"tests/schedulers/test_scheduler_dpm_multi.py" did not exist on "6a7a5467cab6df8bb24b20a7ad3f2223c1a2e8de"
Unverified Commit fd923b6d authored by Bartłomiej Kocot's avatar Bartłomiej Kocot Committed by GitHub
Browse files

Add grouped conv bwd weight multi d kernel (#1237)

* Add grouped conv bwd weight multi d kernel

* Reference fix

* Fix cmake files

* bwd weight scale only xdl

* Fixes

* Fix client conv fwd example
parent 930f889c
# ONLY XDL_KERNELS
set(GROUPED_CONV3D_BWD_WEIGHT_BILINEAR
xdl/device_grouped_conv3d_bwd_weight_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp)
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "bf8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
list(APPEND GROUPED_CONV3D_BWD_WEIGHT_BILINEAR
xdl/device_grouped_conv3d_bwd_weight_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_fp8_instance.cpp)
endif()
add_instance_library(device_grouped_conv3d_bwd_weight_bilinear_instance ${GROUPED_CONV3D_BWD_WEIGHT_BILINEAR})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_bilinear_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeightMultipleD<3,
NDHWGC,
GKZYXC,
NDHWGK,
Tuple<GKZYXC>,
BF16,
F32,
BF16,
Tuple<F32>,
PassThrough,
Bilinear,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_bilinear_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_bilinear_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_bilinear_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeightMultipleD<3,
NDHWGC,
GKZYXC,
NDHWGK,
Tuple<GKZYXC>,
F16,
F16,
F16,
Tuple<F16>,
PassThrough,
Bilinear,
PassThrough,
BF8,
F8>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_comp_bf8_f8_bilinear_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_comp_bf8_f8_bilinear_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_bilinear_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeightMultipleD<3,
NDHWGC,
GKZYXC,
NDHWGK,
Tuple<GKZYXC>,
F16,
F16,
F16,
Tuple<F16>,
PassThrough,
Bilinear,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_bilinear_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_bilinear_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_bilinear_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeightMultipleD<3,
NDHWGC,
GKZYXC,
NDHWGK,
Tuple<GKZYXC>,
F32,
F32,
F32,
Tuple<F32>,
PassThrough,
Bilinear,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_bilinear_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_bilinear_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
# ONLY XDL_KERNELS
set(GROUPED_CONV3D_BWD_WEIGHT_SCALE
xdl/device_grouped_conv3d_bwd_weight_xdl_scale_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_xdl_scale_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_xdl_scale_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp)
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "bf8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
list(APPEND GROUPED_CONV3D_BWD_WEIGHT_SCALE
xdl/device_grouped_conv3d_bwd_weight_xdl_scale_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_fp8_instance.cpp)
endif()
add_instance_library(device_grouped_conv3d_bwd_weight_scale_instance ${GROUPED_CONV3D_BWD_WEIGHT_SCALE})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_scale_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_xdl_scale_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeightMultipleD<3,
NDHWGC,
GKZYXC,
NDHWGK,
Tuple<>,
BF16,
F32,
BF16,
Tuple<>,
PassThrough,
Scale,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_scale_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_scale_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_scale_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_xdl_scale_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeightMultipleD<3,
NDHWGC,
GKZYXC,
NDHWGK,
Tuple<>,
F16,
F16,
F16,
Tuple<>,
PassThrough,
Scale,
PassThrough,
BF8,
F8>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_comp_bf8_f8_scale_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_comp_bf8_f8_scale_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_scale_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_xdl_scale_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeightMultipleD<3,
NDHWGC,
GKZYXC,
NDHWGK,
Tuple<>,
F16,
F16,
F16,
Tuple<>,
PassThrough,
Scale,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_scale_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_scale_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_scale_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_xdl_scale_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeightMultipleD<3,
NDHWGC,
GKZYXC,
NDHWGK,
Tuple<>,
F32,
F32,
F32,
Tuple<>,
PassThrough,
Scale,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_scale_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_scale_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -108,7 +108,10 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op);
out_element_op,
{},
{},
{});
ref_invoker.Run(ref_argument);
}
......
add_gtest_executable(test_grouped_convnd_bwd_weight test_grouped_convnd_bwd_weight_xdl_wmma.cpp)
if(result EQUAL 0)
target_link_libraries(test_grouped_convnd_bwd_weight PRIVATE utility device_grouped_conv1d_bwd_weight_instance device_grouped_conv2d_bwd_weight_instance device_grouped_conv3d_bwd_weight_instance)
if(GPU_TARGETS MATCHES "gfx9" OR DL_KERNELS)
add_gtest_executable(test_grouped_convnd_bwd_weight test_grouped_convnd_bwd_weight.cpp)
target_link_libraries(test_grouped_convnd_bwd_weight PRIVATE utility device_grouped_conv1d_bwd_weight_instance device_grouped_conv2d_bwd_weight_instance device_grouped_conv3d_bwd_weight_instance)
elseif(GPU_TARGETS MATCHES "gfx11")
add_gtest_executable(test_grouped_convnd_bwd_weight test_grouped_convnd_bwd_weight.cpp)
target_link_libraries(test_grouped_convnd_bwd_weight PRIVATE utility device_grouped_conv3d_bwd_weight_instance)
endif()
add_gtest_executable(test_grouped_convnd_bwd_weight_interface test_grouped_convnd_bwd_weight_interface_xdl.cpp)
if(result EQUAL 0)
......@@ -10,3 +13,7 @@ add_gtest_executable(test_grouped_convnd_bwd_weight_interface test_grouped_convn
if(result EQUAL 0)
target_link_libraries(test_grouped_convnd_bwd_weight_interface PRIVATE utility)
endif()
add_gtest_executable(test_grouped_conv_bwd_weight_xdl_bilinear test_grouped_conv_bwd_weight_xdl_bilinear.cpp)
if(result EQUAL 0)
target_link_libraries(test_grouped_conv_bwd_weight_xdl_bilinear PRIVATE utility device_grouped_conv3d_bwd_weight_bilinear_instance)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <typeinfo>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight_bilinear.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp"
template <typename Tuple>
class TestGroupedConvndBwdWeight : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using WeiDataType = std::tuple_element_t<1, Tuple>;
using OutDataType = std::tuple_element_t<2, Tuple>;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::Bilinear;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr ck::index_t NDimSpatial = std::tuple_element_t<3, Tuple>{};
static constexpr float alpha = 2.f;
static constexpr float beta = 2.f;
static constexpr ck::index_t NumDs = 1;
std::vector<ck::utils::conv::ConvParam> conv_params;
std::vector<ck::index_t> split_ks{1, 2};
void RunReference(ck::utils::conv::ConvParam& conv_param,
Tensor<InDataType>& in,
Tensor<WeiDataType>& wei_host,
Tensor<OutDataType>& out,
Tensor<WeiDataType>& d)
{
std::array<Tensor<WeiDataType>, NumDs> d_tensors = {d};
auto ref_conv =
ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei_host,
out,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
InElementOp{},
WeiElementOp{alpha, beta},
OutElementOp{},
{},
{},
d_tensors);
ref_invoker.Run(ref_argument);
}
bool PerformConvWeightBilinear(ck::utils::conv::ConvParam& conv_param,
const ck::index_t split_k)
{
bool passed = true;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<OutDataType> out(out_g_n_k_wos_desc);
Tensor<WeiDataType> wei_host(wei_g_k_c_xs_desc);
Tensor<WeiDataType> wei_device(wei_g_k_c_xs_desc);
Tensor<WeiDataType> d(wei_g_k_c_xs_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei_host.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl;
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
out.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
d.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_device.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(WeiDataType) * d.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei_device.mData.data());
out_device_buf.ToDevice(out.mData.data());
d_device_buf.ToDevice(d.mData.data());
std::array<ck::index_t, NDimSpatial + 3> b_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), b_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), b_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), e_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), e_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), a_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), a_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
RunReference(conv_param, in, wei_host, out, d);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdWeightMultipleD<
NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
ck::Tuple<WeiLayout>,
InDataType,
WeiDataType,
OutDataType,
ck::Tuple<WeiDataType>,
InElementOp,
WeiElementOp,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
for(std::size_t i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
{d_device_buf.GetDeviceBuffer()},
b_g_n_c_wis_lengths,
b_g_n_c_wis_strides,
e_g_k_c_xs_lengths,
e_g_k_c_xs_strides,
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{e_g_k_c_xs_lengths},
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{e_g_k_c_xs_strides},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{alpha, beta},
OutElementOp{},
split_k);
DeviceMem workspace_buf(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_buf.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr});
wei_device_buf.FromDevice(wei_device.mData.data());
passed &= ck::utils::check_err(wei_device, wei_host, "Error: incorrect results!");
std::size_t flop =
conv_param.GetFlops() +
3 * conv_param.GetOutputByte<WeiDataType>() / sizeof(WeiDataType);
std::size_t num_bytes = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
conv_param.GetOutputByte<WeiDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << std::endl;
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
return passed;
}
void Run()
{
EXPECT_FALSE(conv_params.empty());
bool pass = true;
for(auto split_k : split_ks)
{
for(auto& param : conv_params)
{
pass = pass && PerformConvWeightBilinear(param, split_k);
}
}
EXPECT_TRUE(pass);
}
};
template <typename Tuple>
class TestGroupedConvndBwdWeight3d : public TestGroupedConvndBwdWeight<Tuple>
{
};
using KernelTypes3d =
::testing::Types<std::tuple<float, float, float, ck::Number<3>>,
std::tuple<ck::half_t, ck::half_t, ck::half_t, ck::Number<3>>,
std::tuple<ck::bhalf_t, float, ck::bhalf_t, ck::Number<3>>>;
TYPED_TEST_SUITE(TestGroupedConvndBwdWeight3d, KernelTypes3d);
TYPED_TEST(TestGroupedConvndBwdWeight3d, Test3D)
{
this->conv_params.clear();
this->conv_params.push_back(
{3, 2, 16, 128, 128, {1, 1, 1}, {7, 7, 7}, {2, 2, 2}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
this->conv_params.push_back(
{3, 2, 2, 128, 128, {3, 3, 3}, {14, 14, 3}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
this->conv_params.push_back(
{3, 2, 32, 128, 128, {1, 1, 1}, {3, 3, 3}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
this->conv_params.push_back(
{3, 1, 1, 1, 32, {3, 3, 3}, {32, 32, 32}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
this->conv_params.push_back(
{3, 1, 1, 64, 3, {3, 3, 3}, {32, 32, 32}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
this->conv_params.push_back(
{3, 1, 1, 1, 1, {3, 3, 3}, {32, 32, 32}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment