == x.dtype:
dresidual_in = dx
return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y)
class LayerNormFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, residual=None, eps=1e-6, is_rms_norm=False):
def forward(
ctx,
x,
weight,
bias,
residual=None,
eps=1e-6,
prenorm=False,
residual_in_fp32=False,
is_rms_norm=False,
):
x_shape_og = x.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
......@@ -339,17 +400,23 @@ class LayerNormFn(torch.autograd.Function):
weight = weight.contiguous()
if bias is not None:
bias = bias.contiguous()
y, mean, rstd, *rest = _layer_norm_fwd(x, weight, bias, eps, residual, is_rms_norm)
if residual is not None:
residual_out = rest[0]
ctx.save_for_backward(x if residual is None else residual_out, weight, bias, mean, rstd)
residual_dtype = (
residual.dtype
if residual is not None
else (torch.float32 if residual_in_fp32 else None)
)
y, mean, rstd, residual_out = _layer_norm_fwd(
x, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm
)
ctx.save_for_backward(residual_out, weight, bias, mean, rstd)
ctx.x_shape_og = x_shape_og
ctx.eps = eps
ctx.is_rms_norm = is_rms_norm
ctx.has_residual = residual is not None
ctx.prenorm = prenorm
ctx.x_dtype = x.dtype
y = y.reshape(x_shape_og)
return y if residual is None else (y, residual_out.reshape(x_shape_og))
return y if not prenorm else (y, residual_out.reshape(x_shape_og))
@staticmethod
def backward(ctx, dy, *args):
......@@ -358,7 +425,7 @@ class LayerNormFn(torch.autograd.Function):
if dy.stride(-1) != 1:
dy = dy.contiguous()
assert dy.shape == x.shape
if ctx.has_residual:
if ctx.prenorm:
dresidual = args[0]
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
if dresidual.stride(-1) != 1:
......@@ -366,17 +433,46 @@ class LayerNormFn(torch.autograd.Function):
assert dresidual.shape == x.shape
else:
dresidual = None
dx, dw, db, dresidual_in = _layer_norm_bwd(dy, x, weight, bias, ctx.eps, mean, rstd, dresidual,
ctx.is_rms_norm, x_dtype=ctx.x_dtype)
return dx.reshape(ctx.x_shape_og), dw, db, dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, None, None
dx, dw, db, dresidual_in = _layer_norm_bwd(
dy,
x,
weight,
bias,
ctx.eps,
mean,
rstd,
dresidual,
ctx.has_residual,
ctx.is_rms_norm,
x_dtype=ctx.x_dtype,
)
return (
dx.reshape(ctx.x_shape_og),
dw,
db,
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
None,
None,
None,
None,
)
def layer_norm_fn(x, weight, bias, residual=None, eps=1e-6, is_rms_norm=False):
return LayerNormFn.apply(x, weight, bias, residual, eps, is_rms_norm)
def layer_norm_fn(
x,
weight,
bias,
residual=None,
eps=1e-6,
prenorm=False,
residual_in_fp32=False,
is_rms_norm=False,
):
return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, is_rms_norm)
def rms_norm_fn(x, weight, bias, residual=None, eps=1e-6):
return LayerNormFn.apply(x, weight, bias, residual, eps, True)
def rms_norm_fn(x, weight, bias, residual=None, prenorm=False, residual_in_fp32=False, eps=1e-6):
return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, True)
class RMSNorm(torch.nn.Module):
......@@ -391,5 +487,14 @@ class RMSNorm(torch.nn.Module):
def reset_parameters(self):
torch.nn.init.ones_(self.weight)
def forward(self, x, residual=None):
return layer_norm_fn(x, self.weight, self.bias, residual=residual, eps=self.eps, is_rms_norm=True)
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
return rms_norm_fn(
x,
self.weight,
self.bias,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32,
is_rms_norm=True,
)
......@@ -11,30 +11,32 @@ from flash_attn.ops.triton.layernorm import layer_norm_fn, layer_norm_ref, rms_n
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
@pytest.mark.parametrize("prenorm", [True, False])
# @pytest.mark.parametrize("prenorm", [True])
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize("is_rms_norm", [True])
@pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize("has_residual", [True])
# @pytest.mark.parametrize("has_residual", [False])
@pytest.mark.parametrize(
"weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else [])
"weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else [])
)
# @pytest.mark.parametrize("weight_dtype", [torch.float32])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)])
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 8192])
# @pytest.mark.parametrize("hidden_size", [256])
def test_layer_norm(
hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm
hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm, prenorm
):
device = "cuda"
if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
atol = 5e-2
elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
atol = 5e-3
atol = 1e-2
else:
atol = 1e-4
# set seed
......@@ -68,26 +70,36 @@ def test_layer_norm(
weight_ref = weight.detach().clone().requires_grad_()
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, *rest = layer_norm_fn(x0, weight, bias, residual=res, eps=1e-6, is_rms_norm=is_rms_norm)
out_pt, *rest_pt = layer_norm_ref_fn(x0_pt, weight_pt, bias_pt, residual=res_pt, eps=1e-6)
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, *rest = layer_norm_fn(
x0,
weight,
bias,
residual=res,
eps=1e-6,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32,
is_rms_norm=is_rms_norm,
)
out_pt, *rest_pt = layer_norm_ref_fn(
x0_pt, weight_pt, bias_pt, residual=res_pt, eps=1e-6, prenorm=prenorm
)
out_ref, *rest_ref = layer_norm_ref_fn(
x0_ref, weight_ref, bias_ref, residual=res_ref, eps=1e-6, upcast=True
x0_ref, weight_ref, bias_ref, residual=res_ref, eps=1e-6, prenorm=prenorm, upcast=True
)
if has_residual:
if prenorm:
residual = rest[0]
residual_pt = rest_pt[0]
residual_ref = rest_ref[0]
residual_ref = x0_ref + res_ref
assert out.dtype == input_dtype
if has_residual:
if prenorm:
assert residual.dtype == residual_dtype
assert allclose(residual, residual_pt, residual_ref)
assert allclose(out, out_pt, out_ref)
g = torch.randn_like(out) / batch_size
if not has_residual:
if not prenorm:
out.backward(g)
out_pt.backward(g)
out_ref.backward(g)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment