Unverified Commit f83e9701 authored by Haocong WANG's avatar Haocong WANG Committed by GitHub
Browse files

[GEMM] Gemm universal device operation (#1154)



* Optimize GEMM on MI200/300:
1. Add new blockwise gemm pipeline
2. Add irregular splitk intances

* clang format + typo fix

* Fix a bug

* initial commit

* Add more instances to irregular splitk

* blkgemm pipeline v1~4 prototype

* Sanity Checked. Known issue:
1. Poor performance of splitk
2. Register spill on blkgemmpipeline v3

* Sanity and Performance fix:
1. fix a bug related to sanity in grouped b2c mapping
2. fix a bug related to sanity and performance in splitk offset

* Sanity and API update:
1. Remove prefetch stage
2. Fix valid check bug
3, Add first gemm_universal instance into ckProfiler

* Add NN instances for gemm universal

* 1. Add NT instances for gemm_universal
2. Fix a bug about Kpadding in gemm_universal

* Fix a bug regarding padding Odd K number

* remove kernel print

* Fix KPadding bug...

* Update safety check

* another try to fix kpadding..

* Sanity checked

* new instances..

* clang format+typo fix

* remove clang format script's change

* Add non-hotloop compile option

* 1. Add fp16xfp8 example
2. pull packed convert f8 from pr1150

* Some miscs.. opt and fix

* Add pipeline description docs

* Split universal gemm instance library to cut profiler compiling time

* uncomment cmakefile

* Fix a bug caused by blockwise_gemm_pipe_v2

* reduce default splitk to 1

* Add 224x256x64 tile size

* update, including:
1. Experiment pipeline 5~7
2. Optimization for pipeline 4
3. Organized instance library

* temp save

* temp save

* Permuted lds layout, sanity and function checked

* clang format

* Move OOB check from RunRead to RunWrite, for better software pipeline.
TODO: agpr spill when NN layout

* clangformat

* A/B splitpipe scheduler for v3

* Fix two bugs

* bug fix

* fix a bug in oob check

* Example for mixed fp16_fp8 gemm

* Clean experimental code blocks

* Add mixed precision gemm into profiler

* tempsave

* optimize m/n major lds layout

* Add RRR GEMM  mixed precision instances

* Optimize f8 matrix transpose

* Add test_gemm_universal

* A/B spilt schedule for blkpip v5

* Take ds_read2 into iglp scheduling scheme

* format

* fixed cmake

* Add llvm-option into CI cmake flag

---------
Co-authored-by: default avatarJing Zhang <jizhan@amd.com>
parent 7cdf5a96
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_universal_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
KM_KN_MN, // 2
KM_NK_MN, // 3
};
enum struct GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
F8_F16_F16, // 4
F16_F8_F16, // 5
F16_F16_F16_F8, // 6
};
#define OP_NAME "gemm_universal"
#define OP_DESC "Universal GEMM"
int profile_gemm_universal(int argc, char* argv[])
{
if(argc != 15 && argc != 17)
{
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: f16, "
"comp f8)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n");
printf("arg14: split k into mulitiple batch\n");
printf("optional:\n");
printf("arg15: number of warm-up cycles (default 1)\n");
printf("arg16: number of iterations (default 10)\n");
exit(1);
}
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]);
const int KBatch = std::stoi(argv[14]);
int n_warmup = 1;
int n_iter = 10;
if(argc == 17)
{
n_warmup = std::stoi(argv[15]);
n_iter = std::stoi(argv[16]);
}
using F32 = float;
using F16 = ck::half_t;
using F8 = ck::f8_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
auto profile = [&](auto a_type,
auto b_type,
auto acc_type,
auto c_type,
auto a_layout,
auto b_layout,
auto c_layout) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
using AccDataType = decltype(acc_type);
using CDataType = decltype(c_type);
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CLayout = decltype(c_layout);
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? N : M;
bool pass = ck::profiler::profile_gemm_universal_impl<ADataType,
BDataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout>(
do_verification,
init_method,
do_log,
time_kernel,
M,
N,
K,
(StrideA < 0) ? DefaultStrideA : StrideA,
(StrideB < 0) ? DefaultStrideB : StrideB,
(StrideC < 0) ? DefaultStrideC : StrideC,
KBatch,
n_warmup,
n_iter);
return pass ? 0 : 1;
};
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F16{}, F8{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F16{}, F8{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F8{}, F16{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F8{}, F16{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_universal);
......@@ -8,7 +8,7 @@ MY_PROJECT_SOURCE=$1
cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker" \
-D CMAKE_CXX_FLAGS="-Xclang -mllvm -Xclang -enable-post-misched=0 -std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \
-D GPU_TARGETS="gfx908;gfx90a;gfx940" \
......
......@@ -149,6 +149,7 @@ add_subdirectory(gemm)
add_subdirectory(gemm_add)
add_subdirectory(gemm_layernorm)
add_subdirectory(gemm_split_k)
add_subdirectory(gemm_universal)
add_subdirectory(gemm_reduce)
add_subdirectory(batched_gemm)
add_subdirectory(batched_gemm_reduce)
......
add_gtest_executable(test_gemm_universal test_gemm_universal_xdl.cpp)
if(result EQUAL 0)
target_link_libraries(test_gemm_universal PRIVATE utility device_gemm_universal_instance)
endif()
#pragma once
TYPED_TEST(TestGemmUniversal_MK_KN, SmallM)
{
std::vector<int> Ms{1, 2, 3, 4, 5, 6};
constexpr int N = 512;
constexpr int K = 320;
constexpr int StrideA = K;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_MK_NK, SmallM)
{
std::vector<int> Ms{1, 2, 3, 4, 5, 6};
constexpr int N = 512;
constexpr int K = 320;
constexpr int StrideA = K;
constexpr int StrideB = K;
constexpr int StrideC = N;
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_MK_KN, MidLargeM)
{
std::vector<int> Ms{127, 255, 312, 799, 1573};
constexpr int N = 512;
constexpr int K = 320;
constexpr int StrideA = K;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_MK_NK, MidLargeM)
{
std::vector<int> Ms{127, 255, 312, 799, 1573};
constexpr int N = 512;
constexpr int K = 320;
constexpr int StrideA = K;
constexpr int StrideB = K;
constexpr int StrideC = N;
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_MK_KN, PaddK)
{
std::vector<int> Ms{127};
constexpr int N = 512;
constexpr int K = 437;
constexpr int StrideA = K;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_MK_NK, PaddK)
{
std::vector<int> Ms{127};
constexpr int N = 512;
constexpr int K = 437;
constexpr int StrideA = K;
constexpr int StrideB = K;
constexpr int StrideC = N;
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_MK_KN, Regular)
{
std::vector<int> Ms{512};
constexpr int N = 512;
constexpr int K = 512;
constexpr int StrideA = K;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_MK_NK, Regular)
{
std::vector<int> Ms{512};
constexpr int N = 512;
constexpr int K = 512;
constexpr int StrideA = K;
constexpr int StrideB = K;
constexpr int StrideC = N;
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
#include <sstream>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "include/ck/utility/data_type.hpp"
#include "profiler/profile_gemm_universal_impl.hpp"
namespace ck {
namespace test {
template <typename Tuple>
class TestGemmUniversal : public testing::Test
{
using Row = ck::tensor_layout::gemm::RowMajor;
using F32 = float;
protected:
using ALayout = std::tuple_element_t<0, Tuple>;
using BLayout = std::tuple_element_t<1, Tuple>;
using CLayout = Row;
using ADataType = std::tuple_element_t<2, Tuple>;
using BDataType = std::tuple_element_t<3, Tuple>;
using CDataType = std::tuple_element_t<4, Tuple>;
public:
static constexpr bool verify_ = true;
static constexpr int init_method_ = 1; // decimal value initialization
static constexpr bool log_ = false;
static constexpr bool bench_ = false; // measure kernel performance
std::vector<int> k_batches_;
void SetUp() override { k_batches_ = {1, 2, 3, 5, 8}; }
void Run(const int M,
const int N,
const int K,
const int StrideA,
const int StrideB,
const int StrideC)
{
for(auto kb : k_batches_)
{
RunSingle(M, N, K, StrideA, StrideB, StrideC, kb);
}
}
void RunSingle(const int M,
const int N,
const int K,
const int StrideA,
const int StrideB,
const int StrideC,
int kbatch = 1,
int n_warmup = 1,
int n_iter = 10)
{
bool pass = ck::profiler::profile_gemm_universal_impl<ADataType,
BDataType,
F32,
CDataType,
ALayout,
BLayout,
CLayout>(verify_,
init_method_,
log_,
bench_,
M,
N,
K,
StrideA,
StrideB,
StrideC,
kbatch,
n_warmup,
n_iter);
EXPECT_TRUE(pass);
}
};
} // namespace test
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "gtest/gtest.h"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "test_gemm_universal_util.hpp"
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
namespace {
template <typename X, typename Y>
struct tuple_concat;
template <typename... Xs, typename... Ys>
struct tuple_concat<std::tuple<Xs...>, std::tuple<Ys...>>
{
using type = std::tuple<Xs..., Ys...>;
};
} // namespace
template <typename Tuple>
class TestGemmUniversal_MK_KN
: public ck::test::TestGemmUniversal<typename tuple_concat<std::tuple<Row, Row>, Tuple>::type>
{
};
template <typename Tuple>
class TestGemmUniversal_MK_NK
: public ck::test::TestGemmUniversal<typename tuple_concat<std::tuple<Row, Col>, Tuple>::type>
{
};
// clang-format off
using KernelTypes = ::testing::Types<
// ADataType, BDataType, CDataType
std::tuple< F16, F16, F16>,
std::tuple< F16, F8, F16>,
std::tuple< F8, F16, F16>
>;
// clang-format on
TYPED_TEST_SUITE(TestGemmUniversal_MK_KN, KernelTypes);
TYPED_TEST_SUITE(TestGemmUniversal_MK_NK, KernelTypes);
#include "test_gemm_universal_ut_cases.inc"
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment