Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
fde6d274
Unverified
Commit
fde6d274
authored
Mar 30, 2023
by
zjing14
Committed by
GitHub
Mar 30, 2023
Browse files
add fp64 instances (#658)
Co-authored-by:
root
<
root@ctr-ubbsmc15.amd.com
>
parent
091570f5
Changes
18
Show whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
1310 additions
and
4 deletions
+1310
-4
client_example/04_contraction/CMakeLists.txt
client_example/04_contraction/CMakeLists.txt
+10
-4
client_example/04_contraction/contraction_bilinear_fp32.cpp
client_example/04_contraction/contraction_bilinear_fp32.cpp
+0
-0
client_example/04_contraction/contraction_bilinear_fp64.cpp
client_example/04_contraction/contraction_bilinear_fp64.cpp
+281
-0
client_example/04_contraction/contraction_scale_fp32.cpp
client_example/04_contraction/contraction_scale_fp32.cpp
+0
-0
client_example/04_contraction/contraction_scale_fp64.cpp
client_example/04_contraction/contraction_scale_fp64.cpp
+270
-0
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
..._operation_instance/device_operation_instance_factory.hpp
+1
-0
library/include/ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp
...ry/tensor_operation_instance/gpu/contraction_bilinear.hpp
+66
-0
library/include/ck/library/tensor_operation_instance/gpu/contraction_scale.hpp
...brary/tensor_operation_instance/gpu/contraction_scale.hpp
+66
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/CMakeLists.txt
...peration_instance/gpu/contraction_bilinear/CMakeLists.txt
+6
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
+76
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
+76
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
+76
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
+76
-0
library/src/tensor_operation_instance/gpu/contraction_scale/CMakeLists.txt
...r_operation_instance/gpu/contraction_scale/CMakeLists.txt
+6
-0
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance.cpp
...scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance.cpp
+75
-0
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance.cpp
...scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance.cpp
+75
-0
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance.cpp
...scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance.cpp
+75
-0
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance.cpp
...scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance.cpp
+75
-0
No files found.
client_example/04_contraction/CMakeLists.txt
View file @
fde6d274
add_executable
(
client_contraction_scale contraction_scale.cpp
)
target_link_libraries
(
client_contraction_scale PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_scale
_fp32
contraction_scale
_fp32
.cpp
)
target_link_libraries
(
client_contraction_scale
_fp32
PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_bilinear contraction_bilinear.cpp
)
target_link_libraries
(
client_contraction_bilinear PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_bilinear_fp32 contraction_bilinear_fp32.cpp
)
target_link_libraries
(
client_contraction_bilinear_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_scale_fp64 contraction_scale_fp64.cpp
)
target_link_libraries
(
client_contraction_scale_fp64 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_bilinear_fp64 contraction_bilinear_fp64.cpp
)
target_link_libraries
(
client_contraction_bilinear_fp64 PRIVATE composable_kernel::device_operations
)
add_executable
(
contraction_g1m2n3k1_add_xdl_fp16 contraction_g1m2n3k1_add_xdl_fp16.cpp
)
target_link_libraries
(
contraction_g1m2n3k1_add_xdl_fp16 PRIVATE composable_kernel::device_operations
)
...
...
client_example/04_contraction/contraction_bilinear.cpp
→
client_example/04_contraction/contraction_bilinear
_fp32
.cpp
View file @
fde6d274
File moved
client_example/04_contraction/contraction_bilinear_fp64.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp"
#include "ck/library/utility/numeric.hpp"
using
F64
=
double
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Bilinear
;
using
ADataType
=
F64
;
using
BDataType
=
F64
;
using
AccDataType
=
F64
;
using
CShuffleDataType
=
F64
;
using
DDataType
=
F64
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F64
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// kknn
#if 1
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// knnn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
,
1
,
131072
,
2048
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// mknn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
128
,
1
,
245760
,
3840
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// mnnn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
128
,
1
,
245760
,
3840
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
,
1
,
131072
,
2048
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
#endif
float
alpha
=
1.
f
;
float
beta
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
25
)
{
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
1
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
2
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
6
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
7
]),
std
::
stoi
(
argv
[
8
]),
std
::
stoi
(
argv
[
9
]),
std
::
stoi
(
argv
[
10
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
]),
std
::
stoi
(
argv
[
14
])};
d_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
d_ms_ns_strides
=
{
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
]),
std
::
stoi
(
argv
[
18
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
19
]),
std
::
stoi
(
argv
[
20
]),
std
::
stoi
(
argv
[
21
]),
std
::
stoi
(
argv
[
22
])};
alpha
=
std
::
stof
(
argv
[
23
]);
beta
=
std
::
stof
(
argv
[
24
]);
}
else
{
printf
(
"arg1 to 6: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg15 to 18: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1
\n
"
);
printf
(
"arg19 to 22: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg23 to 24: alpha, beta
\n
"
);
exit
(
0
);
}
auto
f_tensor_space_size
=
[](
auto
lengths
,
auto
strides
)
{
std
::
size_t
space_size
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
lengths
.
size
();
++
i
)
{
space_size
+=
(
lengths
[
i
]
-
1
)
*
strides
[
i
];
}
return
space_size
;
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_tensor_space_size
(
a_ms_ks_lengths
,
a_ms_ks_strides
));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_tensor_space_size
(
b_ns_ks_lengths
,
b_ns_ks_strides
));
SimpleDeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
f_tensor_space_size
(
d_ms_ns_lengths
,
d_ms_ns_strides
));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_tensor_space_size
(
e_ms_ns_lengths
,
e_ms_ns_strides
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/04_contraction/contraction_scale.cpp
→
client_example/04_contraction/contraction_scale
_fp32
.cpp
View file @
fde6d274
File moved
client_example/04_contraction/contraction_scale_fp64.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp"
#include "ck/library/utility/numeric.hpp"
using
F64
=
double
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Scale
;
using
ADataType
=
F64
;
using
BDataType
=
F64
;
using
AccDataType
=
F64
;
using
CShuffleDataType
=
F64
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F64
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// kkn
#if 1
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// knn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
,
1
,
131072
,
2048
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// mkn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
128
,
1
,
245760
,
3840
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// mnn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
128
,
1
,
245760
,
3840
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
,
1
,
131072
,
2048
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
#endif
float
scale
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
20
)
{
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
1
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
2
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
6
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
7
]),
std
::
stoi
(
argv
[
8
]),
std
::
stoi
(
argv
[
9
]),
std
::
stoi
(
argv
[
10
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
]),
std
::
stoi
(
argv
[
14
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
]),
std
::
stoi
(
argv
[
18
])};
scale
=
std
::
stof
(
argv
[
19
]);
}
else
{
printf
(
"arg1 to 6: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg15 to 18: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg19: scale
\n
"
);
exit
(
0
);
}
auto
f_tensor_space_size
=
[](
auto
lengths
,
auto
strides
)
{
std
::
size_t
space_size
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
lengths
.
size
();
++
i
)
{
space_size
+=
(
lengths
[
i
]
-
1
)
*
strides
[
i
];
}
return
space_size
;
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_tensor_space_size
(
a_ms_ks_lengths
,
a_ms_ks_strides
));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_tensor_space_size
(
b_ns_ks_lengths
,
b_ns_ks_strides
));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_tensor_space_size
(
e_ms_ns_lengths
,
e_ms_ns_strides
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Scale
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
scale
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
View file @
fde6d274
...
...
@@ -26,6 +26,7 @@ using Empty_Tuple = ck::Tuple<>;
using
F16_Tuple
=
ck
::
Tuple
<
F16
>
;
using
F16_F16_Tuple
=
ck
::
Tuple
<
F16
,
F16
>
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
I32_Tuple
=
ck
::
Tuple
<
I32
>
;
using
I32_F32_Tuple
=
ck
::
Tuple
<
I32
,
F32
>
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp
View file @
fde6d274
...
...
@@ -19,6 +19,7 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
// float
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
...
...
@@ -67,6 +68,55 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn
PassThrough
,
Bilinear
>>>&
instances
);
// double
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
// Contraction + Bilinear
template
<
index_t
NumDimM
,
index_t
NumDimN
,
...
...
@@ -118,6 +168,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
}
}
if
constexpr
(
is_same_v
<
ADataType
,
double
>
&&
is_same_v
<
BDataType
,
double
>
&&
is_same_v
<
DDataType
,
double
>
&&
is_same_v
<
EDataType
,
double
>
)
{
if
constexpr
(
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
(
op_ptrs
);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
(
op_ptrs
);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
(
op_ptrs
);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/contraction_scale.hpp
View file @
fde6d274
...
...
@@ -19,6 +19,7 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
// float
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
...
...
@@ -67,6 +68,55 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instanc
PassThrough
,
Scale
>>>&
instances
);
// double
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
>>>&
instances
);
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
>>>&
instances
);
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
>>>&
instances
);
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
>>>&
instances
);
// Contraction + Scale
template
<
index_t
NumDimM
,
index_t
NumDimN
,
...
...
@@ -117,6 +167,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
}
}
if
constexpr
(
is_same_v
<
ADataType
,
double
>
&&
is_same_v
<
BDataType
,
double
>
&&
is_same_v
<
EDataType
,
double
>
)
{
if
constexpr
(
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance
(
op_ptrs
);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance
(
op_ptrs
);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance
(
op_ptrs
);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/CMakeLists.txt
View file @
fde6d274
add_instance_library
(
device_contraction_bilinear_instance
#float
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance.cpp
#double
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
)
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
=
std
::
tuple
<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
=
std
::
tuple
<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
1
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
1
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
=
std
::
tuple
<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
1
,
2
,
16
,
16
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
1
,
2
,
16
,
16
,
2
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
=
std
::
tuple
<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
1
,
1
,
16
,
16
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
1
,
1
,
16
,
16
,
2
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/CMakeLists.txt
View file @
fde6d274
add_instance_library
(
device_contraction_scale_instance
#float
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance.cpp
#double
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance.cpp
)
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance
=
std
::
tuple
<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance
=
std
::
tuple
<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
1
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
1
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance
=
std
::
tuple
<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
1
,
2
,
16
,
16
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
1
,
2
,
16
,
16
,
2
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance.cpp
0 → 100644
View file @
fde6d274
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance
=
std
::
tuple
<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
1
,
1
,
16
,
16
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
1
,
1
,
16
,
16
,
2
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
Empty_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Scale
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment