#include "ck_tile/host.hpp" #include "reduce.hpp" #include auto create_args(int argc, char* argv[]) { ck_tile::ArgParser arg_parser; arg_parser.insert("m", "3328", "m dimension") .insert("n", "4096", "n dimension") .insert("v", "1", "cpu validation or not") .insert("prec", "fp16", "precision") .insert("warmup", "5", "cold iter") .insert("repeat", "20", "hot iter"); bool result = arg_parser.parse(argc, argv); return std::make_tuple(result, arg_parser); } template bool run(const ck_tile::ArgParser& arg_parser) { using XDataType = DataType; using ComputeDataType = float; using YDataType = DataType; ck_tile::index_t m = arg_parser.get_int("m"); ck_tile::index_t n = arg_parser.get_int("n"); int do_validation = arg_parser.get_int("v"); int warmup = arg_parser.get_int("warmup"); int repeat = arg_parser.get_int("repeat"); ck_tile::HostTensor x_host({m, n}); ck_tile::HostTensor y_host_ref({m}); ck_tile::HostTensor y_host_dev({m}); ck_tile::FillUniformDistribution{-5.f, 5.f}(x_host); ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem y_buf(y_host_dev.get_element_space_size_in_bytes()); x_buf.ToDevice(x_host.data()); using ReduceOp = ck_tile::ReduceOp::Add; using BlockWarps = ck_tile::sequence<4, 1>; using BlockTile = ck_tile::sequence<128, 128>; using WarpTile = ck_tile::sequence<32, 128>; using Vector = ck_tile::sequence<8, 8>; // cross warp-reduce // using BlockWarps = ck_tile::sequence<2, 2>; // using BlockTile = ck_tile::sequence<2, 1024>; // using WarpTile = ck_tile::sequence<1, 512>; // using Vector = ck_tile::sequence<1, 8>; constexpr ck_tile::index_t kBlockSize = 256; constexpr ck_tile::index_t kBlockPerCu = 1; ck_tile::index_t kGridSize = (m / BlockTile::at(ck_tile::number<0>{})); std::cout << "grid size " << kGridSize << std::endl; using Shape = ck_tile::Reduce2dShape; using Porblem = ck_tile::Reduce2dProblem; using Kernel = ck_tile::Reduce; float ave_time = launch_kernel(ck_tile::stream_config{nullptr, true, 0, warmup, repeat}, ck_tile::make_kernel( Kernel{}, kGridSize, kBlockSize, 0, static_cast(x_buf.GetDeviceBuffer()), static_cast(y_buf.GetDeviceBuffer()), m, n)); std::size_t num_btype = sizeof(XDataType) * m * n + sizeof(YDataType) * m; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl; bool pass = true; if(do_validation) { // reference ck_tile::reference_reduce( x_host, y_host_ref, ReduceOp{}); y_buf.FromDevice(y_host_dev.mData.data()); pass = ck_tile::check_err(y_host_dev, y_host_ref); std::cout << "valid:" << (pass ? "y" : "n") << std::flush << std::endl; } return pass; } int main(int argc, char* argv[]) { auto [result, arg_parser] = create_args(argc, argv); if(!result) return -1; const std::string data_type = arg_parser.get_str("prec"); if(data_type == "fp16") { return run(arg_parser) ? 0 : -2; } // else if(data_type == "bf16") // { // return run(arg_parser) ? 0 : -2; // } }