Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
f84e2020
Unverified
Commit
f84e2020
authored
Aug 26, 2024
by
Rostyslav Geyyer
Committed by
GitHub
Aug 26, 2024
Browse files
Merge branch 'develop' into lwpck-1815
parents
408534d4
25935b57
Changes
175
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
824 additions
and
218 deletions
+824
-218
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale/CMakeLists.txt
..._instance/gpu/grouped_conv3d_fwd_convscale/CMakeLists.txt
+2
-1
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale/xdl/device_grouped_conv3d_fwd_xdl_combconvscale_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instance.cpp
...combconvscale_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instance.cpp
+61
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/CMakeLists.txt
...ance/gpu/grouped_conv3d_fwd_convscale_relu/CMakeLists.txt
+2
-1
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/xdl/device_grouped_conv3d_fwd_xdl_combconvscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instance.cpp
...onvscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instance.cpp
+61
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/xdl/device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
...d_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
+1
-4
library/src/tensor_operation_instance/gpu/permute_scale/CMakeLists.txt
...ensor_operation_instance/gpu/permute_scale/CMakeLists.txt
+3
-2
library/src/tensor_operation_instance/gpu/permute_scale/device_permute_scale_6d_fp32_fp8_instances.cpp
...mute_scale/device_permute_scale_6d_fp32_fp8_instances.cpp
+28
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f32_f32_f32_amax.cpp
...uce/device_reduce_instance_blockwise_f32_f32_f32_amax.cpp
+18
-9
profiler/include/profiler/profile_gemm_multiply_multiply_impl.hpp
.../include/profiler/profile_gemm_multiply_multiply_impl.hpp
+110
-85
profiler/include/profiler/profile_gemm_universal_impl.hpp
profiler/include/profiler/profile_gemm_universal_impl.hpp
+2
-2
profiler/include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
...include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
+88
-75
profiler/src/profile_gemm_multiply_multiply.cpp
profiler/src/profile_gemm_multiply_multiply.cpp
+12
-8
profiler/src/profile_gemm_universal.cpp
profiler/src/profile_gemm_universal.cpp
+4
-0
profiler/src/profile_grouped_conv_bwd_weight.cpp
profiler/src/profile_grouped_conv_bwd_weight.cpp
+1
-2
profiler/src/profile_grouped_gemm_fixed_nk.cpp
profiler/src/profile_grouped_gemm_fixed_nk.cpp
+5
-3
script/convert_miopen_driver_to_profiler.py
script/convert_miopen_driver_to_profiler.py
+386
-0
script/process_perf_data.py
script/process_perf_data.py
+15
-3
script/process_qa_data.sh
script/process_qa_data.sh
+3
-2
script/profile_grouped_conv_bwd_data.sh
script/profile_grouped_conv_bwd_data.sh
+0
-0
script/profile_grouped_conv_bwd_weight.sh
script/profile_grouped_conv_bwd_weight.sh
+22
-21
No files found.
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale/CMakeLists.txt
View file @
f84e2020
...
...
@@ -3,6 +3,7 @@ set(GROUPED_CONV3D_FWD_CONVSCALE
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_f8_bf8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instance.cpp
)
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_combconvscale_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instance.cpp
)
add_instance_library
(
device_grouped_conv3d_fwd_convscale_instance
${
GROUPED_CONV3D_FWD_CONVSCALE
}
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale/xdl/device_grouped_conv3d_fwd_xdl_combconvscale_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instance.cpp
0 → 100644
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_combconvscale_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
F8
,
F8
,
ck
::
Tuple
<>
,
F32
,
PassThrough
,
PassThrough
,
CombConvScale
,
F8
,
F8
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
,
CombConvScale
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwd1x1P0
,
CombConvScale
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwd1x1S1P0
,
CombConvScale
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/CMakeLists.txt
View file @
f84e2020
# ONLY XDL_KERNELS
set
(
GROUPED_CONV3D_FWD_CONVSCALE_RELU
xdl/device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
)
xdl/device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_combconvscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instance.cpp
)
add_instance_library
(
device_grouped_conv3d_fwd_convscale_relu_instance
${
GROUPED_CONV3D_FWD_CONVSCALE_RELU
}
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/xdl/device_grouped_conv3d_fwd_xdl_combconvscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instance.cpp
0 → 100644
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale_relu.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_combconvscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
F8
,
F8
,
ck
::
Tuple
<>
,
F32
,
PassThrough
,
PassThrough
,
CombConvScaleRelu
,
F8
,
F8
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
,
CombConvScaleRelu
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwd1x1P0
,
CombConvScaleRelu
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwd1x1S1P0
,
CombConvScaleRelu
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/xdl/device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
View file @
f84e2020
...
...
@@ -3,15 +3,13 @@
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation
/gpu/element/unary_element_wise_operation
.hpp"
#include "ck/
library/
tensor_operation
_instance/gpu/grouped_convolution_forward_convscale_relu
.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
ConvScaleRelu
=
ck
::
tensor_operation
::
element_wise
::
ConvScaleRelu
;
void
add_device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
...
...
@@ -56,7 +54,6 @@ void add_device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_in
ConvFwd1x1S1P0
,
ConvScaleRelu
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
...
...
library/src/tensor_operation_instance/gpu/permute_scale/CMakeLists.txt
View file @
f84e2020
add_instance_library
(
device_permute_scale_instance
add_instance_library
(
device_permute_scale_instance
device_permute_scale_1d_fp16_instances.cpp
device_permute_scale_2d_fp16_instances.cpp
device_permute_scale_3d_fp16_instances.cpp
...
...
@@ -10,4 +10,5 @@ add_instance_library(device_permute_scale_instance
device_permute_scale_3d_fp32_instances.cpp
device_permute_scale_4d_fp32_instances.cpp
device_permute_scale_5d_fp32_instances.cpp
device_permute_scale_6d_fp32_instances.cpp
)
device_permute_scale_6d_fp32_instances.cpp
device_permute_scale_6d_fp32_fp8_instances.cpp
)
library/src/tensor_operation_instance/gpu/permute_scale/device_permute_scale_6d_fp32_fp8_instances.cpp
0 → 100644
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
Scale
=
element_wise
::
Scale
;
void
add_device_permute_scale_6d_f32_f8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F8
>
,
Scale
,
6
>>>&
instances
)
{
#ifdef CK_ENABLE_FP8
add_device_operation_instances
(
instances
,
device_permute_scale_f32_f8_instances
<
6
,
Scale
>
{});
#else
ignore
=
instances
;
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f32_f32_f32_amax.cpp
View file @
f84e2020
...
...
@@ -10,15 +10,24 @@ namespace device {
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>>&
);
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
6
,
6
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
6
,
6
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
5
,
5
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
5
,
5
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
6
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
6
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
5
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
5
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
true
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
3
,
3
,
ReduceAMax
,
PassThrough
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
3
,
3
,
ReduceAMax
,
PassThrough
,
PassThrough
,
true
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
2
,
2
,
ReduceAMax
,
PassThrough
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
2
,
2
,
ReduceAMax
,
PassThrough
,
PassThrough
,
true
,
false
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F32
,
F32
,
F32
,
1
,
1
,
ReduceAMax
,
PassThrough
,
PassThrough
,
true
,
false
>(
std
::
vector
<
DeviceReducePtr
<
F32
,
F32
,
F32
,
1
,
1
,
ReduceAMax
,
PassThrough
,
PassThrough
,
true
,
false
>>&
);
// clang-format on
}
// namespace instance
...
...
profiler/include/profiler/profile_gemm_multiply_multiply_impl.hpp
View file @
f84e2020
...
...
@@ -48,6 +48,7 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
int
StrideD0
,
int
StrideD1
,
int
StrideE
,
int
KBatch
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
...
...
@@ -129,17 +130,17 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
,
D1Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
,
D1DataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
SplitK
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
,
D1Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
,
D1DataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
@@ -182,104 +183,128 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_kbatch
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
std
::
array
<
const
void
*
,
2
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
static_cast
<
EDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
16
,
19
,
32
,
38
};
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
KBatch
>
0
)
{
kbatch_list
=
{
KBatch
};
}
if
(
do_verification
)
for
(
std
::
size_t
i
=
0
;
i
<
kbatch_list
.
size
();
i
++
)
{
auto
kbatch_curr
=
kbatch_list
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
std
::
array
<
const
void
*
,
2
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
static_cast
<
EDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideD0
,
StrideD1
},
StrideE
,
kbatch_curr
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
c_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_
log
)
if
(
do_
verification
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
e_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
e_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
c_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
e_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
e_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
EDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
EDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
}
#endif
if
(
tflops
>
best_tflops
)
if
(
tflops
>
best_tflops
&&
ave_time
>
1e-10
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_kbatch
=
kbatch_curr
;
}
}
else
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
constexpr
(
is_same
<
EDataType
,
float
>::
value
)
...
...
@@ -318,9 +343,9 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideE = "
<<
StrideE
<<
"
:
"
<<
best_
ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
<<
" StrideB = "
<<
StrideB
<<
" StrideE = "
<<
StrideE
<<
"
KBatch =
"
<<
best_
kbatch
<<
"
: "
<<
best_ave_time
<<
"
ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
...
...
profiler/include/profiler/profile_gemm_universal_impl.hpp
View file @
f84e2020
...
...
@@ -152,7 +152,7 @@ bool profile_gemm_universal_impl(int do_verification,
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
19
,
20
,
32
,
38
};
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
16
,
19
,
32
,
38
};
if
(
KBatch
>
0
)
{
...
...
@@ -249,7 +249,7 @@ bool profile_gemm_universal_impl(int do_verification,
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
if
(
tflops
>
best_tflops
&&
ave_time
>
1e-10
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
...
...
profiler/include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
View file @
f84e2020
...
...
@@ -136,9 +136,10 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
ck
::
index_t
best_split_k
=
1
;
// profile device Conv instances
bool
all_pass
=
true
;
...
...
@@ -167,99 +168,111 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
range_copy
(
conv_param
.
input_left_pads_
,
begin
(
input_left_pads
));
range_copy
(
conv_param
.
input_right_pads_
,
begin
(
input_right_pads
));
std
::
vector
<
ck
::
index_t
>
split_k_list
=
{
1
,
2
,
4
,
8
,
16
,
32
,
64
,
128
};
if
(
split_k
>
0
)
{
split_k_list
=
{
split_k
};
}
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
input_lengths
,
input_strides
,
filter_lengths
,
weights_strides
,
output_lengths
,
output_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
const
std
::
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
for
(
std
::
size_t
split_k_id
=
0
;
split_k_id
<
split_k_list
.
size
();
split_k_id
++
)
{
// using atomic add, so need to reset input
wei_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
input_lengths
,
input_strides
,
filter_lengths
,
weights_strides
,
output_lengths
,
output_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k_list
[
split_k_id
]);
const
std
::
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// using atomic add, so need to reset input
wei_device_buf
.
SetZero
();
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
})
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
if
(
do_verification
)
{
wei_device_buf
.
FromDevice
(
weight_device_result
.
mData
.
data
());
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
bool
pass
=
ck
::
utils
::
check_err
(
weight_device_result
,
weight_host_result
);
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", SplitK "
<<
split_k_list
[
split_k_id
]
<<
std
::
endl
;
if
(
!
pas
s
)
if
(
tflops
>
best_tflop
s
)
{
std
::
cout
<<
"Fail info: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_split_k
=
split_k_list
[
split_k_id
];
}
all_pass
&=
pass
;
if
(
do_log
)
if
(
do_verification
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"output : "
,
output
.
mData
,
","
)
<<
std
::
endl
;
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight (device): "
,
weight_device_result
.
mData
,
","
)
<<
std
::
endl
;
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight (host): "
,
weight_host_result
.
mData
,
","
)
<<
std
::
endl
;
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input: "
,
input
.
mData
,
","
)
<<
std
::
endl
;
;
wei_device_buf
.
FromDevice
(
weight_device_result
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
weight_device_result
,
weight_host_result
);
if
(
!
pass
)
{
std
::
cout
<<
"Fail info: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
}
all_pass
&=
pass
;
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"output : "
,
output
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight (device): "
,
weight_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight (host): "
,
weight_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input: "
,
input
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
", SplitK "
<<
best_split_k
<<
std
::
endl
;
return
all_pass
;
}
...
...
profiler/src/profile_gemm_multiply_multiply.cpp
View file @
f84e2020
...
...
@@ -34,7 +34,7 @@ enum struct GemmDataType
int
profile_gemm_multiply_multiply
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
16
&&
argc
!=
19
)
if
(
argc
!=
16
&&
argc
!=
20
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
...
...
@@ -50,9 +50,10 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 15: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg16: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg17: number of iterations (default 10)
\n
"
);
printf
(
"arg18: memory for rotating buffer (default 0, size in MB)
\n
"
);
printf
(
"arg16: number of kbatch (default 1)
\n
"
);
printf
(
"arg17: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg18: number of iterations (default 10)
\n
"
);
printf
(
"arg19: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
...
...
@@ -76,11 +77,13 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
int
n_warmup
=
1
;
int
n_iter
=
10
;
uint64_t
rotating
=
0
;
if
(
argc
==
19
)
int
KBatch
=
1
;
if
(
argc
==
20
)
{
n_warmup
=
std
::
stoi
(
argv
[
16
]);
n_iter
=
std
::
stoi
(
argv
[
17
]);
rotating
=
std
::
stoull
(
argv
[
18
])
*
1024
*
1024
;
KBatch
=
std
::
stoi
(
argv
[
16
]);
n_warmup
=
std
::
stoi
(
argv
[
17
]);
n_iter
=
std
::
stoi
(
argv
[
18
]);
rotating
=
std
::
stoull
(
argv
[
19
])
*
1024
*
1024
;
}
using
F32
=
float
;
...
...
@@ -146,6 +149,7 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
(
StrideD0
<
0
)
?
DefaultStrideD0
:
StrideD0
,
(
StrideD1
<
0
)
?
DefaultStrideD1
:
StrideD1
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
,
KBatch
,
n_warmup
,
n_iter
,
rotating
);
...
...
profiler/src/profile_gemm_universal.cpp
View file @
f84e2020
...
...
@@ -171,6 +171,10 @@ int profile_gemm_universal(int argc, char* argv[])
{
return
profile
(
BF16
{},
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F8
{},
F8
{},
F8
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F8
{},
F8
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{});
...
...
profiler/src/profile_grouped_conv_bwd_weight.cpp
View file @
f84e2020
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <initializer_list>
...
...
@@ -81,7 +81,6 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
9
,
argv
);
ck
::
index_t
split_k
=
std
::
stoi
(
argv
[
8
+
1
+
4
+
6
*
num_dim_spatial
]);
split_k
=
std
::
max
(
1
,
split_k
);
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
...
...
profiler/src/profile_grouped_gemm_fixed_nk.cpp
View file @
f84e2020
...
...
@@ -85,9 +85,11 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
int
kbatch
=
argc
==
15
?
std
::
stoi
(
argv
[
14
])
:
1
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
F8
=
ck
::
f8_t
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
#if defined(CK_ENABLE_FP8)
using
F8
=
ck
::
f8_t
;
#endif
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
...
...
script/convert_miopen_driver_to_profiler.py
0 → 100644
View file @
f84e2020
# SPDX-License-Identifier: MIT
# Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
# Convert miopen driver command to ck Profiler
# Example: python3 ../script/convert_miopen_driver_to_profiler.py
# /opt/rocm/bin/MIOpenDriver conv -n 32 -c 64 -H 28 -W 28 -k 64 -y 3 -x 3
# -p 1 -q 1 -u 2 -v 2 -l 1 -j 1 -m conv -g 32 -F 1 -t 1
import
argparse
import
subprocess
def
init_const_args
(
args
):
args
.
ck_profiler_cmd
=
'../build/bin/ckProfiler'
# use decimal values
args
.
init_method
=
2
# don't print tensor values
args
.
log_value
=
0
def
run_ck_profiler_cmd
(
cmd
):
print
(
"ckProfiler command:"
)
print
(
cmd
)
subprocess
.
run
(
cmd
)
def
parse_data_type
(
args
):
if
args
.
data_type
==
"fp32"
:
if
args
.
ck_profier_op
==
"grouped_conv_bwd_weight"
or
\
args
.
ck_profier_op
==
"grouped_conv_bwd_data"
or
\
args
.
ck_profier_op
==
"grouped_conv_fwd"
:
args
.
data_type
=
0
if
args
.
data_type
==
"fp16"
:
if
args
.
ck_profier_op
==
"grouped_conv_bwd_weight"
or
\
args
.
ck_profier_op
==
"grouped_conv_bwd_data"
or
\
args
.
ck_profier_op
==
"grouped_conv_fwd"
:
args
.
data_type
=
1
if
args
.
data_type
==
"int8"
:
if
args
.
ck_profier_op
==
"grouped_conv_bwd_weight"
:
args
.
data_type
=
4
if
args
.
ck_profier_op
==
"grouped_conv_bwd_data"
:
print
(
'Not supported data type for grouped_conv_bwd_data'
)
exit
(
1
)
if
args
.
ck_profier_op
==
"grouped_conv_fwd"
:
args
.
data_type
=
3
if
args
.
data_type
==
"bfp16"
:
if
args
.
ck_profier_op
==
"grouped_conv_bwd_weight"
or
\
args
.
ck_profier_op
==
"grouped_conv_bwd_data"
or
\
args
.
ck_profier_op
==
"grouped_conv_fwd"
:
args
.
data_type
=
2
def
add_conv_params_to_cmd
(
args
,
cmd
):
if
args
.
spatial_dim
==
1
:
cmd
+=
[
str
(
args
.
fil_w
),
str
(
args
.
in_w
)]
cmd
+=
[
str
(
args
.
conv_stride_w
),
str
(
args
.
dilation_w
)]
cmd
+=
[
str
(
args
.
pad_w
),
str
(
args
.
pad_w
)]
elif
args
.
spatial_dim
==
2
:
cmd
+=
[
str
(
args
.
fil_h
),
str
(
args
.
fil_w
)]
cmd
+=
[
str
(
args
.
in_h
),
str
(
args
.
in_w
)]
cmd
+=
[
str
(
args
.
conv_stride_h
),
str
(
args
.
conv_stride_w
)]
cmd
+=
[
str
(
args
.
dilation_h
),
str
(
args
.
dilation_w
)]
cmd
+=
[
str
(
args
.
pad_h
),
str
(
args
.
pad_w
)]
cmd
+=
[
str
(
args
.
pad_h
),
str
(
args
.
pad_w
)]
elif
args
.
spatial_dim
==
3
:
cmd
+=
[
str
(
args
.
fil_d
),
str
(
args
.
fil_h
),
str
(
args
.
fil_w
)]
cmd
+=
[
str
(
args
.
in_d
),
str
(
args
.
in_h
),
str
(
args
.
in_w
)]
cmd
+=
[
str
(
args
.
conv_stride_d
),
str
(
args
.
conv_stride_h
)]
cmd
+=
[
str
(
args
.
conv_stride_w
)]
cmd
+=
[
str
(
args
.
dilation_d
),
str
(
args
.
dilation_h
),
str
(
args
.
dilation_w
)]
cmd
+=
[
str
(
args
.
pad_d
),
str
(
args
.
pad_h
),
str
(
args
.
pad_w
)]
cmd
+=
[
str
(
args
.
pad_d
),
str
(
args
.
pad_h
),
str
(
args
.
pad_w
)]
else
:
print
(
'Not supported spatial dim (supported: 1, 2, 3)'
)
exit
(
1
)
def
run_ck_grouped_conv_fwd
(
args
):
args
.
ck_profier_op
=
"grouped_conv_fwd"
parse_data_type
(
args
)
# default for MIOpen NHWGC
args
.
layout
=
1
# use int32 by default
args
.
index_type
=
0
cmd
=
[
str
(
args
.
ck_profiler_cmd
),
str
(
args
.
ck_profier_op
)]
cmd
+=
[
str
(
args
.
data_type
),
str
(
args
.
layout
),
str
(
args
.
index_type
)]
cmd
+=
[
str
(
args
.
verify
),
str
(
args
.
init_method
)]
cmd
+=
[
str
(
args
.
log_value
),
str
(
args
.
time
)]
cmd
+=
[
str
(
args
.
spatial_dim
),
str
(
args
.
group_count
)]
cmd
+=
[
str
(
args
.
batchsize
),
str
(
args
.
out_channels
)]
cmd
+=
[
str
(
args
.
in_channels
)]
add_conv_params_to_cmd
(
args
,
cmd
)
run_ck_profiler_cmd
(
cmd
)
def
run_ck_grouped_conv_bwd_data
(
args
):
args
.
ck_profier_op
=
"grouped_conv_bwd_data"
parse_data_type
(
args
)
# default for MIOpen NHWGC
args
.
layout
=
1
cmd
=
[
str
(
args
.
ck_profiler_cmd
),
str
(
args
.
ck_profier_op
)]
cmd
+=
[
str
(
args
.
data_type
),
str
(
args
.
layout
)]
cmd
+=
[
str
(
args
.
verify
),
str
(
args
.
init_method
)]
cmd
+=
[
str
(
args
.
log_value
),
str
(
args
.
time
)]
cmd
+=
[
str
(
args
.
spatial_dim
),
str
(
args
.
group_count
)]
cmd
+=
[
str
(
args
.
batchsize
),
str
(
args
.
out_channels
)]
cmd
+=
[
str
(
args
.
in_channels
)]
add_conv_params_to_cmd
(
args
,
cmd
)
run_ck_profiler_cmd
(
cmd
)
def
run_ck_grouped_conv_bwd_weight
(
args
):
args
.
ck_profier_op
=
"grouped_conv_bwd_weight"
parse_data_type
(
args
)
# default for MIOpen NHWGC
args
.
layout
=
2
# Test all split K value from the list {1, 2, 4, 8, 32, 64, 128}
args
.
split_k_value
=
-
1
cmd
=
[
str
(
args
.
ck_profiler_cmd
),
str
(
args
.
ck_profier_op
)]
cmd
+=
[
str
(
args
.
data_type
),
str
(
args
.
layout
)]
cmd
+=
[
str
(
args
.
verify
),
str
(
args
.
init_method
)]
cmd
+=
[
str
(
args
.
log_value
),
str
(
args
.
time
)]
cmd
+=
[
str
(
args
.
spatial_dim
),
str
(
args
.
group_count
)]
cmd
+=
[
str
(
args
.
batchsize
),
str
(
args
.
out_channels
)]
cmd
+=
[
str
(
args
.
in_channels
)]
add_conv_params_to_cmd
(
args
,
cmd
)
cmd
+=
[
str
(
args
.
split_k_value
)]
run_ck_profiler_cmd
(
cmd
)
# Get name of miopen driver, remove it from unknown
def
process_miopen_driver_name
(
args
,
unknown
):
if
"convint8"
in
unknown
:
args
.
data_type
=
'int8'
unknown
.
remove
(
"convint8"
)
elif
"convbfp16"
in
unknown
:
args
.
data_type
=
'bfp16'
unknown
.
remove
(
"convbfp16"
)
elif
"convfp16"
in
unknown
:
args
.
data_type
=
'fp16'
unknown
.
remove
(
"convfp16"
)
elif
"conv"
in
unknown
:
args
.
data_type
=
'fp32'
unknown
.
remove
(
"conv"
)
else
:
print
(
'Not supported driver (supported: conv, convfp16, convint8,'
' convbfp16).'
)
exit
(
1
)
def
run_ck_profiler
(
args
):
# MIOpen get number of channel per all groups, CK profiler get number of
# channel per group
args
.
in_channels
=
int
(
args
.
in_channels
/
args
.
group_count
)
args
.
out_channels
=
int
(
args
.
out_channels
/
args
.
group_count
)
if
args
.
forw
==
0
or
args
.
forw
==
1
or
args
.
forw
==
3
or
args
.
forw
==
5
:
run_ck_grouped_conv_fwd
(
args
)
if
args
.
forw
==
0
or
args
.
forw
==
2
or
args
.
forw
==
3
or
args
.
forw
==
6
:
run_ck_grouped_conv_bwd_data
(
args
)
if
args
.
forw
==
0
or
args
.
forw
==
4
or
args
.
forw
==
5
or
args
.
forw
==
6
:
run_ck_grouped_conv_bwd_weight
(
args
)
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
prog
=
"converter"
,
description
=
"Convert miopen driver command to ck Profiler"
"
\n
Example: python3 "
"../script/convert_miopen_driver_to_profiler.py "
"/opt/rocm/bin/MIOpenDriver conv -n 32 -c 64 -H 28 -W 28 "
"-k 64 -y 3 -x 3 -p 1 -q 1 -u 1 -v 1 -l 1 -j 1 -m conv -g "
"32 -F 1 -t 1"
,
)
parser
.
add_argument
(
"-in_layout"
,
"-I"
,
default
=-
1
,
type
=
int
,
required
=
False
,
help
=
"Input Layout (Default=NCHW for 2d conv, NCDHW for 3d conv)"
)
parser
.
add_argument
(
"-forw"
,
"-F"
,
default
=
0
,
type
=
int
,
required
=
False
,
help
=
"Flag enables fwd, bwd, wrw convolutions"
"
\n
0 fwd+bwd+wrw (default)"
"
\n
1 fwd only"
"
\n
2 bwd only"
"
\n
4 wrw only"
"
\n
3 fwd+bwd"
"
\n
5 fwd+wrw"
"
\n
6 bwd+wrw"
)
parser
.
add_argument
(
"-spatial_dim"
,
"-_"
,
default
=
2
,
type
=
int
,
required
=
False
,
help
=
"convolution spatial dimension (Default-2)"
)
parser
.
add_argument
(
"-batchsize"
,
"-n"
,
default
=
100
,
type
=
int
,
required
=
False
,
help
=
"Mini-batch size (Default=100)"
)
parser
.
add_argument
(
"-in_channels"
,
"-c"
,
default
=
3
,
type
=
int
,
required
=
False
,
help
=
"Number of Input Channels (Default=3)"
)
parser
.
add_argument
(
"-in_d"
,
"-!"
,
default
=
32
,
type
=
int
,
required
=
False
,
help
=
"Input Depth (Default=32)"
)
parser
.
add_argument
(
"-in_h"
,
"-H"
,
default
=
32
,
type
=
int
,
required
=
False
,
help
=
"Input Height (Default=32)"
)
parser
.
add_argument
(
"-in_w"
,
"-W"
,
default
=
32
,
type
=
int
,
required
=
False
,
help
=
"Input Width (Default=32)"
)
parser
.
add_argument
(
"-out_channels"
,
"-k"
,
default
=
32
,
type
=
int
,
required
=
False
,
help
=
"Number of Output Channels (Default=32)"
)
parser
.
add_argument
(
"-fil_d"
,
"-@"
,
default
=
3
,
type
=
int
,
required
=
False
,
help
=
"Filter Depth (Default=3)"
)
parser
.
add_argument
(
"-fil_h"
,
"-y"
,
default
=
3
,
type
=
int
,
required
=
False
,
help
=
"Filter Height (Default=3)"
)
parser
.
add_argument
(
"-fil_w"
,
"-x"
,
default
=
3
,
type
=
int
,
required
=
False
,
help
=
"Filter Width (Default=3)"
)
parser
.
add_argument
(
"-conv_stride_d"
,
"-#"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Convolution Stride for Depth (Default=1)"
)
parser
.
add_argument
(
"-conv_stride_h"
,
"-u"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Convolution Stride for Height (Default=1)"
)
parser
.
add_argument
(
"-conv_stride_w"
,
"-v"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Convolution Stride for Width (Default=1)"
)
parser
.
add_argument
(
"-pad_d"
,
"-$"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Zero Padding for Depth (Default=0)"
)
parser
.
add_argument
(
"-pad_h"
,
"-p"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Zero Padding for Height (Default=0)"
)
parser
.
add_argument
(
"-pad_w"
,
"-q"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Zero Padding for Width (Default=0)"
)
parser
.
add_argument
(
"-verify"
,
"-V"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Verify Each Layer (Default=1)"
)
parser
.
add_argument
(
"-time"
,
"-t"
,
default
=
0
,
type
=
int
,
required
=
False
,
help
=
"Time Each Layer (Default=0)"
)
parser
.
add_argument
(
"-dilation_d"
,
"-^"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Dilation of Filter Depth (Default=1)"
)
parser
.
add_argument
(
"-dilation_h"
,
"-l"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Dilation of Filter Height (Default=1)"
)
parser
.
add_argument
(
"-dilation_w"
,
"-j"
,
default
=
1
,
type
=
int
,
required
=
False
,
help
=
"Dilation of Filter Width (Default=1)"
)
parser
.
add_argument
(
"-group_count"
,
"-g"
,
type
=
int
,
default
=
1
,
required
=
False
,
help
=
"Number of Groups (Default=1)"
)
args
,
unknown
=
parser
.
parse_known_args
()
init_const_args
(
args
)
process_miopen_driver_name
(
args
,
unknown
)
print
(
"Ignored args:"
)
print
(
unknown
)
run_ck_profiler
(
args
)
script/process_perf_data.py
View file @
f84e2020
...
...
@@ -122,7 +122,7 @@ def parse_logfile(logfile):
#sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
test_list
=
list
(
range
(
1
,
len
(
tests
)
+
1
))
#parse conv_fwd and conv_bwd performance tests:
elif
'conv_fwd'
in
logfile
or
'conv_bwd
_data
'
in
logfile
:
elif
'conv_fwd'
in
logfile
or
'conv_bwd'
in
logfile
:
for
line
in
open
(
logfile
):
if
'tflops:'
in
line
:
lst
=
line
.
split
()
...
...
@@ -274,14 +274,26 @@ def main():
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_grouped_gemm_tflops"
if
'conv_fwd'
in
filename
:
if
'
perf_
conv_fwd'
in
filename
:
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_conv_fwd_tflops"
if
'conv_bwd_data'
in
filename
:
if
'
perf_
conv_bwd_data'
in
filename
:
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_conv_bwd_data_tflops"
if
'grouped_conv_fwd'
in
filename
:
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_grouped_conv_fwd_tflops"
if
'grouped_conv_bwd_data'
in
filename
:
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_grouped_conv_bwd_data_tflops"
if
'grouped_conv_bwd_weight'
in
filename
:
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_grouped_conv_bwd_weight_tflops"
if
'gemm_bilinear'
in
filename
:
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
...
...
script/process_qa_data.sh
View file @
f84e2020
...
...
@@ -15,8 +15,9 @@ python3 process_perf_data.py perf_resnet50_N256.log
python3 process_perf_data.py perf_resnet50_N4.log
python3 process_perf_data.py perf_batched_gemm.log
python3 process_perf_data.py perf_grouped_gemm.log
python3 process_perf_data.py perf_conv_fwd.log
python3 process_perf_data.py perf_conv_bwd_data.log
python3 process_perf_data.py perf_grouped_conv_fwd.log
python3 process_perf_data.py perf_grouped_conv_bwd_data.log
python3 process_perf_data.py perf_grouped_conv_bwd_weight.log
python3 process_perf_data.py perf_gemm_bilinear.log
python3 process_perf_data.py perf_reduction.log
python3 process_perf_data.py perf_splitK_gemm.log
...
...
script/profile_conv_bwd_data.sh
→
script/profile_
grouped_
conv_bwd_data.sh
View file @
f84e2020
File moved
script/profile_conv_
f
wd.sh
→
script/profile_
grouped_
conv_
b
wd
_weight
.sh
View file @
f84e2020
...
...
@@ -12,27 +12,28 @@ INIT=$5
LOG
=
$6
TIME
=
$7
N
=
$8
N
=
$8
SplitK
=
$9
# Resnet50
######## op datatype layout verify init log time conv_dim G__ N__ K___ C___ Y X Hi__ Wi__ Strides Dilations LeftPads RightPads
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
128 128 3 3 28 28 1 1 1 1 1 1 1 1
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 128 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
128 128 3 3 56 56 2 2 1 1 1 1 1 1
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 2048 1 1 7 7 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 256 3 3 14 14 1 1 1 1 1 1 1 1
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 256 3 3 28 28 2 2 1 1 1 1 1 1
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
128 256 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
64 256 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 512 3 3 14 14 2 2 1 1 1 1 1 1
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
128 512 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 512 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
2048 512 1 1 7 7 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 512 3 3 7 7 1 1 1 1 1 1 1 1
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 64 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
64 64 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
64 64 3 3 56 56 1 1 1 1 1 1 1 1
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
64 3 7 7 224 224 2 2 1 1 3 3 3 3
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 1024 1 1 14 14 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 1024 1 1 14 14 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
128 128 3 3 28 28 1 1 1 1 1 1 1 1
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 128 1 1 28 28 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
128 128 3 3 56 56 2 2 1 1 1 1 1 1
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 2048 1 1 7 7 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 256 3 3 14 14 1 1 1 1 1 1 1 1
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 256 3 3 28 28 2 2 1 1 1 1 1 1
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
128 256 1 1 56 56 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
64 256 1 1 56 56 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 512 3 3 14 14 2 2 1 1 1 1 1 1
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
128 512 1 1 28 28 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 512 1 1 28 28 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
2048 512 1 1 7 7 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
512 512 3 3 7 7 1 1 1 1 1 1 1 1
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
256 64 1 1 56 56 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
64 64 1 1 56 56 1 1 1 1 0 0 0 0
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
64 64 3 3 56 56 1 1 1 1 1 1 1 1
$SplitK
$DRIVER
$OP
$DATATYPE
$LAYOUT
$VERIFY
$INIT
$LOG
$TIME
2 1
$N
64 3 7 7 224 224 2 2 1 1 3 3 3 3
$SplitK
Prev
1
…
4
5
6
7
8
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment