Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
f84e2020
Unverified
Commit
f84e2020
authored
Aug 26, 2024
by
Rostyslav Geyyer
Committed by
GitHub
Aug 26, 2024
Browse files
Merge branch 'develop' into lwpck-1815
parents
408534d4
25935b57
Changes
175
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1110 additions
and
59 deletions
+1110
-59
CMakeLists.txt
CMakeLists.txt
+23
-12
Jenkinsfile
Jenkinsfile
+37
-6
client_example/07_grouped_convnd_fwd/CMakeLists.txt
client_example/07_grouped_convnd_fwd/CMakeLists.txt
+3
-3
client_example/10_grouped_convnd_bwd_data/CMakeLists.txt
client_example/10_grouped_convnd_bwd_data/CMakeLists.txt
+4
-2
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
+5
-2
client_example/16_convnd_fwd/CMakeLists.txt
client_example/16_convnd_fwd/CMakeLists.txt
+1
-1
client_example/20_splitk_gemm/CMakeLists.txt
client_example/20_splitk_gemm/CMakeLists.txt
+1
-1
client_example/24_grouped_conv_activation/CMakeLists.txt
client_example/24_grouped_conv_activation/CMakeLists.txt
+20
-4
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/common.hpp
...activation/grouped_convnd_fwd_convscale_reduce/common.hpp
+834
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp
...nd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp
+58
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp
...d_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp
+58
-0
client_example/CMakeLists.txt
client_example/CMakeLists.txt
+11
-2
codegen/CMakeLists.txt
codegen/CMakeLists.txt
+2
-2
codegen/test/CMakeLists.txt
codegen/test/CMakeLists.txt
+16
-12
codegen/test/rtc/CMakeLists.txt
codegen/test/rtc/CMakeLists.txt
+0
-2
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+1
-1
example/01_gemm/gemm_xdl_fp8.cpp
example/01_gemm/gemm_xdl_fp8.cpp
+2
-2
example/01_gemm/run_gemm_example.inc
example/01_gemm/run_gemm_example.inc
+5
-5
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+28
-1
No files found.
CMakeLists.txt
View file @
f84e2020
...
...
@@ -62,8 +62,14 @@ if (DTYPES)
endif
()
message
(
"DTYPES macro set to
${
DTYPES
}
"
)
else
()
add_definitions
(
-DCK_ENABLE_INT8 -DCK_ENABLE_FP8 -DCK_ENABLE_BF8 -DCK_ENABLE_FP16 -DCK_ENABLE_FP32 -DCK_ENABLE_FP64 -DCK_ENABLE_BF16
)
set
(
CK_ENABLE_ALL_DTYPES
"ON"
)
add_definitions
(
-DCK_ENABLE_INT8 -DCK_ENABLE_FP16 -DCK_ENABLE_FP32 -DCK_ENABLE_FP64 -DCK_ENABLE_BF16 -DCK_ENABLE_FP8 -DCK_ENABLE_BF8
)
set
(
CK_ENABLE_INT8
"ON"
)
set
(
CK_ENABLE_FP16
"ON"
)
set
(
CK_ENABLE_FP32
"ON"
)
set
(
CK_ENABLE_FP64
"ON"
)
set
(
CK_ENABLE_BF16
"ON"
)
set
(
CK_ENABLE_FP8
"ON"
)
set
(
CK_ENABLE_BF8
"ON"
)
endif
()
#for f8/bf8_t type
...
...
@@ -182,12 +188,18 @@ endif()
configure_file
(
include/ck/config.h.in
${
CMAKE_CURRENT_BINARY_DIR
}
/include/ck/config.h
)
if
(
NOT WIN32 AND
${
hip_VERSION_FLAT
}
GREATER 500723302
)
message
(
"Adding the fno-offload-uniform-block compiler flag"
)
add_compile_options
(
-fno-offload-uniform-block
)
check_cxx_compiler_flag
(
"-fno-offload-uniform-block"
HAS_NO_OFFLOAD_UNIFORM_BLOCK
)
if
(
HAS_NO_OFFLOAD_UNIFORM_BLOCK
)
message
(
"Adding the fno-offload-uniform-block compiler flag"
)
add_compile_options
(
-fno-offload-uniform-block
)
endif
()
endif
()
if
(
NOT WIN32 AND
${
hip_VERSION_FLAT
}
GREATER 600140090
)
message
(
"Adding the enable-post-misched=0 compiler flag"
)
add_compile_options
(
"SHELL: -mllvm -enable-post-misched=0"
)
check_cxx_compiler_flag
(
"-mllvm -enable-post-misched=0"
HAS_ENABLE_POST_MISCHED
)
if
(
HAS_ENABLE_POST_MISCHED
)
message
(
"Adding the enable-post-misched=0 compiler flag"
)
add_compile_options
(
"SHELL: -mllvm -enable-post-misched=0"
)
endif
()
endif
()
set
(
check-coerce
)
check_cxx_compiler_flag
(
" -mllvm -amdgpu-coerce-illegal-types=1"
check-coerce
)
...
...
@@ -541,12 +553,7 @@ if(NOT DEFINED INSTANCES_ONLY)
PACKAGE_NAME examples
)
add_subdirectory
(
example
)
if
(
GPU_TARGETS MATCHES
"gfx9"
AND NOT INSTANCES_ONLY
)
add_subdirectory
(
codegen
)
endif
()
if
(
BUILD_TESTING
)
add_subdirectory
(
test
)
endif
()
add_subdirectory
(
test
)
rocm_package_setup_component
(
profiler
LIBRARY_NAME composablekernel
...
...
@@ -563,6 +570,10 @@ if(NOT DEFINED INSTANCES_ONLY)
endif
()
endif
()
if
(
NOT DEFINED PROFILER_ONLY
AND
(
GPU_TARGETS MATCHES
"gfx9"
OR DEFINED INSTANCES_ONLY
))
add_subdirectory
(
codegen
)
endif
()
#Create an interface target for the include only files and call it "composablekernels"
include
(
CMakePackageConfigHelpers
)
...
...
Jenkinsfile
View file @
f84e2020
...
...
@@ -426,8 +426,9 @@ def runCKProfiler(Map conf=[:]){
archiveArtifacts
"perf_resnet50_N4.log"
archiveArtifacts
"perf_batched_gemm.log"
archiveArtifacts
"perf_grouped_gemm.log"
archiveArtifacts
"perf_conv_fwd.log"
archiveArtifacts
"perf_conv_bwd_data.log"
archiveArtifacts
"perf_grouped_conv_fwd.log"
archiveArtifacts
"perf_grouped_conv_bwd_data.log"
archiveArtifacts
"perf_grouped_conv_bwd_weight.log"
archiveArtifacts
"perf_gemm_bilinear.log"
archiveArtifacts
"perf_reduction.log"
archiveArtifacts
"perf_splitK_gemm.log"
...
...
@@ -439,8 +440,9 @@ def runCKProfiler(Map conf=[:]){
stash
name:
"perf_resnet50_N4.log"
stash
name:
"perf_batched_gemm.log"
stash
name:
"perf_grouped_gemm.log"
stash
name:
"perf_conv_fwd.log"
stash
name:
"perf_conv_bwd_data.log"
stash
name:
"perf_grouped_conv_fwd.log"
stash
name:
"perf_grouped_conv_bwd_data.log"
stash
name:
"perf_grouped_conv_bwd_weight.log"
stash
name:
"perf_gemm_bilinear.log"
stash
name:
"perf_reduction.log"
stash
name:
"perf_splitK_gemm.log"
...
...
@@ -648,8 +650,9 @@ def process_results(Map conf=[:]){
unstash
"perf_resnet50_N4.log"
unstash
"perf_batched_gemm.log"
unstash
"perf_grouped_gemm.log"
unstash
"perf_conv_fwd.log"
unstash
"perf_conv_bwd_data.log"
unstash
"perf_grouped_conv_fwd.log"
unstash
"perf_grouped_conv_bwd_data.log"
unstash
"perf_grouped_conv_bwd_weight.log"
unstash
"perf_gemm_bilinear.log"
unstash
"perf_reduction.log"
unstash
"perf_splitK_gemm.log"
...
...
@@ -746,6 +749,10 @@ pipeline {
name:
"RUN_PERFORMANCE_TESTS"
,
defaultValue:
true
,
description:
"Run the performance tests (default: ON)"
)
booleanParam
(
name:
"RUN_GROUPED_CONV_LARGE_CASES_TESTS"
,
defaultValue:
false
,
description:
"Run the grouped conv large cases tests (default: OFF)"
)
booleanParam
(
name:
"RUN_CK_TILE_TESTS"
,
defaultValue:
false
,
...
...
@@ -837,6 +844,30 @@ pipeline {
}
}
}
stage
(
"Run Grouped Conv Large Case Tests"
)
{
parallel
{
stage
(
"Run Grouped Conv Large Case Tests on gfx90a"
)
{
when
{
beforeAgent
true
expression
{
params
.
RUN_GROUPED_CONV_LARGE_CASES_TESTS
.
toBoolean
()
}
}
agent
{
label
rocmnode
(
"gfx90a"
)}
environment
{
setup_args
=
"NO_CK_BUILD"
execute_args
=
""" ../script/cmake-ck-dev.sh ../ gfx90a && \
make -j64 test_grouped_convnd_fwd_large_cases_xdl && \
./bin/test_grouped_convnd_fwd_large_cases_xdl"""
}
steps
{
buildHipClangJobAndReboot
(
setup_args:
setup_args
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
)
cleanWs
()
}
}
}
}
stage
(
"Run CK_TILE Tests"
)
{
parallel
...
...
client_example/07_grouped_convnd_fwd/CMakeLists.txt
View file @
f84e2020
...
...
@@ -5,17 +5,17 @@ if(GPU_TARGETS MATCHES "gfx9")
add_executable
(
client_grouped_conv1d_fwd grouped_conv1d_fwd.cpp
)
target_link_libraries
(
client_grouped_conv1d_fwd PRIVATE composable_kernel::device_conv_operations
)
if
((
DTYPES MATCHES
"fp8"
)
OR NOT DEFINED DTYPES
)
if
((
DTYPES MATCHES
"fp8"
)
OR
(
NOT DEFINED DTYPES
AND GPU_TARGETS MATCHES
"gfx94"
)
)
add_executable
(
client_grouped_conv3d_fwd_fp8 grouped_conv3d_fwd_fp8.cpp
)
target_link_libraries
(
client_grouped_conv3d_fwd_fp8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
if
((
DTYPES MATCHES
"bf8"
)
OR NOT DEFINED DTYPES
)
if
((
DTYPES MATCHES
"bf8"
)
OR
(
NOT DEFINED DTYPES
AND GPU_TARGETS MATCHES
"gfx94"
)
)
add_executable
(
client_grouped_conv3d_fwd_bf8 grouped_conv3d_fwd_bf8.cpp
)
target_link_libraries
(
client_grouped_conv3d_fwd_bf8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
if
((
DTYPES MATCHES
"fp8"
AND DTYPES MATCHES
"bf8"
)
OR NOT DEFINED DTYPES
)
if
((
DTYPES MATCHES
"fp8"
AND DTYPES MATCHES
"bf8"
)
OR
(
NOT DEFINED DTYPES
AND GPU_TARGETS MATCHES
"gfx94"
)
)
add_executable
(
client_grouped_conv3d_fwd_fp8_bf8 grouped_conv3d_fwd_fp8_bf8.cpp
)
target_link_libraries
(
client_grouped_conv3d_fwd_fp8_bf8 PRIVATE composable_kernel::device_conv_operations
)
...
...
client_example/10_grouped_convnd_bwd_data/CMakeLists.txt
View file @
f84e2020
...
...
@@ -4,5 +4,7 @@ target_link_libraries(client_grouped_conv2d_bwd_data PRIVATE composable_kernel::
add_executable
(
client_grouped_conv3d_bwd_data grouped_conv3d_bwd_data.cpp
)
target_link_libraries
(
client_grouped_conv3d_bwd_data PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_conv3d_bwd_data_input_fp16_comp_bf8f8 grouped_conv3d_bwd_data_input_fp16_comp_bf8f8.cpp
)
target_link_libraries
(
client_grouped_conv3d_bwd_data_input_fp16_comp_bf8f8 PRIVATE composable_kernel::device_conv_operations
)
if
((
DTYPES MATCHES
"fp8"
AND DTYPES MATCHES
"bf8"
)
OR
(
NOT DEFINED DTYPES AND GPU_TARGETS MATCHES
"gfx94"
))
add_executable
(
client_grouped_conv3d_bwd_data_input_fp16_comp_bf8f8 grouped_conv3d_bwd_data_input_fp16_comp_bf8f8.cpp
)
target_link_libraries
(
client_grouped_conv3d_bwd_data_input_fp16_comp_bf8f8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
\ No newline at end of file
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
View file @
f84e2020
...
...
@@ -2,10 +2,13 @@ add_executable(client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_f
add_executable
(
client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8.cpp
)
target_link_libraries
(
client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 PRIVATE composable_kernel::device_conv_operations
)
if
((
DTYPES MATCHES
"fp8"
AND DTYPES MATCHES
"bf8"
)
OR
(
NOT DEFINED DTYPES AND GPU_TARGETS MATCHES
"gfx94"
))
add_executable
(
client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8.cpp
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
\ No newline at end of file
client_example/16_convnd_fwd/CMakeLists.txt
View file @
f84e2020
...
...
@@ -4,7 +4,7 @@ if((DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
endif
()
if
((
DTYPES MATCHES
"fp8"
)
OR NOT DEFINED DTYPES
)
if
((
DTYPES MATCHES
"fp8"
)
OR
(
NOT DEFINED DTYPES
AND GPU_TARGETS MATCHES
"gfx94"
)
)
add_executable
(
client_conv3d_fwd_fp16_comp_fp8 conv3d_fwd_fp16_comp_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_fp16_comp_fp8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
...
...
client_example/20_splitk_gemm/CMakeLists.txt
View file @
f84e2020
if
(
GPU_TARGETS MATCHES
"gfx9"
AND
((
DTYPES MATCHES
"fp8"
AND DTYPES MATCHES
"fp16"
)
OR NOT DEFINED DTYPES
))
if
((
DTYPES MATCHES
"fp8"
AND DTYPES MATCHES
"fp16"
)
OR
(
NOT DEFINED DTYPES
AND GPU_TARGETS MATCHES
"gfx94"
))
add_executable
(
client_splitK_gemm splitK_gemm_fp16_f8.cpp
)
target_link_libraries
(
client_splitK_gemm PRIVATE composable_kernel::device_gemm_operations
)
endif
()
client_example/24_grouped_conv_activation/CMakeLists.txt
View file @
f84e2020
if
(
GPU_TARGETS MATCHES
"gfx9"
)
# Fwd scaleadd scaleadd relu
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_conv_operations
)
...
...
@@ -36,7 +36,7 @@ add_executable(client_grouped_convnd_fwd_bilinear_residual_fp16
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convinvscale
add_executable
(
client_conv3d_fwd_convinvscale_fp8
add_executable
(
client_conv3d_fwd_convinvscale_fp8
grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convinvscale_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convscale + Bias
...
...
@@ -47,6 +47,22 @@ target_link_libraries(client_conv3d_fwd_convscale_add_fp8 PRIVATE composable_ker
add_executable
(
client_conv3d_fwd_convscale_relu_fp8
grouped_convnd_fwd_convscale_relu/conv3d_fwd_convscale_relu_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_relu_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convscale + ReLU + AMAX
add_executable
(
client_conv3d_fwd_convscale_relu_amax_fp8
grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_relu_amax_fp8
PRIVATE composable_kernel::device_conv_operations
composable_kernel::device_other_operations
composable_kernel::device_reduction_operations
utility
)
# Fwd convscale + AMAX
add_executable
(
client_conv3d_fwd_convscale_amax_fp8
grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_amax_fp8
PRIVATE composable_kernel::device_conv_operations
composable_kernel::device_other_operations
composable_kernel::device_reduction_operations
utility
)
# Fwd convscale
add_executable
(
client_conv3d_fwd_convscale_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
)
...
...
@@ -56,11 +72,11 @@ add_executable(client_conv3d_fwd_convscale_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_bf8 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_conv3d_fwd_convscale_fp8_bf8
add_executable
(
client_conv3d_fwd_convscale_fp8_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_fp8_bf8 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_conv3d_fwd_convscale_bf8_fp8
add_executable
(
client_conv3d_fwd_convscale_bf8_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_bf8_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Bwd data bilinear
...
...
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/common.hpp
0 → 100644
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/type.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale_relu.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/permute_scale.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/reduce.hpp"
#include "ck/library/utility/host_tensor.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScaleRelu
=
ck
::
tensor_operation
::
element_wise
::
ScaleScaleRelu
;
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ScaleScalePass
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product> +
// + ds_size * <output tensor size> =>
// => <output tensor size> * ( 2 * C * <filter spatial lengths product> + ds_size) =>
// => G * N * K * <output spatial lengths product> * (2 * C * <filter spatial lengths product> +
// ds_size)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
ds_size
+
static_cast
<
std
::
size_t
>
(
2
)
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
()));
}
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetTensorSize
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
)
{
return
std
::
accumulate
(
std
::
begin
(
lengths
),
std
::
end
(
lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
GetTensorSize
<
NumDimSpatial
>
(
input_lengths
);
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
GetTensorSize
<
NumDimSpatial
>
(
weights_lengths
);
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
GetTensorSize
<
NumDimSpatial
>
(
output_lengths
);
}
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
ConvElementOp
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
ConvolutionScale
(
SimpleDeviceMem
&
in
,
SimpleDeviceMem
&
wei
,
SimpleDeviceMem
&
out
,
ConvElementOp
elementwise_op
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
in_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
in_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
wei_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
wei_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
out_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
out_strides
);
template
<
typename
InDataType
,
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
bool
TensorScaleConvert
(
SimpleDeviceMem
&
in
,
SimpleDeviceMem
&
out
,
float
scale_out
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
strides
);
template
<
typename
InDataType
,
typename
OutDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
bool
TensorFullReduction
(
SimpleDeviceMem
&
tensor
,
SimpleDeviceMem
&
out_amax
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
strides
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
ConvOutDataType
,
typename
OutDataType
,
typename
ConvElementOp
,
ck
::
ReduceTensorOp
ReduceOp
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convscale_reduce
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
static_assert
(
NumDimSpatial
==
3
&&
ck
::
is_same_v
<
InLayout
,
ctc
::
NDHWGC
>
&&
ck
::
is_same_v
<
WeiLayout
,
ctc
::
GKZYXC
>
&&
ck
::
is_same_v
<
OutLayout
,
ctc
::
NDHWGK
>
,
"Unsupported configuration"
);
const
ck
::
index_t
G
=
in_lengths
[
4
];
const
ck
::
index_t
N
=
in_lengths
[
0
];
const
ck
::
index_t
K
=
wei_lengths
[
1
];
const
ck
::
index_t
C
=
in_lengths
[
5
];
const
ck
::
index_t
Z
=
wei_lengths
[
2
];
const
ck
::
index_t
Y
=
wei_lengths
[
3
];
const
ck
::
index_t
X
=
wei_lengths
[
4
];
const
ck
::
index_t
Di
=
in_lengths
[
1
];
const
ck
::
index_t
Hi
=
in_lengths
[
2
];
const
ck
::
index_t
Wi
=
in_lengths
[
3
];
const
ck
::
index_t
Do
=
out_lengths
[
1
];
const
ck
::
index_t
Ho
=
out_lengths
[
2
];
const
ck
::
index_t
Wo
=
out_lengths
[
3
];
const
std
::
size_t
in_mem_size
=
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
;
const
std
::
size_t
wei_mem_size
=
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
;
const
std
::
size_t
conv_out_mem_size
=
sizeof
(
ConvOutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
const
std
::
size_t
out_mem_size
=
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
conv_out
(
conv_out_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
// We have NDHWGC/GKZYXC/NDHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
input_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
input_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
weights_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
weights_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
output_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
output_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
/*
* FP8 Convolution with Scaling
*/
std
::
cout
<<
"
\n\n
Convolution with scale Benchmarking:"
<<
std
::
endl
;
auto
elementwise_op
=
ConvElementOp
{
ck
::
tensor_operation
::
element_wise
::
Scale
{
scale_in
},
ck
::
tensor_operation
::
element_wise
::
Scale
{
scale_wei
},
{}};
auto
conv_ok
=
ConvolutionScale
<
InDataType
,
WeiDataType
,
ConvOutDataType
,
ConvElementOp
,
InLayout
,
WeiLayout
,
OutLayout
,
NumDimSpatial
>
(
in
,
wei
,
conv_out
,
elementwise_op
,
input_lengths
,
input_strides
,
weights_lengths
,
weights_strides
,
output_lengths
,
output_strides
);
if
(
!
conv_ok
)
return
false
;
/*
* Scale with output weight and convert to FP8
*/
std
::
cout
<<
"
\n\n
Element-wise scale + convert Benchmarking:"
<<
std
::
endl
;
auto
elem_wise_ok
=
TensorScaleConvert
<
ConvOutDataType
,
OutDataType
,
NumDimSpatial
>
(
conv_out
,
out
,
scale_out
,
output_lengths
,
output_strides
);
if
(
!
elem_wise_ok
)
return
false
;
/*
* Compute AMAX
*/
std
::
cout
<<
"
\n\n
AMAX Benchmarking:"
<<
std
::
endl
;
SimpleDeviceMem
amax_device
(
sizeof
(
ConvOutDataType
));
auto
reduction_ok
=
TensorFullReduction
<
ConvOutDataType
,
ConvOutDataType
,
ck
::
ReduceTensorOp
::
AMAX
,
NumDimSpatial
>
(
conv_out
,
amax_device
,
output_lengths
,
output_strides
);
if
(
!
reduction_ok
)
return
false
;
return
true
;
}
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
ConvElementOp
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
,
typename
AComputeType
,
typename
BComputeType
>
bool
ConvolutionScale
(
SimpleDeviceMem
&
in
,
SimpleDeviceMem
&
wei
,
SimpleDeviceMem
&
out
,
ConvElementOp
elementwise_op
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
in_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
in_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
wei_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
wei_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
out_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
out_strides
)
{
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
const
auto
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
const
auto
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
const
auto
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
std
::
size_t
ds_size
=
2
;
// 2 element-wise scale multipliers
if
constexpr
(
ck
::
is_same_v
<
ConvElementOp
,
ConvScaleRelu
>
)
{
ds_size
+=
1
;
// +1 element-wise relu
}
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
;
using
ConvDeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvElementOp
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
conv_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
ConvDeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
conv_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
conv_best_op_name
;
int
conv_best_op_id
=
-
1
;
float
conv_best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
conv_best_gb_per_sec
=
0
;
float
conv_best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all convolution instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
conv_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
conv_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
elementwise_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
conv_best_tflops
)
{
conv_best_op_id
=
i
;
conv_best_op_name
=
op_name
;
conv_best_avg_time
=
avg_time
;
conv_best_gb_per_sec
=
gb_per_sec
;
conv_best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
conv_best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
conv_best_avg_time
<<
" ms, "
<<
conv_best_tflops
<<
" TFlops, "
<<
conv_best_gb_per_sec
<<
" GB/s, "
<<
conv_best_op_name
<<
std
::
endl
;
// run the best instance
{
auto
&
op_ptr
=
conv_ptrs
[
conv_best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
elementwise_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
template
<
typename
InDataType
,
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
>
bool
TensorScaleConvert
(
SimpleDeviceMem
&
in
,
SimpleDeviceMem
&
out
,
float
scale_out
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
strides
)
{
const
auto
tensor_size
=
GetTensorSize
<
NumDimSpatial
>
(
lengths
);
const
std
::
size_t
in_mem_size
=
sizeof
(
InDataType
)
*
tensor_size
;
const
std
::
size_t
out_mem_size
=
sizeof
(
OutDataType
)
*
tensor_size
;
std
::
size_t
flop
=
2
*
tensor_size
;
// element-wise scale + convert
std
::
size_t
bytes
=
in_mem_size
+
sizeof
(
float
)
+
out_mem_size
;
// read from in, scale, write to out
using
DeviceScaleConvert
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
InDataType
>
,
ck
::
Tuple
<
OutDataType
>
,
ck
::
tensor_operation
::
element_wise
::
Scale
,
NumDimSpatial
+
NumNonSpatialDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceScaleConvert
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all DeviceScaleConvert instances and do timing"
<<
std
::
endl
;
auto
scale_convert
=
ck
::
tensor_operation
::
element_wise
::
Scale
{
scale_out
};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
lengths
,
{
strides
},
{
strides
},
{
in
.
GetDeviceBuffer
()},
{
out
.
GetDeviceBuffer
()},
scale_convert
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance found."
<<
std
::
endl
;
return
false
;
}
else
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
lengths
,
{
strides
},
{
strides
},
{
in
.
GetDeviceBuffer
()},
{
out
.
GetDeviceBuffer
()},
scale_convert
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
template
<
typename
InDataType
,
typename
OutDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
>
bool
TensorFullReduction
(
SimpleDeviceMem
&
tensor
,
SimpleDeviceMem
&
out_amax
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
strides
)
{
const
auto
spatial_dim_size
=
std
::
accumulate
(
std
::
next
(
std
::
begin
(
lengths
),
NumNonSpatialDim
),
std
::
end
(
lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
const
auto
tensor_size
=
GetTensorSize
<
NumDimSpatial
>
(
lengths
);
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
// Get the reduction operation
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
tensor_size
));
std
::
array
<
ck
::
index_t
,
1
>
reduce_out_lengths
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
reduce_out_strides
{
1
};
SimpleDeviceMem
partial_reduce_tensor
(
sizeof
(
OutDataType
)
*
spatial_dim_size
);
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
reduce_part_lengths
;
std
::
copy
(
std
::
next
(
std
::
begin
(
lengths
),
NumNonSpatialDim
),
std
::
end
(
lengths
),
std
::
begin
(
reduce_part_lengths
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
reduce_part_strides
;
copy
(
HostTensorDescriptor
(
reduce_part_lengths
).
GetStrides
(),
reduce_part_strides
);
{
std
::
cout
<<
"
\n
Reduction of nonspatial dimensions:"
<<
std
::
endl
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceReduce
<
InDataType
,
OutDataType
,
OutDataType
,
NumDimSpatial
+
NumNonSpatialDim
,
NumNonSpatialDim
,
ReduceOperation
,
InElementwiseOperation
,
PassThrough
,
true
,
// PropagateNan
false
>
;
// OutputIndex
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
std
::
array
<
int
,
NumNonSpatialDim
>
reduce_dims
;
std
::
iota
(
reduce_dims
.
begin
(),
reduce_dims
.
end
(),
0
);
// 0,..., NumNonSpatialDim-1
ck
::
index_t
num_in_elements
=
tensor_size
;
ck
::
index_t
num_out_elements
=
spatial_dim_size
;
// profile device operation instances
std
::
cout
<<
"Run partial reduction and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
lengths
,
strides
,
reduce_part_lengths
,
reduce_part_strides
,
reduce_dims
,
1.0
,
0.0
,
tensor
.
GetDeviceBuffer
(),
nullptr
,
partial_reduce_tensor
.
GetDeviceBuffer
(),
nullptr
,
in_elementwise_op
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
num_in_elements
*
sizeof
(
InDataType
)
+
num_out_elements
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance found."
<<
std
::
endl
;
return
false
;
}
else
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best instance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
lengths
,
strides
,
reduce_part_lengths
,
reduce_part_strides
,
reduce_dims
,
1.0
,
0.0
,
tensor
.
GetDeviceBuffer
(),
nullptr
,
partial_reduce_tensor
.
GetDeviceBuffer
(),
nullptr
,
in_elementwise_op
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
{
std
::
cout
<<
"
\n
Reduction of spatial dimensions:"
<<
std
::
endl
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceReduce
<
OutDataType
,
OutDataType
,
OutDataType
,
NumDimSpatial
,
NumDimSpatial
,
ReduceOperation
,
PassThrough
,
AccElementwiseOperation
,
true
,
// PropagateNan
false
>
;
// OutputIndex
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
std
::
array
<
int
,
NumDimSpatial
>
reduce_dims
;
std
::
iota
(
reduce_dims
.
begin
(),
reduce_dims
.
end
(),
0
);
// 0,..., NumDimSpatial-1
ck
::
index_t
num_in_elements
=
spatial_dim_size
;
ck
::
index_t
num_out_elements
=
1
;
// profile device operation instances
std
::
cout
<<
"Run final reduction and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
reduce_part_lengths
,
reduce_part_strides
,
reduce_out_lengths
,
reduce_out_strides
,
reduce_dims
,
1.0
,
0.0
,
partial_reduce_tensor
.
GetDeviceBuffer
(),
nullptr
,
out_amax
.
GetDeviceBuffer
(),
nullptr
,
PassThrough
{},
acc_elementwise_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
num_in_elements
*
sizeof
(
OutDataType
)
+
num_out_elements
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance found."
<<
std
::
endl
;
return
false
;
}
else
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best instance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
reduce_part_lengths
,
reduce_part_strides
,
reduce_out_lengths
,
reduce_out_strides
,
reduce_dims
,
1.0
,
0.0
,
partial_reduce_tensor
.
GetDeviceBuffer
(),
nullptr
,
out_amax
.
GetDeviceBuffer
(),
nullptr
,
PassThrough
{},
acc_elementwise_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
return
true
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp
0 → 100644
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
ConvOutDataType
=
float
;
// data type of convolution result
using
OutDataType
=
ck
::
f8_t
;
// data type of final result
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
ConvElementOp
=
ConvScale
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AMAX
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale_reduce
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
ConvOutDataType
,
OutDataType
,
ConvElementOp
,
ReduceOpId
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp
0 → 100644
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
ConvOutDataType
=
float
;
// data type of convolution result
using
OutDataType
=
ck
::
f8_t
;
// data type of final result
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
ConvElementOp
=
ConvScaleRelu
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AMAX
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale_reduce
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
ConvOutDataType
,
OutDataType
,
ConvElementOp
,
ReduceOpId
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/CMakeLists.txt
View file @
f84e2020
...
...
@@ -34,8 +34,17 @@ if (DTYPES)
endif
()
message
(
"DTYPES macro set to
${
DTYPES
}
"
)
else
()
add_definitions
(
-DCK_ENABLE_INT8 -DCK_ENABLE_FP8 -DCK_ENABLE_BF8 -DCK_ENABLE_FP16 -DCK_ENABLE_FP32 -DCK_ENABLE_FP64 -DCK_ENABLE_BF16
)
set
(
CK_ENABLE_ALL_DTYPES
"ON"
)
add_definitions
(
-DCK_ENABLE_INT8 -DCK_ENABLE_FP16 -DCK_ENABLE_FP32 -DCK_ENABLE_FP64 -DCK_ENABLE_BF16
)
set
(
CK_ENABLE_INT8
"ON"
)
set
(
CK_ENABLE_FP16
"ON"
)
set
(
CK_ENABLE_FP32
"ON"
)
set
(
CK_ENABLE_FP64
"ON"
)
set
(
CK_ENABLE_BF16
"ON"
)
if
(
GPU_TARGETS MATCHES
"gfx94"
)
add_definitions
(
-DCK_ENABLE_FP8 -DCK_ENABLE_BF8
)
set
(
CK_ENABLE_FP8
"ON"
)
set
(
CK_ENABLE_BF8
"ON"
)
endif
()
endif
()
if
(
GPU_TARGETS
)
...
...
codegen/CMakeLists.txt
View file @
f84e2020
...
...
@@ -27,6 +27,8 @@ file(GLOB_RECURSE KERNEL_FILES CONFIGURE_DEPENDS
add_embed_library
(
ck_headers
${
KERNEL_FILES
}
RELATIVE
${
CK_ROOT
}
/include
)
file
(
GLOB SOURCES CONFIGURE_DEPENDS src/*.cpp
)
##message(STATUS "SOURCE_FILES: ${SOURCES}")
# TODO: Use object library
add_library
(
ck_host STATIC
${
SOURCES
}
)
target_link_libraries
(
ck_host PRIVATE ck_headers
)
...
...
@@ -48,6 +50,4 @@ rocm_install(
)
rocm_install
(
DIRECTORY include/ck DESTINATION
${
CMAKE_INSTALL_INCLUDEDIR
}
)
if
(
BUILD_TESTING
)
add_subdirectory
(
test
)
endif
()
codegen/test/CMakeLists.txt
View file @
f84e2020
list
(
APPEND CMAKE_PREFIX_PATH /opt/rocm
)
add_subdirectory
(
rtc
)
file
(
GLOB TEST_SRCS CONFIGURE_DEPENDS *.cpp
)
foreach
(
TEST_SRC
${
TEST_SRCS
}
)
set_source_files_properties
(
${
TEST_SRC
}
PROPERTIES LANGUAGE HIP
)
get_filename_component
(
BASE_NAME
${
TEST_SRC
}
NAME_WE
)
add_executable
(
test_host_
${
BASE_NAME
}
${
TEST_SRC
}
)
add_dependencies
(
codegen test_host_
${
BASE_NAME
}
)
add_test
(
NAME codegen_test_
${
BASE_NAME
}
COMMAND test_host_
${
BASE_NAME
}
)
target_link_libraries
(
test_host_
${
BASE_NAME
}
ck_rtc ck_host
)
# target_link_libraries(test_host_${BASE_NAME} ${CK_ROOT}/build/lib/libutility.a)
target_include_directories
(
test_host_
${
BASE_NAME
}
PUBLIC
include
())
target_include_directories
(
test_host_
${
BASE_NAME
}
PUBLIC
${
CK_ROOT
}
/include
)
target_include_directories
(
test_host_
${
BASE_NAME
}
PUBLIC
${
CK_ROOT
}
/library/include
)
endforeach
()
if
(
NOT INSTANCES_ONLY
)
foreach
(
TEST_SRC
${
TEST_SRCS
}
)
set_source_files_properties
(
${
TEST_SRC
}
PROPERTIES LANGUAGE HIP
)
get_filename_component
(
BASE_NAME
${
TEST_SRC
}
NAME_WE
)
add_executable
(
codegen_test_
${
BASE_NAME
}
${
TEST_SRC
}
)
add_dependencies
(
codegen codegen_test_
${
BASE_NAME
}
)
add_dependencies
(
tests codegen_test_
${
BASE_NAME
}
)
add_dependencies
(
check codegen_test_
${
BASE_NAME
}
)
add_test
(
NAME codegen_test_
${
BASE_NAME
}
COMMAND codegen_test_
${
BASE_NAME
}
)
message
(
"adding test codegen_test_
${
BASE_NAME
}
"
)
target_link_libraries
(
codegen_test_
${
BASE_NAME
}
ck_rtc ck_host
)
target_include_directories
(
codegen_test_
${
BASE_NAME
}
PUBLIC
${
CK_ROOT
}
/codegen/test/include
)
target_include_directories
(
codegen_test_
${
BASE_NAME
}
PUBLIC
${
CK_ROOT
}
/include
)
target_include_directories
(
codegen_test_
${
BASE_NAME
}
PUBLIC
${
CK_ROOT
}
/library/include
)
endforeach
()
endif
()
codegen/test/rtc/CMakeLists.txt
View file @
f84e2020
find_package
(
hip
)
file
(
GLOB RTC_SOURCES CONFIGURE_DEPENDS src/*.cpp
)
add_library
(
ck_rtc
${
RTC_SOURCES
}
)
target_include_directories
(
ck_rtc PUBLIC include
)
...
...
docs/sphinx/requirements.in
View file @
f84e2020
rocm-docs-core==1.
6
.2
rocm-docs-core==1.
7
.2
sphinxcontrib-bibtex==2.6.2
docs/sphinx/requirements.txt
View file @
f84e2020
...
...
@@ -103,7 +103,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.
6
.2
rocm-docs-core==1.
7
.2
# via -r requirements.in
six==1.16.0
# via pybtex
...
...
example/01_gemm/gemm_xdl_fp8.cpp
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
@@ -7,7 +7,7 @@
using
ADataType
=
ck
::
f8_t
;
using
BDataType
=
ck
::
f8_t
;
using
CDataType
=
ck
::
hal
f_t
;
using
CDataType
=
ck
::
f
8
_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
...
...
example/01_gemm/run_gemm_example.inc
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -34,11 +34,11 @@ inline __host__ __device__ constexpr double get_rtol()
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1
e
-
1
;
// 240 and 224 are acceptable
return
2
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5
e-1
;
// 57344 and 49152 are acceptable
return
2
e
-
1
;
}
else
{
...
...
@@ -75,11 +75,11 @@ inline __host__ __device__ constexpr double get_atol()
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
return
2
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
return
2
e
-
1
;
}
else
{
...
...
example/12_reduce/reduce_blockwise.cpp
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
...
...
@@ -255,34 +255,61 @@ int main(int argc, char* argv[])
else
{
// for testing half_t
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing float
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing double
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing bhalf_t
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing int8_t
pass
=
pass
&&
reduce_blockwise_test
<
int8_t
,
int32_t
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
int8_t
,
int32_t
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
// for testing int4_t using AVG operation
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing int4_t using MAX operation
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
#endif
...
...
Prev
1
2
3
4
5
…
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment