Commit f88c2f86 authored by Harisankar Sadasivan's avatar Harisankar Sadasivan
Browse files

kernarg load latency optimization for mi300

parent c2784145
......@@ -6,6 +6,7 @@ foreach(gpu IN LISTS GPU_TARGETS)
add_example_executable(example_gemv_splitk_fp16 gemv_splitk_fp16.cpp)
add_dependencies(example_gemv_splitk
example_gemv_splitk_fp16)
set_source_files_properties(gemv_splitk_fp16.cpp PROPERTIES COMPILE_OPTIONS "-DKERNARG_PRELOAD;-Wno-gnu-line-marker;-gline-tables-only;-mllvm;--amdgpu-kernarg-preload-count=16")
set(target 1)
endif()
endforeach()
......@@ -6,6 +6,7 @@ foreach(gpu IN LISTS GPU_TARGETS)
add_example_executable(example_tall_and_skinny_gemm_splitk_fp16 tall_and_skinny_gemm_splitk_fp16.cpp)
add_dependencies(example_tall_and_skinny_gemm_splitk
example_tall_and_skinny_gemm_splitk_fp16)
set_source_files_properties(tall_and_skinny_gemm_splitk_fp16.cpp PROPERTIES COMPILE_OPTIONS "-DKERNARG_PRELOAD;-Wno-gnu-line-marker;-gline-tables-only;-mllvm;--amdgpu-kernarg-preload-count=16")
set(target 1)
endif()
endforeach()
\ No newline at end of file
......@@ -9,8 +9,9 @@
#include "ck/stream_config.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#ifndef KERNARG_PRELOAD
template <typename... Args, typename F>
float launch_and_time_kernel(const StreamConfig& stream_config,
float launch_and_time_kernel(const StreamConfig &stream_config,
F kernel,
dim3 grid_dim,
dim3 block_dim,
......@@ -18,7 +19,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
Args... args)
{
#if CK_TIME_KERNEL
if(stream_config.time_kernel_)
if (stream_config.time_kernel_)
{
#if DEBUG_LOG
printf("%s: grid_dim {%d, %d, %d}, block_dim {%d, %d, %d} \n",
......@@ -48,7 +49,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
hip_check_error(hipDeviceSynchronize());
hip_check_error(hipEventRecord(start, stream_config.stream_id_));
for(int i = 0; i < nrepeat; ++i)
for (int i = 0; i < nrepeat; ++i)
{
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
......@@ -78,8 +79,83 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
#endif
}
#else
template <typename... Args, typename F>
float launch_and_time_kernel(const StreamConfig &stream_config,
F kernel,
dim3 grid_dim,
dim3 block_dim,
std::size_t lds_byte,
Args... args)
{
// Args* args1;
// hipGetErrorString(hipMalloc(&args1, sizeof(Args)));
// hip_check_error(hipMemcpy(args1, &args, sizeof(Args), hipMemcpyHostToDevice));
#if CK_TIME_KERNEL
if (stream_config.time_kernel_)
{
#if DEBUG_LOG
printf("%s: grid_dim {%d, %d, %d}, block_dim {%d, %d, %d} \n",
__func__,
grid_dim.x,
grid_dim.y,
grid_dim.z,
block_dim.x,
block_dim.y,
block_dim.z);
printf("Warm up 1 time\n");
#endif
//
// warm up
const int nrepeat = 1000;
for (auto i = 0; i < nrepeat; i++)
hipLaunchKernelGGL(kernel, grid_dim, block_dim, lds_byte, stream_config.stream_id_,
args...);
hip_check_error(hipGetLastError());
#if DEBUG_LOG
printf("Start running %d times...\n", nrepeat);
#endif
hipEvent_t start, stop;
float total_time = 0;
hip_check_error(hipEventCreate(&start));
hip_check_error(hipEventCreate(&stop));
hip_check_error(hipDeviceSynchronize());
hip_check_error(hipEventRecord(start, stream_config.stream_id_));
for (int i = 0; i < nrepeat; ++i)
hipLaunchKernelGGL(kernel, grid_dim, block_dim, lds_byte, stream_config.stream_id_,
args...);
// hip_check_error(hipGetLastError());
hip_check_error(hipEventRecord(stop, stream_config.stream_id_));
hip_check_error(hipEventSynchronize(stop));
hip_check_error(hipEventElapsedTime(&total_time, start, stop));
return total_time / nrepeat;
}
else
{
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(
args...);
hip_check_error(hipGetLastError());
return 0;
}
#else
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
return 0;
#endif
}
#endif
template <typename... Args, typename F, typename PreProcessFunc>
float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
float launch_and_time_kernel_with_preprocess(const StreamConfig &stream_config,
PreProcessFunc preprocess,
F kernel,
dim3 grid_dim,
......@@ -88,7 +164,7 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
Args... args)
{
#if CK_TIME_KERNEL
if(stream_config.time_kernel_)
if (stream_config.time_kernel_)
{
#if DEBUG_LOG
printf("%s: grid_dim {%d, %d, %d}, block_dim {%d, %d, %d} \n",
......@@ -119,7 +195,7 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
hip_check_error(hipDeviceSynchronize());
hip_check_error(hipEventRecord(start, stream_config.stream_id_));
for(int i = 0; i < nrepeat; ++i)
for (int i = 0; i < nrepeat; ++i)
{
preprocess();
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(args...);
......
......@@ -16,345 +16,364 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace ck
{
namespace tensor_operation
{
namespace device
{
template <
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
typename ABlockTransferThreadSliceLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_KBatch_K0_M0_M1_K1,
typename BThreadTransferSrcDstAccessOrder,
index_t BThreadTransferSrcVectorDim,
index_t BThreadTransferSrcScalarPerVector,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<CElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>
struct deviceTsmmDl : public DeviceTsmm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
template <
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
typename ABlockTransferThreadSliceLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_KBatch_K0_M0_M1_K1,
typename BThreadTransferSrcDstAccessOrder,
index_t BThreadTransferSrcVectorDim,
index_t BThreadTransferSrcScalarPerVector,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<CElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>
struct deviceTsmmDl : public DeviceTsmm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
// GridwiseTsmm
using GridwiseTsmm =
GridwiseTsmmDl_km_kn_mn<BlockSize,
ADataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout,
GemmSpec,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
MPerThread,
NPerThread,
KPerThread,
ABlockTransferThreadSliceLengths_KBatch_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_KBatch_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_KBatch_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_KBatch_K0_M0_M1_K1,
BThreadTransferSrcDstAccessOrder,
BThreadTransferSrcVectorDim,
BThreadTransferSrcScalarPerVector,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
// GridwiseTsmm
using GridwiseTsmm =
GridwiseTsmmDl_km_kn_mn<BlockSize,
ADataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout,
GemmSpec,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
MPerThread,
NPerThread,
KPerThread,
ABlockTransferThreadSliceLengths_KBatch_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_KBatch_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_KBatch_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_KBatch_K0_M0_M1_K1,
BThreadTransferSrcDstAccessOrder,
BThreadTransferSrcVectorDim,
BThreadTransferSrcScalarPerVector,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
using DefaultBlock2CTileMap = typename GridwiseTsmm::DefaultBlock2CTileMap;
using Argument = typename GridwiseTsmm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
using DefaultBlock2CTileMap = typename GridwiseTsmm::DefaultBlock2CTileMap;
using Argument = typename GridwiseTsmm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& karg, const StreamConfig& stream_config = StreamConfig{})
{
float Run(const Argument &karg, const StreamConfig &stream_config = StreamConfig{})
{
const index_t grid_size = GridwiseTsmm::CalculateGridSize(karg.M, karg.N, karg.k_batch);
// const auto b2c_map = DefaultBlock2CTileMap{};
const index_t grid_size = GridwiseTsmm::CalculateGridSize(karg.M, karg.N, karg.k_batch);
const auto b2c_map = DefaultBlock2CTileMap{};
const auto K0 = karg.K0;
const auto K0 = karg.K0;
const bool has_main_k_block_loop = GridwiseTsmm::CalculateHasMainKBlockLoop(K0);
const bool has_double_tail_k_block_loop =
GridwiseTsmm::CalculateHasDoubleTailKBlockLoop(K0);
const bool has_main_k_block_loop = GridwiseTsmm::CalculateHasMainKBlockLoop(K0);
const bool has_double_tail_k_block_loop =
GridwiseTsmm::CalculateHasDoubleTailKBlockLoop(K0);
float ave_time = 0;
float ave_time = 0;
if(karg.k_batch > 1)
hipGetErrorString(hipMemset(karg.p_c_grid, 0, karg.M * karg.N * sizeof(CDataType)));
if (karg.k_batch > 1)
hipGetErrorString(hipMemset(karg.p_c_grid, 0, karg.M * karg.N * sizeof(CDataType)));
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
if(karg.k_batch == 1)
{
if (has_main_k_block_loop && has_double_tail_k_block_loop)
{
if (karg.k_batch == 1)
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
InMemoryDataOperationEnum::Set,
true,
true,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg);
}
else
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
InMemoryDataOperationEnum::AtomicAdd,
true,
true,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg);
}
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
BLayout,
InMemoryDataOperationEnum::Set,
true,
true,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg.p_a_grid, karg.p_b_grid, karg.p_c_grid, (karg.M), (karg.N), (karg.K),
(karg.K0), (karg.k_batch), karg.MPadded, karg.NPadded, b2c_map);
}
else
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
BLayout,
InMemoryDataOperationEnum::AtomicAdd,
true,
true,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg.p_a_grid, karg.p_b_grid, karg.p_c_grid, (karg.M), (karg.N), (karg.K),
(karg.K0), (karg.k_batch), karg.MPadded, karg.NPadded, b2c_map);
}
}
else if (has_main_k_block_loop && !has_double_tail_k_block_loop)
{
if(karg.k_batch == 1)
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
InMemoryDataOperationEnum::Set,
true,
false,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg);
}
else
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
InMemoryDataOperationEnum::AtomicAdd,
true,
false,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg);
}
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
if(karg.k_batch == 1)
if (karg.k_batch == 1)
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
BLayout,
InMemoryDataOperationEnum::Set,
true,
false,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg.p_a_grid, karg.p_b_grid, karg.p_c_grid, (karg.M), (karg.N), (karg.K),
(karg.K0), (karg.k_batch), karg.MPadded, karg.NPadded, b2c_map);
}
else
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
BLayout,
InMemoryDataOperationEnum::AtomicAdd,
true,
false,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg.p_a_grid, karg.p_b_grid, karg.p_c_grid, (karg.M), (karg.N), (karg.K),
(karg.K0), (karg.k_batch), karg.MPadded, karg.NPadded, b2c_map);
}
}
else if (!has_main_k_block_loop && has_double_tail_k_block_loop)
{
if (karg.k_batch == 1)
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
BLayout,
InMemoryDataOperationEnum::Set,
false,
true,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg.p_a_grid, karg.p_b_grid, karg.p_c_grid, (karg.M), (karg.N), (karg.K),
(karg.K0), (karg.k_batch), karg.MPadded, karg.NPadded, b2c_map);
}
else
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
BLayout,
InMemoryDataOperationEnum::AtomicAdd,
false,
true,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg.p_a_grid, karg.p_b_grid, karg.p_c_grid, (karg.M), (karg.N), (karg.K),
(karg.K0), (karg.k_batch), karg.MPadded, karg.NPadded, b2c_map);
}
}
else
{
if (karg.k_batch == 1)
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
BLayout,
InMemoryDataOperationEnum::Set,
false,
false,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg.p_a_grid, karg.p_b_grid, karg.p_c_grid, (karg.M), (karg.N), (karg.K),
(karg.K0), (karg.k_batch), karg.MPadded, karg.NPadded, b2c_map);
}
else
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
BLayout,
InMemoryDataOperationEnum::AtomicAdd,
false,
false,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg.p_a_grid, karg.p_b_grid, karg.p_c_grid, (karg.M), (karg.N), (karg.K),
(karg.K0), (karg.k_batch), karg.MPadded, karg.NPadded, b2c_map);
}
}
return ave_time;
}
// polymorphic
float
Run(const BaseArgument *p_arg,
const StreamConfig &stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument *>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
InMemoryDataOperationEnum::Set,
false,
true,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg);
// TODO: properly implement this check
return true;
}
else
// //
static bool IsSupportedArgument(const Argument &arg)
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
InMemoryDataOperationEnum::AtomicAdd,
false,
true,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg);
if (ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a" ||
ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102" || ck::get_device_name() == "gfx940" || ck::get_device_name() == "gfx941" || ck::get_device_name() == "gfx942")
{
return GridwiseTsmm::CheckValidity(arg);
}
else
{
return false;
}
}
}
else
{
if(karg.k_batch == 1)
// //
// polymorphic
bool IsSupportedArgument(const BaseArgument *p_arg) override
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
InMemoryDataOperationEnum::Set,
false,
false,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg);
return IsSupportedArgument(*dynamic_cast<const Argument *>(p_arg));
}
else
static auto MakeArgument(const ADataType *p_a,
const BDataType *p_b,
CDataType *p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
index_t KBatch) // //
{
const auto kernel = kernel_tsmm_dl_v1r3<GridwiseTsmm,
ADataType,
CDataType,
InMemoryDataOperationEnum::AtomicAdd,
false,
false,
DefaultBlock2CTileMap>; // //
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(grid_size), dim3(BlockSize), 0, karg);
return Argument{p_a,
p_b,
p_c,
M,
N,
K,
StrideA,
StrideB,
StrideC,
GridwiseTsmm::CalculateMPadded(M),
GridwiseTsmm::CalculateNPadded(N),
// GridwiseTsmm::CalculateKPadded(K, KBatch),
GridwiseTsmm::CalculateK0(K, KBatch),
KBatch}; // //
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
// //
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a" ||
ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102")
{
return GridwiseTsmm::CheckValidity(arg);
}
else
{
return false;
}
}
// //
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
index_t KBatch) // //
{
return Argument{p_a,
p_b,
p_c,
M,
N,
K,
StrideA,
StrideB,
StrideC,
// GridwiseTsmm::CalculateMPadded(M),
// GridwiseTsmm::CalculateNPadded(N),
// GridwiseTsmm::CalculateKPadded(K, KBatch),
GridwiseTsmm::CalculateK0(K, KBatch),
KBatch}; // //
}
static auto MakeInvoker() { return Invoker{}; }
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
ck::index_t KBatch = 1) override // //
{
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void *p_a,
const void *p_b,
void *p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
ck::index_t KBatch = 1) override // //
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC,
// GridwiseTsmm::CalculateMPadded(M),
// GridwiseTsmm::CalculateNPadded(N),
// GridwiseTsmm::CalculateKPadded(K, KBatch),
GridwiseTsmm::CalculateK0(K, KBatch),
KBatch); // //
}
return std::make_unique<Argument>(static_cast<const ADataType *>(p_a),
static_cast<const BDataType *>(p_b),
static_cast<CDataType *>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC,
GridwiseTsmm::CalculateMPadded(M),
GridwiseTsmm::CalculateNPadded(N),
// GridwiseTsmm::CalculateKPadded(K, KBatch),
GridwiseTsmm::CalculateK0(K, KBatch),
KBatch); // //
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
// clang-format off
str << "deviceTsmmDl"
<< "<"
<< BlockSize << ", "
......@@ -366,12 +385,12 @@ struct deviceTsmmDl : public DeviceTsmm<ALayout,
<< NPerThread << ", "
<< KPerThread
<< ">";
// clang-format on
// clang-format on
return str.str();
}
};
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -16,757 +16,769 @@
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_set.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseTsmm,
typename FloatAB,
typename FloatC,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop,
typename Block2CTileMap>
__global__ void
namespace ck
{
template <typename GridwiseTsmm,
typename FloatAB,
typename FloatC,
typename BLayout,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop,
typename Block2CTileMap>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_tsmm_dl_v1r3(
typename GridwiseTsmm::Argument karg) //: in __global__ functions, struct is
// better for reduced load overhead
{
GridwiseTsmm::template Run<HasMainKBlockLoop,
HasDoubleTailKBlockLoop,
GridwiseTsmm,
CGlobalMemoryDataOperation>(karg);
}
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
typename ALayout,
typename BLayout,
typename CLayout,
tensor_operation::device::GemmSpecialization GemmSpec,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1Value,
index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
typename ABlockTransferThreadSliceLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_KBatch_K0_M0_M1_K1,
typename BThreadTransferSrcDstAccessOrder,
index_t BThreadTransferSrcVectorDim,
index_t BThreadTransferSrcScalarPerVector,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector>
struct GridwiseTsmmDl_km_kn_mn
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
// Argument
struct Argument : public tensor_operation::device::BaseArgument //
const FloatAB *p_a_grid, const FloatAB *p_b_grid, FloatC *p_c_grid, index_t M, index_t N, index_t K,
index_t K0, index_t k_batch, index_t MPadded, index_t NPadded, const Block2CTileMap block_2_ctile_map) //: in __global__ functions, struct is
// better for reduced load overhead
{
Argument(const FloatAB* p_a_grid_,
const FloatAB* p_b_grid_,
FloatC* p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
index_t StrideC_,
// index_t MPadded_,
// index_t NPadded_,
// index_t KPadded_,
index_t K0_,
index_t k_batch_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_c_grid{p_c_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideC{StrideC_},
// MPadded(MPadded_),
// NPadded(NPadded_),
// KPadded(KPadded_),
K0(K0_),
k_batch(k_batch_)
// strides depend on B's layout
if constexpr (is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
GridwiseTsmm::template Run<HasMainKBlockLoop,
HasDoubleTailKBlockLoop,
GridwiseTsmm,
CGlobalMemoryDataOperation>(p_a_grid, p_b_grid, p_c_grid, M, N, K,
K0, k_batch, K, N, N, MPadded, NPadded, block_2_ctile_map);
}
else
{
GridwiseTsmm::template Run<HasMainKBlockLoop,
HasDoubleTailKBlockLoop,
GridwiseTsmm,
CGlobalMemoryDataOperation>(p_a_grid, p_b_grid, p_c_grid, M, N, K,
K0, k_batch, K, K, N, MPadded, NPadded, block_2_ctile_map);
}
// private:
const FloatAB* p_a_grid;
const FloatAB* p_b_grid;
FloatC* p_c_grid;
index_t M, N, K;
index_t StrideA, StrideB, StrideC;
//:
// index_t MPadded;
// index_t NPadded;
// index_t KPadded;
index_t K0;
index_t k_batch;
};
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// TODO: change this. I think it needs multi-dimensional alignment
constexpr auto max_lds_align = K1;
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k_m = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_aligned_space_size =
math::integer_least_multiple(a_block_desc_k_m.GetElementSpaceSize(), max_lds_align);
return 2 * (a_block_aligned_space_size) * sizeof(FloatAB);
}
__host__ __device__ static constexpr index_t
CalculateGridSize(index_t M, index_t N, index_t k_batch) //
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
typename ALayout,
typename BLayout,
typename CLayout,
tensor_operation::device::GemmSpecialization GemmSpec,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1Value,
index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
typename ABlockTransferThreadSliceLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_KBatch_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_KBatch_K0_M0_M1_K1,
typename BThreadTransferSrcDstAccessOrder,
index_t BThreadTransferSrcVectorDim,
index_t BThreadTransferSrcScalarPerVector,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector>
struct GridwiseTsmmDl_km_kn_mn
{
const index_t grid_size = math::integer_divide_ceil(N, NPerBlock) *
math::integer_divide_ceil(M, MPerBlock) * k_batch;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
return grid_size;
}
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K0)
{
const bool has_main_k_block_loop = (K0 + K0PerBlock) / (2 * K0PerBlock) > 1;
// Argument
struct Argument : public tensor_operation::device::BaseArgument //
{
Argument(const FloatAB *p_a_grid_,
const FloatAB *p_b_grid_,
FloatC *p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
index_t StrideC_,
index_t MPadded_,
index_t NPadded_,
// index_t KPadded_,
index_t K0_,
index_t k_batch_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_c_grid{p_c_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideC{StrideC_},
MPadded(MPadded_),
NPadded(NPadded_),
// KPadded(KPadded_),
K0(K0_),
k_batch(k_batch_)
{
}
return has_main_k_block_loop;
}
// private:
const FloatAB *p_a_grid;
const FloatAB *p_b_grid;
FloatC *p_c_grid;
index_t M, N, K;
index_t StrideA, StrideB, StrideC;
//:
index_t MPadded;
index_t NPadded;
// index_t KPadded;
index_t K0;
index_t k_batch;
};
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// TODO: change this. I think it needs multi-dimensional alignment
constexpr auto max_lds_align = K1;
__host__ __device__ static constexpr bool CalculateHasDoubleTailKBlockLoop(index_t K0)
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k_m = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
{
const bool has_double_tail_k_block_loop = (K0 / K0PerBlock) % 2 == 0;
// TODO: check alignment
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_aligned_space_size =
math::integer_least_multiple(a_block_desc_k_m.GetElementSpaceSize(), max_lds_align);
return has_double_tail_k_block_loop;
}
return 2 * (a_block_aligned_space_size) * sizeof(FloatAB);
}
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ __device__ static constexpr index_t
CalculateGridSize(index_t M, index_t N, index_t k_batch) //
{
const index_t grid_size = math::integer_divide_ceil(N, NPerBlock) *
math::integer_divide_ceil(M, MPerBlock) * k_batch;
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
return grid_size;
}
__host__ __device__ static auto CalculateK0(index_t K, index_t K_Batch = 1)
{
// k_batch * k0 * k0_per_block * k1
auto K_t = K_Batch * K0PerBlock * K1;
return (K + K_t - 1) / K_t * K0PerBlock;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K0)
{
const bool has_main_k_block_loop = (K0 + K0PerBlock) / (2 * K0PerBlock) > 1;
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
{
auto K0 = CalculateK0(K, K_Batch);
return K_Batch * K0 * K1;
}
return has_main_k_block_loop;
}
static constexpr auto K1Number = Number<K1>{};
__host__ __device__ static constexpr bool CalculateHasDoubleTailKBlockLoop(index_t K0)
// M, K -> KBatch, K0, M, K1: M -> MPad, K->KBatch, K0, K1
__host__ __device__ static auto MakeAGridDescriptor_KBatch_K0_M_K1(
index_t M, index_t MPad, index_t K, index_t StrideA, index_t KBatch, index_t K0)
{
{
const bool has_double_tail_k_block_loop = (K0 / K0PerBlock) % 2 == 0;
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
return has_double_tail_k_block_loop;
}
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(
make_tuple(KBatch, K0, K1Number)), // unmerge is split 1D to 3D
make_right_pad_transform(M, MPad - M)), //
make_tuple(Sequence<1>{}, Sequence<0>{}), // mapped to input M & K; sequence 0 is M;
// 1 is K; make unmerge is working on K;
make_tuple(Sequence<0, 1, 3>{}, // input is M,K; output we want is Kbatch, K0 and K1
// -> 0, 1, 3; output is transformed from 2D to 4D
Sequence<2>{})); // 2->M
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
else
__host__ __device__ static auto CalculateK0(index_t K, index_t K_Batch = 1)
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// k_batch * k0 * k0_per_block * k1
auto K_t = K_Batch * K0PerBlock * K1;
return (K + K_t - 1) / K_t * K0PerBlock;
}
}
__host__ __device__ static auto MakeBGridDescriptor_KBatch_K0_N_K1(
index_t K, index_t NPad, index_t N, index_t StrideB, index_t KBatch, index_t K0)
{
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
{
auto K0 = CalculateK0(K, K_Batch);
return K_Batch * K0 * K1;
}
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
static constexpr auto K1Number = Number<K1>{};
// M, K -> KBatch, K0, M, K1: M -> MPad, K->KBatch, K0, K1
__host__ __device__ static auto MakeAGridDescriptor_KBatch_K0_M_K1(
index_t M, index_t MPad, index_t K, index_t StrideA, index_t KBatch, index_t K0)
{
const auto a_grid_desc_m_k = [&]()
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
if constexpr (is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr (is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
if constexpr (GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(
make_tuple(KBatch, K0, K1Number)), // unmerge is split 1D to 3D
make_right_pad_transform(M, MPad - M)), //
make_tuple(Sequence<1>{}, Sequence<0>{}), // mapped to input M & K; sequence 0 is M;
// 1 is K; make unmerge is working on K;
make_tuple(Sequence<0, 1, 3>{}, // input is M,K; output we want is Kbatch, K0 and K1
// -> 0, 1, 3; output is transformed from 2D to 4D
Sequence<2>{})); // 2->M
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
else
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}();
}
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
__host__ __device__ static auto MakeBGridDescriptor_KBatch_K0_N_K1(
index_t K, index_t NPad, index_t N, index_t StrideB, index_t KBatch, index_t K0)
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
const auto b_grid_desc_k_n = [&]()
{
if constexpr (is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr (is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
if constexpr (GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
}
__host__ __device__ static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
{
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
__host__ __device__ static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
{
const auto c_grid_desc_m_n = [&]()
{
if constexpr (is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr (is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
if constexpr (GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
else
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}();
}
__host__ __device__ static auto GetKPad(index_t K, index_t KBatch)
{
const index_t K0 = math::integer_divide_ceil(K, K1 * K0PerBlock * KBatch) * K0PerBlock;
const index_t KPad = KBatch * K0 * K1;
return KPad;
}
using AGridDesc_Kbatch_K0_M_K1 = decltype(MakeAGridDescriptor_KBatch_K0_M_K1(1, 1, 1, 1, 1, 1));
using BGridDesc_Kbatch_K0_N_K1 = decltype(MakeBGridDescriptor_KBatch_K0_N_K1(1, 1, 1, 1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
__host__ __device__ static constexpr bool CheckValidity(const Argument &karg)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// const auto MPadded = CalculateMPadded(karg.M);
// const auto NPadded = CalculateNPadded(karg.N);
const auto a_grid_desc_kbatch_k0_m_k1 = MakeAGridDescriptor_KBatch_K0_M_K1(
karg.M, karg.MPadded, karg.K, karg.StrideA, karg.k_batch, karg.K0);
const auto b_grid_desc_kbatch_k0_n_k1 = MakeBGridDescriptor_KBatch_K0_N_K1(
karg.K, karg.NPadded, karg.N, karg.StrideB, karg.k_batch, karg.K0);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N(karg.M, karg.N, karg.StrideC);
const auto KBatch_a = a_grid_desc_kbatch_k0_m_k1.GetLength(I0);
const auto KBatch_b = b_grid_desc_kbatch_k0_n_k1.GetLength(I0);
const auto K0_ = a_grid_desc_kbatch_k0_m_k1.GetLength(I1);
const auto M_ = a_grid_desc_kbatch_k0_m_k1.GetLength(I2);
const auto N_ = b_grid_desc_kbatch_k0_n_k1.GetLength(I2);
return (M_ % MPerBlock == 0 && N_ % NPerBlock == 0 && K0_ % K0PerBlock == 0 &&
M_ == c_grid_desc_m_n.GetLength(I0) && N_ == c_grid_desc_m_n.GetLength(I1) &&
a_grid_desc_kbatch_k0_m_k1.GetLength(I3) ==
b_grid_desc_kbatch_k0_n_k1.GetLength(I3) &&
karg.k_batch >= 1 && KBatch_a == karg.k_batch && KBatch_b == karg.k_batch);
}
else
// KBatch, K0, M, K1 -> KBatch, K0, M0, M1 (MPerBlock), K1
__host__ __device__ static constexpr auto MakeAGridDescriptor_Kbatch_K0_M0_M1_K1(
const AGridDesc_Kbatch_K0_M_K1 &a_grid_desc_kbatch_k0_m_k1)
{
const auto KBatch = a_grid_desc_kbatch_k0_m_k1.GetLength(I0);
const auto K0 = a_grid_desc_kbatch_k0_m_k1.GetLength(I1);
const auto M = a_grid_desc_kbatch_k0_m_k1.GetLength(I2);
const auto M1 = Number<MPerBlock>{};
const auto M0 = M / M1;
const auto a_grid_desc_kbatch_k0_m0_m1_k1 = transform_tensor_descriptor(
a_grid_desc_kbatch_k0_m_k1,
make_tuple(make_pass_through_transform(KBatch),
make_pass_through_transform(K0),
make_unmerge_transform(make_tuple(M0, M1)),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}), // IP
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{})); // OP
return a_grid_desc_kbatch_k0_m0_m1_k1;
}
__host__ __device__ static constexpr auto MakeBGridDescriptor_Kbatch_K0_N0_N1_K1(
const BGridDesc_Kbatch_K0_N_K1 &b_grid_desc_kbatch_k0_n_k1)
{
const auto KBatch = b_grid_desc_kbatch_k0_n_k1.GetLength(I0);
const auto K0 = b_grid_desc_kbatch_k0_n_k1.GetLength(I1);
const auto N = b_grid_desc_kbatch_k0_n_k1.GetLength(I2);
const auto N1 = Number<NPerBlock>{};
const auto N0 = N / N1;
const auto b_grid_desc_kbatch_k0_n0_n1_k1 = transform_tensor_descriptor(
b_grid_desc_kbatch_k0_n_k1,
make_tuple(make_pass_through_transform(KBatch),
make_pass_through_transform(K0),
make_unmerge_transform(make_tuple(N0, N1)),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}));
return b_grid_desc_kbatch_k0_n0_n1_k1;
}
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N &c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
return transform_tensor_descriptor(
constexpr auto M11 = Number<MPerThread>{};
constexpr auto N11 = Number<NPerThread>{};
constexpr auto M10 = M1 / M11;
constexpr auto N10 = N1 / N11;
const auto c_grid_desc_m0_m10_m11_n0_n10_n11 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(make_unmerge_transform(make_tuple(M0, M10, M11)),
make_unmerge_transform(make_tuple(N0, N10, N11))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return c_grid_desc_m0_m10_m11_n0_n10_n11;
}
}
__host__ __device__ static auto GetKPad(index_t K, index_t KBatch)
{
const index_t K0 = math::integer_divide_ceil(K, K1 * K0PerBlock * KBatch) * K0PerBlock;
const index_t KPad = KBatch * K0 * K1;
return KPad;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap()
{
//: 3d ksplit for C
return BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>();
}
using DefaultBlock2CTileMap = remove_cvref_t<decltype(MakeDefaultBlock2CTileMap())>; //
using AGridDesc_K0_M0_M1_K1 =
decltype(MakeAGridDescriptor_Kbatch_K0_M0_M1_K1(AGridDesc_Kbatch_K0_M_K1{}));
using BGridDesc_K0_N0_N1_K1 =
decltype(MakeBGridDescriptor_Kbatch_K0_N0_N1_K1(BGridDesc_Kbatch_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{})); //
using Block2CTileMap = decltype(MakeDefaultBlock2CTileMap()); //
template <bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop,
typename GridwiseTsmm,
InMemoryDataOperationEnum CGlobalMemoryDataOperation>
__device__ static void Run(const FloatAB *p_a_grid, const FloatAB *p_b_grid, FloatC *p_c_grid, index_t M, index_t N, index_t K,
index_t K0, index_t k_batch, index_t StrideA, index_t StrideB, index_t StrideC, index_t MPadded, index_t NPadded, const Block2CTileMap &block_2_ctile_map)
{
using AGridDesc_Kbatch_K0_M_K1 = decltype(MakeAGridDescriptor_KBatch_K0_M_K1(1, 1, 1, 1, 1, 1));
using BGridDesc_Kbatch_K0_N_K1 = decltype(MakeBGridDescriptor_KBatch_K0_N_K1(1, 1, 1, 1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
constexpr index_t shared_block_size =
GridwiseTsmm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
__shared__ FloatAB p_shared_block[shared_block_size];
const auto a_grid_desc_kbatch_k0_m_k1 = GridwiseTsmm::MakeAGridDescriptor_KBatch_K0_M_K1(
M, MPadded, K, StrideA, k_batch, K0); //
const auto b_grid_desc_kbatch_k0_n_k1 = GridwiseTsmm::MakeBGridDescriptor_KBatch_K0_N_K1(
K, NPadded, N, StrideB, k_batch, K0); //
const auto c_grid_desc_m_n =
GridwiseTsmm::MakeCGridDescriptor_M_N(M, N, StrideC);
const auto a_grid_desc_kbatch_k0_m0_m1_k1 =
GridwiseTsmm::MakeAGridDescriptor_Kbatch_K0_M0_M1_K1(a_grid_desc_kbatch_k0_m_k1); //
const auto b_grid_desc_kbatch_k0_n0_n1_k1 =
GridwiseTsmm::MakeBGridDescriptor_Kbatch_K0_N0_N1_K1(b_grid_desc_kbatch_k0_n_k1); //
const auto c_grid_desc_m0_m10_m11_n0_n10_n11 =
GridwiseTsmm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(c_grid_desc_m_n);
const auto a_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_kbatch_k0_m0_m1_k1.GetElementSpaceSize());
const auto b_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_kbatch_k0_n0_n1_k1.GetElementSpaceSize());
ignore = b_global_buf;
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_m0_m10_m11_n0_n10_n11.GetElementSpaceSize());
const auto c_m0_n0_block_cluster_idx = block_2_ctile_map.convert_1D_block_idx_to_3D_tuple(
get_block_1d_id(), N, k_batch);
// HACK: this force index data into SGPR
const index_t im0 = __builtin_amdgcn_readfirstlane(c_m0_n0_block_cluster_idx[I0]);
const index_t in0 = __builtin_amdgcn_readfirstlane(c_m0_n0_block_cluster_idx[I1]);
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(c_m0_n0_block_cluster_idx[I2]);
if (!block_2_ctile_map.ValidCTileIndex(
make_tuple(im0, in0),
make_tuple(c_grid_desc_m0_m10_m11_n0_n10_n11.GetLength(I0),
c_grid_desc_m0_m10_m11_n0_n10_n11.GetLength(I3))))
{
return;
}
__host__ __device__ static constexpr bool CheckValidity(const Argument& karg)
{
// TODO: change this. I think it needs multi-dimensional alignment
constexpr auto max_lds_align = K1;
constexpr auto a_block_desc_copy_kbatch_k0_m0_m1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(I1, Number<K0PerBlock>{}, I1, Number<MPerBlock>{}, K1), max_lds_align);
// A matrix blockwise copy
auto a_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum::Set,
Sequence<1, K0PerBlock, 1, MPerBlock, K1.value>, //: 5 dimensions; kbatch for each
// dimension is 1
ABlockTransferThreadSliceLengths_KBatch_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_KBatch_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder, // 0, 1, 2, 3, 4
FloatAB,
FloatAB,
remove_reference_t<decltype(a_grid_desc_kbatch_k0_m0_m1_k1)>, // Global tensor desc
decltype(a_block_desc_copy_kbatch_k0_m0_m1_k1), // block tensor desc
ABlockTransferSrcAccessOrder, // 5-dim
Sequence<0, 1, 2, 3, 4>,
ABlockTransferSrcVectorTensorLengths_KBatch_K0_M0_M1_K1, // SrcVectorTensorLengths
ABlockTransferDstVectorTensorLengths_KBatch_K0_M0_M1_K1, // DstVectorTensorLengths
ABlockTransferSrcVectorTensorContiguousDimOrder, // SrcVectorTensorContiguousDimOrder
Sequence<0, 1, 2, 3, 4>, // DstVectorTensorContiguousDimOrder
false,
true>(a_grid_desc_kbatch_k0_m0_m1_k1, // for src desc
make_multi_index(kbatch_id, 0, im0, 0, 0), //: calculate start index of K
a_block_desc_copy_kbatch_k0_m0_m1_k1, // for dst desc
make_multi_index(0, 0, 0, 0, 0));
static constexpr auto b_thread_desc_copy_kbatch_k0_n0_n1_k1 =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<K0PerBlock>{},
I1,
Number<NPerThread>{},
Number<K1>{})); //: this descriptor is used only for copy
static constexpr auto b_thread_desc_copy_k0_n0_n1_k1 = make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<K0PerBlock>{}, I1, Number<NPerThread>{}, Number<K1>{}));
auto b_threadwise_copy = ThreadwiseTensorSliceTransfer_v2<
FloatAB,
FloatAB,
remove_reference_t<decltype(b_grid_desc_kbatch_k0_n0_n1_k1)>,
decltype(b_thread_desc_copy_kbatch_k0_n0_n1_k1), //
Sequence<1, K0PerBlock, 1, NPerThread, K1.value>,
BThreadTransferSrcDstAccessOrder,
BThreadTransferSrcVectorDim,
BThreadTransferSrcScalarPerVector,
1,
false,
true>(b_grid_desc_kbatch_k0_n0_n1_k1,
make_multi_index(kbatch_id, 0, in0, get_thread_local_1d_id() * NPerThread, 0));
const auto MPadded = CalculateMPadded(karg.M);
const auto NPadded = CalculateNPadded(karg.N);
const auto a_grid_desc_kbatch_k0_m_k1 = MakeAGridDescriptor_KBatch_K0_M_K1(
karg.M, MPadded, karg.K, karg.StrideA, karg.k_batch, karg.K0);
const auto b_grid_desc_kbatch_k0_n_k1 = MakeBGridDescriptor_KBatch_K0_N_K1(
karg.K, NPadded, karg.N, karg.StrideB, karg.k_batch, karg.K0);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N(karg.M, karg.N, karg.StrideC);
const auto KBatch_a = a_grid_desc_kbatch_k0_m_k1.GetLength(I0);
const auto KBatch_b = b_grid_desc_kbatch_k0_n_k1.GetLength(I0);
const auto K0_ = a_grid_desc_kbatch_k0_m_k1.GetLength(I1);
const auto M_ = a_grid_desc_kbatch_k0_m_k1.GetLength(I2);
const auto N_ = b_grid_desc_kbatch_k0_n_k1.GetLength(I2);
return (M_ % MPerBlock == 0 && N_ % NPerBlock == 0 && K0_ % K0PerBlock == 0 &&
M_ == c_grid_desc_m_n.GetLength(I0) && N_ == c_grid_desc_m_n.GetLength(I1) &&
a_grid_desc_kbatch_k0_m_k1.GetLength(I3) ==
b_grid_desc_kbatch_k0_n_k1.GetLength(I3) &&
karg.k_batch >= 1 && KBatch_a == karg.k_batch && KBatch_b == karg.k_batch);
}
static constexpr auto b_k0_n_k1_thread_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<K0PerBlock>{}, Number<NPerThread>{}, Number<K1>{}));
// KBatch, K0, M, K1 -> KBatch, K0, M0, M1 (MPerBlock), K1
__host__ __device__ static constexpr auto MakeAGridDescriptor_Kbatch_K0_M0_M1_K1(
const AGridDesc_Kbatch_K0_M_K1& a_grid_desc_kbatch_k0_m_k1)
{
const auto KBatch = a_grid_desc_kbatch_k0_m_k1.GetLength(I0);
const auto K0 = a_grid_desc_kbatch_k0_m_k1.GetLength(I1);
const auto M = a_grid_desc_kbatch_k0_m_k1.GetLength(I2);
const auto M1 = Number<MPerBlock>{};
const auto M0 = M / M1;
const auto a_grid_desc_kbatch_k0_m0_m1_k1 = transform_tensor_descriptor(
a_grid_desc_kbatch_k0_m_k1,
make_tuple(make_pass_through_transform(KBatch),
make_pass_through_transform(K0),
make_unmerge_transform(make_tuple(M0, M1)),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}), // IP
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{})); // OP
return a_grid_desc_kbatch_k0_m0_m1_k1;
}
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_block_desc_k0_m0_m1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, I1, Number<MPerBlock>{}, K1), max_lds_align);
__host__ __device__ static constexpr auto MakeBGridDescriptor_Kbatch_K0_N0_N1_K1(
const BGridDesc_Kbatch_K0_N_K1& b_grid_desc_kbatch_k0_n_k1)
{
const auto KBatch = b_grid_desc_kbatch_k0_n_k1.GetLength(I0);
const auto K0 = b_grid_desc_kbatch_k0_n_k1.GetLength(I1);
const auto N = b_grid_desc_kbatch_k0_n_k1.GetLength(I2);
const auto N1 = Number<NPerBlock>{};
const auto N0 = N / N1;
const auto b_grid_desc_kbatch_k0_n0_n1_k1 = transform_tensor_descriptor(
b_grid_desc_kbatch_k0_n_k1,
make_tuple(make_pass_through_transform(KBatch),
make_pass_through_transform(K0),
make_unmerge_transform(make_tuple(N0, N1)),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}));
return b_grid_desc_kbatch_k0_n0_n1_k1;
}
// TODO: check alignment
// A matrix in LDS memory, for blockwise GEMM
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
static_assert(a_block_desc_k0_m0_m1_k1.GetElementSpaceSize() ==
a_k0_m_k1_block_desc.GetElementSpaceSize() &&
"wrong!");
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto blockwise_tsmm =
BlockwiseGemmDlops_km_kn_m0m1n0n1_v3<BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_thread_desc),
MPerThread,
NPerBlock,
KPerThread>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
constexpr auto c_m10_m11_n10_n11_thread_tensor_lengths =
decltype(blockwise_tsmm)::GetCThreadTensorLengths_BM0_BM1_BN0_BN1();
constexpr auto M11 = Number<MPerThread>{};
constexpr auto N11 = Number<NPerThread>{};
constexpr auto c_thread_desc_m10_m11_n10_n11 = make_naive_tensor_descriptor_packed(
sequence_to_tuple_of_number(c_m10_m11_n10_n11_thread_tensor_lengths));
constexpr auto M10 = M1 / M11;
constexpr auto N10 = N1 / N11;
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_aligned_space_size = math::integer_least_multiple(
a_block_desc_k0_m0_m1_k1.GetElementSpaceSize(), max_lds_align);
const auto c_grid_desc_m0_m10_m11_n0_n10_n11 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M0, M10, M11)),
make_unmerge_transform(make_tuple(N0, N10, N11))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
FloatAB *p_a_block_double = p_shared_block;
return c_grid_desc_m0_m10_m11_n0_n10_n11;
}
auto b_thread_odd_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_k0_n_k1_thread_desc.GetElementSpaceSize());
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap()
{
//: 3d ksplit for C
return BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>();
}
using DefaultBlock2CTileMap = remove_cvref_t<decltype(MakeDefaultBlock2CTileMap())>; //
using AGridDesc_K0_M0_M1_K1 =
decltype(MakeAGridDescriptor_Kbatch_K0_M0_M1_K1(AGridDesc_Kbatch_K0_M_K1{}));
using BGridDesc_K0_N0_N1_K1 =
decltype(MakeBGridDescriptor_Kbatch_K0_N0_N1_K1(BGridDesc_Kbatch_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{})); //
using Block2CTileMap = decltype(MakeDefaultBlock2CTileMap()); //
template <bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop,
typename GridwiseTsmm,
InMemoryDataOperationEnum CGlobalMemoryDataOperation>
__device__ static void Run(const Argument& karg)
{
constexpr index_t shared_block_size =
GridwiseTsmm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
__shared__ FloatAB p_shared_block[shared_block_size];
const Block2CTileMap& block_2_ctile_map = Block2CTileMap{};
const auto MPadded = CalculateMPadded(karg.M);
const auto NPadded = CalculateNPadded(karg.N);
const FloatAB* p_a_grid = karg.p_a_grid;
const FloatAB* p_b_grid = karg.p_b_grid;
FloatC* p_c_grid = karg.p_c_grid;
const auto a_grid_desc_kbatch_k0_m_k1 = GridwiseTsmm::MakeAGridDescriptor_KBatch_K0_M_K1(
karg.M, MPadded, karg.K, karg.StrideA, karg.k_batch, karg.K0); //
const auto b_grid_desc_kbatch_k0_n_k1 = GridwiseTsmm::MakeBGridDescriptor_KBatch_K0_N_K1(
karg.K, NPadded, karg.N, karg.StrideB, karg.k_batch, karg.K0); //
const auto c_grid_desc_m_n =
GridwiseTsmm::MakeCGridDescriptor_M_N(karg.M, karg.N, karg.StrideC);
const auto a_grid_desc_kbatch_k0_m0_m1_k1 =
GridwiseTsmm::MakeAGridDescriptor_Kbatch_K0_M0_M1_K1(a_grid_desc_kbatch_k0_m_k1); //
const auto b_grid_desc_kbatch_k0_n0_n1_k1 =
GridwiseTsmm::MakeBGridDescriptor_Kbatch_K0_N0_N1_K1(b_grid_desc_kbatch_k0_n_k1); //
const auto c_grid_desc_m0_m10_m11_n0_n10_n11 =
GridwiseTsmm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(c_grid_desc_m_n);
const auto a_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_kbatch_k0_m0_m1_k1.GetElementSpaceSize());
const auto b_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_kbatch_k0_n0_n1_k1.GetElementSpaceSize());
ignore = b_global_buf;
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_m0_m10_m11_n0_n10_n11.GetElementSpaceSize());
const auto c_m0_n0_block_cluster_idx = block_2_ctile_map.convert_1D_block_idx_to_3D_tuple(
get_block_1d_id(), karg.N, karg.k_batch);
// HACK: this force index data into SGPR
const index_t im0 = __builtin_amdgcn_readfirstlane(c_m0_n0_block_cluster_idx[I0]);
const index_t in0 = __builtin_amdgcn_readfirstlane(c_m0_n0_block_cluster_idx[I1]);
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(c_m0_n0_block_cluster_idx[I2]);
if(!block_2_ctile_map.ValidCTileIndex(
make_tuple(im0, in0),
make_tuple(c_grid_desc_m0_m10_m11_n0_n10_n11.GetLength(I0),
c_grid_desc_m0_m10_m11_n0_n10_n11.GetLength(I3))))
{
return;
}
auto b_thread_even_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_k0_n_k1_thread_desc.GetElementSpaceSize());
// TODO: change this. I think it needs multi-dimensional alignment
constexpr auto max_lds_align = K1;
constexpr auto a_block_desc_copy_kbatch_k0_m0_m1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(I1, Number<K0PerBlock>{}, I1, Number<MPerBlock>{}, K1), max_lds_align);
// A matrix blockwise copy
auto a_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum::Set,
Sequence<1, K0PerBlock, 1, MPerBlock, K1.value>, //: 5 dimensions; kbatch for each
// dimension is 1
ABlockTransferThreadSliceLengths_KBatch_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_KBatch_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder, // 0, 1, 2, 3, 4
FloatAB,
FloatAB,
remove_reference_t<decltype(a_grid_desc_kbatch_k0_m0_m1_k1)>, // Global tensor desc
decltype(a_block_desc_copy_kbatch_k0_m0_m1_k1), // block tensor desc
ABlockTransferSrcAccessOrder, // 5-dim
Sequence<0, 1, 2, 3, 4>,
ABlockTransferSrcVectorTensorLengths_KBatch_K0_M0_M1_K1, // SrcVectorTensorLengths
ABlockTransferDstVectorTensorLengths_KBatch_K0_M0_M1_K1, // DstVectorTensorLengths
ABlockTransferSrcVectorTensorContiguousDimOrder, // SrcVectorTensorContiguousDimOrder
Sequence<0, 1, 2, 3, 4>, // DstVectorTensorContiguousDimOrder
false,
true>(a_grid_desc_kbatch_k0_m0_m1_k1, // for src desc
make_multi_index(kbatch_id, 0, im0, 0, 0), //: calculate start index of K
a_block_desc_copy_kbatch_k0_m0_m1_k1, // for dst desc
make_multi_index(0, 0, 0, 0, 0));
static constexpr auto b_thread_desc_copy_kbatch_k0_n0_n1_k1 =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<K0PerBlock>{},
I1,
Number<NPerThread>{},
Number<K1>{})); //: this descriptor is used only for copy
static constexpr auto b_thread_desc_copy_k0_n0_n1_k1 = make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<K0PerBlock>{}, I1, Number<NPerThread>{}, Number<K1>{}));
auto b_threadwise_copy = ThreadwiseTensorSliceTransfer_v2<
FloatAB,
FloatAB,
remove_reference_t<decltype(b_grid_desc_kbatch_k0_n0_n1_k1)>,
decltype(b_thread_desc_copy_kbatch_k0_n0_n1_k1), //
Sequence<1, K0PerBlock, 1, NPerThread, K1.value>,
BThreadTransferSrcDstAccessOrder,
BThreadTransferSrcVectorDim,
BThreadTransferSrcScalarPerVector,
1,
false,
true>(b_grid_desc_kbatch_k0_n0_n1_k1,
make_multi_index(kbatch_id, 0, in0, get_thread_local_1d_id() * NPerThread, 0));
static constexpr auto b_k0_n_k1_thread_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<K0PerBlock>{}, Number<NPerThread>{}, Number<K1>{}));
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_block_desc_k0_m0_m1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, I1, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// A matrix in LDS memory, for blockwise GEMM
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
static_assert(a_block_desc_k0_m0_m1_k1.GetElementSpaceSize() ==
a_k0_m_k1_block_desc.GetElementSpaceSize() &&
"wrong!");
const auto blockwise_tsmm =
BlockwiseGemmDlops_km_kn_m0m1n0n1_v3<BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_thread_desc),
MPerThread,
NPerBlock,
KPerThread>{};
constexpr auto c_m10_m11_n10_n11_thread_tensor_lengths =
decltype(blockwise_tsmm)::GetCThreadTensorLengths_BM0_BM1_BN0_BN1();
constexpr auto c_thread_desc_m10_m11_n10_n11 = make_naive_tensor_descriptor_packed(
sequence_to_tuple_of_number(c_m10_m11_n10_n11_thread_tensor_lengths));
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_aligned_space_size = math::integer_least_multiple(
a_block_desc_k0_m0_m1_k1.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block_double = p_shared_block;
auto b_thread_odd_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_k0_n_k1_thread_desc.GetElementSpaceSize());
auto b_thread_even_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_k0_n_k1_thread_desc.GetElementSpaceSize());
// register allocation for output
auto c_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAcc>(
c_thread_desc_m10_m11_n10_n11.GetElementSpaceSize());
// Initialize C
c_thread_buf.Clear();
constexpr auto a_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0, 0);
constexpr auto b_thread_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0, 0);
auto a_block_even_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block_double, a_block_desc_copy_kbatch_k0_m0_m1_k1.GetElementSpaceSize());
auto a_block_odd_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block_double + a_block_aligned_space_size,
a_block_desc_copy_kbatch_k0_m0_m1_k1.GetElementSpaceSize());
// LDS double buffer: preload data into LDS
{
a_blockwise_copy.RunRead(a_grid_desc_kbatch_k0_m0_m1_k1,
a_global_buf); // a_global_buf -> reg_tmp_buf
a_blockwise_copy.RunWrite(a_block_desc_copy_kbatch_k0_m0_m1_k1,
a_block_even_buf); // reg_tmp_buf->a_block_even_buf
b_threadwise_copy.Run(b_grid_desc_kbatch_k0_n0_n1_k1,
b_global_buf,
b_thread_desc_copy_k0_n0_n1_k1,
make_tuple(I0, I0, I0, I0, I0),
b_thread_even_buf);
}
// register allocation for output
auto c_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAcc>(
c_thread_desc_m10_m11_n10_n11.GetElementSpaceSize());
if constexpr(HasMainKBlockLoop)
{
const auto K0 = a_grid_desc_kbatch_k0_m0_m1_k1.GetLength(I1);
// Initialize C
c_thread_buf.Clear();
index_t k_block_data_begin = 0;
constexpr auto a_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0, 0);
constexpr auto b_thread_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0, 0);
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_kbatch_k0_m0_m1_k1,
a_block_slice_copy_step);
auto a_block_even_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block_double, a_block_desc_copy_kbatch_k0_m0_m1_k1.GetElementSpaceSize());
b_threadwise_copy.MoveSrcSliceWindow(b_grid_desc_kbatch_k0_n0_n1_k1,
b_thread_slice_copy_step);
auto a_block_odd_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block_double + a_block_aligned_space_size,
a_block_desc_copy_kbatch_k0_m0_m1_k1.GetElementSpaceSize());
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_grid_desc_kbatch_k0_m0_m1_k1, a_global_buf);
// LDS double buffer: preload data into LDS
{
a_blockwise_copy.RunRead(a_grid_desc_kbatch_k0_m0_m1_k1,
a_global_buf); // a_global_buf -> reg_tmp_buf
a_blockwise_copy.RunWrite(a_block_desc_copy_kbatch_k0_m0_m1_k1,
a_block_even_buf); // reg_tmp_buf->a_block_even_buf
b_threadwise_copy.Run(b_grid_desc_kbatch_k0_n0_n1_k1,
b_global_buf,
b_thread_desc_copy_k0_n0_n1_k1,
make_tuple(I0, I0, I0, I0, I0),
b_thread_odd_buf);
b_thread_even_buf);
}
block_sync_lds();
if constexpr (HasMainKBlockLoop)
{
// const auto K0 = a_grid_desc_kbatch_k0_m0_m1_k1.GetLength(I1);
// LDS double buffer: GEMM on current data
blockwise_tsmm.Run(a_block_even_buf, b_thread_even_buf, c_thread_buf);
index_t k_block_data_begin = 0;
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_block_desc_copy_kbatch_k0_m0_m1_k1, a_block_odd_buf);
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_kbatch_k0_m0_m1_k1,
a_block_slice_copy_step);
// odd iteration
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_kbatch_k0_m0_m1_k1,
a_block_slice_copy_step);
b_threadwise_copy.MoveSrcSliceWindow(b_grid_desc_kbatch_k0_n0_n1_k1,
b_thread_slice_copy_step);
b_threadwise_copy.MoveSrcSliceWindow(b_grid_desc_kbatch_k0_n0_n1_k1,
b_thread_slice_copy_step);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_grid_desc_kbatch_k0_m0_m1_k1, a_global_buf);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_grid_desc_kbatch_k0_m0_m1_k1, a_global_buf);
b_threadwise_copy.Run(b_grid_desc_kbatch_k0_n0_n1_k1,
b_global_buf,
b_thread_desc_copy_k0_n0_n1_k1,
make_tuple(I0, I0, I0, I0, I0),
b_thread_odd_buf);
b_threadwise_copy.Run(b_grid_desc_kbatch_k0_n0_n1_k1,
b_global_buf,
b_thread_desc_copy_k0_n0_n1_k1,
make_tuple(I0, I0, I0, I0, I0),
b_thread_even_buf);
block_sync_lds();
block_sync_lds();
// LDS double buffer: GEMM on current data
blockwise_tsmm.Run(a_block_even_buf, b_thread_even_buf, c_thread_buf);
// LDS double buffer: GEMM on current data
blockwise_tsmm.Run(a_block_odd_buf, b_thread_odd_buf, c_thread_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_block_desc_copy_kbatch_k0_m0_m1_k1, a_block_odd_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_block_desc_copy_kbatch_k0_m0_m1_k1, a_block_even_buf);
// odd iteration
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_kbatch_k0_m0_m1_k1,
a_block_slice_copy_step);
k_block_data_begin += 2 * K0PerBlock;
} while(k_block_data_begin < K0 - 2 * K0PerBlock);
}
b_threadwise_copy.MoveSrcSliceWindow(b_grid_desc_kbatch_k0_n0_n1_k1,
b_thread_slice_copy_step);
// LDS double buffer: tail
if constexpr(HasDoubleTailKBlockLoop) // if has 2 iteration left
{
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_kbatch_k0_m0_m1_k1,
a_block_slice_copy_step);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_grid_desc_kbatch_k0_m0_m1_k1, a_global_buf);
b_threadwise_copy.MoveSrcSliceWindow(b_grid_desc_kbatch_k0_n0_n1_k1,
b_thread_slice_copy_step);
b_threadwise_copy.Run(b_grid_desc_kbatch_k0_n0_n1_k1,
b_global_buf,
b_thread_desc_copy_k0_n0_n1_k1,
make_tuple(I0, I0, I0, I0, I0),
b_thread_even_buf);
block_sync_lds();
block_sync_lds();
// LDS double buffer: load last data from device mem
a_blockwise_copy.RunRead(a_grid_desc_kbatch_k0_m0_m1_k1, a_global_buf);
// LDS double buffer: GEMM on current data
blockwise_tsmm.Run(a_block_odd_buf, b_thread_odd_buf, c_thread_buf);
b_threadwise_copy.Run(b_grid_desc_kbatch_k0_n0_n1_k1,
b_global_buf,
b_thread_desc_copy_k0_n0_n1_k1,
make_tuple(I0, I0, I0, I0, I0),
b_thread_odd_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_block_desc_copy_kbatch_k0_m0_m1_k1, a_block_even_buf);
// LDS double buffer: GEMM on 2nd-last data
blockwise_tsmm.Run(a_block_even_buf, b_thread_even_buf, c_thread_buf);
k_block_data_begin += 2 * K0PerBlock;
} while (k_block_data_begin < K0 - 2 * K0PerBlock);
}
// LDS double buffer: store last data to LDS
a_blockwise_copy.RunWrite(a_block_desc_copy_kbatch_k0_m0_m1_k1, a_block_odd_buf);
// LDS double buffer: tail
if constexpr (HasDoubleTailKBlockLoop) // if has 2 iteration left
{
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_kbatch_k0_m0_m1_k1,
a_block_slice_copy_step);
block_sync_lds();
b_threadwise_copy.MoveSrcSliceWindow(b_grid_desc_kbatch_k0_n0_n1_k1,
b_thread_slice_copy_step);
// LDS double buffer: GEMM on last data
blockwise_tsmm.Run(a_block_odd_buf, b_thread_odd_buf, c_thread_buf);
}
else // if has 1 iteration left
{
__syncthreads();
block_sync_lds();
// LDS double buffer: GEMM on last data
blockwise_tsmm.Run(a_block_even_buf, b_thread_even_buf, c_thread_buf);
}
// LDS double buffer: load last data from device mem
a_blockwise_copy.RunRead(a_grid_desc_kbatch_k0_m0_m1_k1, a_global_buf);
// output: register to global memory
{
constexpr auto c_thread_desc_m0_m10_m11_n0_n10_n11 =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I0]>{},
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I1]>{},
I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I2]>{},
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I3]>{}));
const auto c_m10_m11_n10_n11_thread_origin_idx_on_block =
blockwise_tsmm.CalculateCThreadOriginOnBlock_BM0_BM1_BN0_BN1(
get_thread_local_1d_id());
ThreadwiseTensorSliceTransfer_v1r3<
FloatAcc,
FloatC,
decltype(c_thread_desc_m0_m10_m11_n0_n10_n11),
decltype(c_grid_desc_m0_m10_m11_n0_n10_n11),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1,
c_m10_m11_n10_n11_thread_tensor_lengths[I0],
c_m10_m11_n10_n11_thread_tensor_lengths[I1],
1,
c_m10_m11_n10_n11_thread_tensor_lengths[I2],
c_m10_m11_n10_n11_thread_tensor_lengths[I3]>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{c_grid_desc_m0_m10_m11_n0_n10_n11,
make_multi_index(im0,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I0],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I1],
in0,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I2],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I3]),
ck::tensor_operation::element_wise::PassThrough{}}
.Run(c_thread_desc_m0_m10_m11_n0_n10_n11,
make_tuple(I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_grid_desc_m0_m10_m11_n0_n10_n11,
c_grid_buf);
b_threadwise_copy.Run(b_grid_desc_kbatch_k0_n0_n1_k1,
b_global_buf,
b_thread_desc_copy_k0_n0_n1_k1,
make_tuple(I0, I0, I0, I0, I0),
b_thread_odd_buf);
// LDS double buffer: GEMM on 2nd-last data
blockwise_tsmm.Run(a_block_even_buf, b_thread_even_buf, c_thread_buf);
// LDS double buffer: store last data to LDS
a_blockwise_copy.RunWrite(a_block_desc_copy_kbatch_k0_m0_m1_k1, a_block_odd_buf);
block_sync_lds();
// LDS double buffer: GEMM on last data
blockwise_tsmm.Run(a_block_odd_buf, b_thread_odd_buf, c_thread_buf);
}
else // if has 1 iteration left
{
__syncthreads();
// LDS double buffer: GEMM on last data
blockwise_tsmm.Run(a_block_even_buf, b_thread_even_buf, c_thread_buf);
}
// output: register to global memory
{
constexpr auto c_thread_desc_m0_m10_m11_n0_n10_n11 =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I0]>{},
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I1]>{},
I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I2]>{},
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I3]>{}));
const auto c_m10_m11_n10_n11_thread_origin_idx_on_block =
blockwise_tsmm.CalculateCThreadOriginOnBlock_BM0_BM1_BN0_BN1(
get_thread_local_1d_id());
ThreadwiseTensorSliceTransfer_v1r3<
FloatAcc,
FloatC,
decltype(c_thread_desc_m0_m10_m11_n0_n10_n11),
decltype(c_grid_desc_m0_m10_m11_n0_n10_n11),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1,
c_m10_m11_n10_n11_thread_tensor_lengths[I0],
c_m10_m11_n10_n11_thread_tensor_lengths[I1],
1,
c_m10_m11_n10_n11_thread_tensor_lengths[I2],
c_m10_m11_n10_n11_thread_tensor_lengths[I3]>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{c_grid_desc_m0_m10_m11_n0_n10_n11,
make_multi_index(im0,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I0],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I1],
in0,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I2],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I3]),
ck::tensor_operation::element_wise::PassThrough{}}
.Run(c_thread_desc_m0_m10_m11_n0_n10_n11,
make_tuple(I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_grid_desc_m0_m10_m11_n0_n10_n11,
c_grid_buf);
}
}
}
};
};
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment