Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
fd3d907a
Unverified
Commit
fd3d907a
authored
Dec 04, 2021
by
Chao Liu
Committed by
GitHub
Dec 04, 2021
Browse files
fix ReLU formula (#61)
* fix relu * clean up * clean up
parent
41cdd380
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
159 additions
and
123 deletions
+159
-123
example/1_gemm_xdl/gemm_xdl.cpp
example/1_gemm_xdl/gemm_xdl.cpp
+89
-118
example/2_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
example/2_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
+35
-3
example/4_conv_xdl_bias_relu_add/conv_xdl_bias_relu_add.cpp
example/4_conv_xdl_bias_relu_add/conv_xdl_bias_relu_add.cpp
+35
-2
No files found.
example/1_gemm_xdl/gemm_xdl.cpp
View file @
fd3d907a
...
@@ -25,115 +25,76 @@ struct PassThrough
...
@@ -25,115 +25,76 @@ struct PassThrough
struct
Relu
struct
Relu
{
{
float
alpha
=
0.1
;
// ReLU
template
<
typename
T
>
template
<
typename
T
>
__host__
__device__
constexpr
T
operator
()(
T
v
)
const
__host__
__device__
constexpr
T
operator
()(
T
v
)
const
{
{
T
tmp
=
alpha
*
v
;
return
v
>
0
?
v
:
0
;
return
tmp
>
0
?
tmp
:
0
;
}
}
};
};
template
<
typename
ADataType
,
template
<
ck
::
index_t
...
Is
>
typename
BDataType
,
using
S
=
ck
::
Sequence
<
Is
...
>
;
typename
CDataType
,
typename
ALayout
,
using
ADataType
=
ck
::
half_t
;
typename
BLayout
,
using
BDataType
=
ck
::
half_t
;
typename
CLayout
,
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AOp
=
PassThrough
;
using
BOp
=
PassThrough
;
using
COp
=
Relu
;
// Compilation parameters for NT problem
// clang-format off
using
DeviceGemmInstance
=
//#########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//#########################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//#########################################| | | | | | | | | | | | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AOp
,
BOp
,
COp
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
;
// clang-format on
template
<
typename
AType
,
typename
BType
,
typename
CType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
typename
CElementwiseOperation
>
struct
DeviceGemmInstance
;
static
void
host_verify
(
const
Tensor
<
AType
>&
a_m_k
,
const
Tensor
<
BType
>&
b_k_n
,
template
<
typename
AElementwiseOperation
,
Tensor
<
CType
>&
c_m_n
,
typename
BElementwiseOperation
,
const
AElementwiseOperation
&
a_element_op
,
typename
CElementwiseOperation
>
const
BElementwiseOperation
&
b_element_op
,
struct
DeviceGemmInstance
<
ck
::
half_t
,
const
CElementwiseOperation
&
c_element_op
)
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
{
using
F16
=
ck
::
half_t
;
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
using
F32
=
float
;
const
int
K
=
a_m_k
.
mDesc
.
GetLengths
()[
1
];
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
AOp
=
AElementwiseOperation
;
using
BOp
=
BElementwiseOperation
;
using
COp
=
CElementwiseOperation
;
// Compilation parameters for NT problem
// clang-format off
using
type
=
//########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//########################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//########################################| | | | | | | | | | | | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
AOp
,
BOp
,
COp
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
;
// clang-format on
};
template
<
typename
AElementwiseOperation
,
double
v
=
0
;
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGemmInstance
<
float
,
float
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
AOp
=
AElementwiseOperation
;
using
BOp
=
BElementwiseOperation
;
using
COp
=
CElementwiseOperation
;
// Compilation parameters for NT problem
// clang-format off
using
type
=
//########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//########################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//########################################| | | | | | | | | | | | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
<
F32
,
F32
,
F32
,
F32
,
Row
,
Col
,
Row
,
AOp
,
BOp
,
COp
,
256
,
256
,
128
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
4
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
S
<
1
,
2
,
4
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
7
,
1
,
true
,
true
>
;
// clang-format on
};
int
main
(
int
argc
,
char
*
argv
[])
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
if
(
argc
!=
4
)
{
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
v
+=
static_cast
<
const
double
>
(
a_element_op
(
a_m_k
(
m
,
k
)))
*
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
static_cast
<
const
double
>
(
b_element_op
(
b_k_n
(
k
,
n
)));
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
exit
(
0
);
}
}
const
bool
do_verification
=
std
::
stoi
(
argv
[
1
]);
c_m_n
(
m
,
n
)
=
c_element_op
(
v
);
const
int
init_method
=
std
::
stoi
(
argv
[
2
]);
};
const
int
nrepeat
=
std
::
stoi
(
argv
[
3
]);
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
c_m_n
.
mDesc
.
GetLengths
()[
0
],
c_m_n
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// GEMM shape
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
M
=
3840
;
...
@@ -144,15 +105,34 @@ int main(int argc, char* argv[])
...
@@ -144,15 +105,34 @@ int main(int argc, char* argv[])
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
StrideC
=
4096
;
// matrix data type
if
(
argc
==
4
)
using
ADataType
=
ck
::
half_t
;
{
using
BDataType
=
ck
::
half_t
;
M
=
std
::
stoi
(
argv
[
4
]);
using
CDataType
=
ck
::
half_t
;
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
// matrix layout
M
=
std
::
stoi
(
argv
[
4
]);
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
N
=
std
::
stoi
(
argv
[
5
]);
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
K
=
std
::
stoi
(
argv
[
6
]);
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
...
@@ -198,16 +178,7 @@ int main(int argc, char* argv[])
...
@@ -198,16 +178,7 @@ int main(int argc, char* argv[])
c_m_n_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
c_m_n_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
// do GEMM
// do GEMM
auto
gemm
=
typename
DeviceGemmInstance
<
ADataType
,
auto
gemm
=
DeviceGemmInstance
{};
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
Relu
>::
type
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
...
@@ -218,9 +189,9 @@ int main(int argc, char* argv[])
...
@@ -218,9 +189,9 @@ int main(int argc, char* argv[])
StrideA
,
StrideA
,
StrideB
,
StrideB
,
StrideC
,
StrideC
,
PassThrough
{},
AOp
{},
PassThrough
{},
BOp
{},
Relu
{});
COp
{});
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
{
...
@@ -233,7 +204,7 @@ int main(int argc, char* argv[])
...
@@ -233,7 +204,7 @@ int main(int argc, char* argv[])
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
M
+
sizeof
(
CDataType
)
*
M
*
N
;
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
@@ -246,7 +217,7 @@ int main(int argc, char* argv[])
...
@@ -246,7 +217,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
host_
gemm_mk_kn_mn
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
PassThrough
{},
PassThrough
{},
Relu
{});
host_
verify
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
AOp
{},
BOp
{},
COp
{});
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
}
}
...
...
example/2_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
View file @
fd3d907a
...
@@ -20,10 +20,42 @@
...
@@ -20,10 +20,42 @@
// 0 in the "n" dimension
// 0 in the "n" dimension
// assume C1 and C have same layout C
// assume C1 and C have same layout C
struct
BiasReluAdd
{
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
float
b
=
v0
+
v1
;
float
c
=
b
>
0
?
b
:
0
;
float
d
=
c
+
v2
;
return
d
;
}
template
<
typename
T1
,
typename
T2
>
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
#if 0
float a = v1 + v0;
float b = max(a, float(0));
float c = b + v2;
return c;
#else
float
a
=
v1
+
v2
;
float
b
=
v2
;
float
c
=
(
v0
>
-
v1
)
?
a
+
v0
:
v2
;
return
c
;
#endif
}
};
// v0 is from A * B
// v0 is from A * B
// v1 is from C0
// v1 is from C0
// v2 is from C1
// v2 is from C1
struct
BiasReluAdd
struct
Bias
Leaky
ReluAdd
{
{
template
<
typename
T1
,
typename
T2
>
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
...
@@ -51,7 +83,7 @@ struct BiasReluAdd
...
@@ -51,7 +83,7 @@ struct BiasReluAdd
}
}
};
};
struct
BiasRelu
struct
Bias
Leaky
Relu
{
{
template
<
typename
T1
,
typename
T2
>
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
)
const
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
)
const
...
...
example/4_conv_xdl_bias_relu_add/conv_xdl_bias_relu_add.cpp
View file @
fd3d907a
...
@@ -23,7 +23,7 @@ struct PassThrough
...
@@ -23,7 +23,7 @@ struct PassThrough
}
}
};
};
struct
BiasReluAdd
struct
Bias
Leaky
ReluAdd
{
{
template
<
typename
T1
,
typename
T2
>
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
...
@@ -97,7 +97,39 @@ struct BiasReluAdd
...
@@ -97,7 +97,39 @@ struct BiasReluAdd
}
}
};
};
struct
BiasRelu
struct
BiasReluAdd
{
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
float
b
=
v0
+
v1
;
float
c
=
b
>
0
?
b
:
0
;
float
d
=
c
+
v2
;
return
d
;
}
template
<
typename
T1
,
typename
T2
>
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
#if 0
float a = v1 + v0;
float b = max(a, float(0));
float c = b + v2;
return c;
#else
float
a
=
v1
+
v2
;
float
b
=
v2
;
float
c
=
(
v0
>
-
v1
)
?
a
+
v0
:
v2
;
return
c
;
#endif
}
};
struct
BiasLeakyRelu
{
{
template
<
typename
T1
,
typename
T2
>
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
)
const
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
)
const
...
@@ -377,6 +409,7 @@ int main(int argc, char* argv[])
...
@@ -377,6 +409,7 @@ int main(int argc, char* argv[])
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment