Unverified Commit f83e9701 authored by Haocong WANG's avatar Haocong WANG Committed by GitHub
Browse files

[GEMM] Gemm universal device operation (#1154)



* Optimize GEMM on MI200/300:
1. Add new blockwise gemm pipeline
2. Add irregular splitk intances

* clang format + typo fix

* Fix a bug

* initial commit

* Add more instances to irregular splitk

* blkgemm pipeline v1~4 prototype

* Sanity Checked. Known issue:
1. Poor performance of splitk
2. Register spill on blkgemmpipeline v3

* Sanity and Performance fix:
1. fix a bug related to sanity in grouped b2c mapping
2. fix a bug related to sanity and performance in splitk offset

* Sanity and API update:
1. Remove prefetch stage
2. Fix valid check bug
3, Add first gemm_universal instance into ckProfiler

* Add NN instances for gemm universal

* 1. Add NT instances for gemm_universal
2. Fix a bug about Kpadding in gemm_universal

* Fix a bug regarding padding Odd K number

* remove kernel print

* Fix KPadding bug...

* Update safety check

* another try to fix kpadding..

* Sanity checked

* new instances..

* clang format+typo fix

* remove clang format script's change

* Add non-hotloop compile option

* 1. Add fp16xfp8 example
2. pull packed convert f8 from pr1150

* Some miscs.. opt and fix

* Add pipeline description docs

* Split universal gemm instance library to cut profiler compiling time

* uncomment cmakefile

* Fix a bug caused by blockwise_gemm_pipe_v2

* reduce default splitk to 1

* Add 224x256x64 tile size

* update, including:
1. Experiment pipeline 5~7
2. Optimization for pipeline 4
3. Organized instance library

* temp save

* temp save

* Permuted lds layout, sanity and function checked

* clang format

* Move OOB check from RunRead to RunWrite, for better software pipeline.
TODO: agpr spill when NN layout

* clangformat

* A/B splitpipe scheduler for v3

* Fix two bugs

* bug fix

* fix a bug in oob check

* Example for mixed fp16_fp8 gemm

* Clean experimental code blocks

* Add mixed precision gemm into profiler

* tempsave

* optimize m/n major lds layout

* Add RRR GEMM  mixed precision instances

* Optimize f8 matrix transpose

* Add test_gemm_universal

* A/B spilt schedule for blkpip v5

* Take ds_read2 into iglp scheduling scheme

* format

* fixed cmake

* Add llvm-option into CI cmake flag

---------
Co-authored-by: default avatarJing Zhang <jizhan@amd.com>
parent 7cdf5a96
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_instances<GemmMNPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_instances<Intrawave, GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_instances<Intrawave, GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_instances<Intrawave, GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_instances<Interwave, GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_instances<Interwave, GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_instances<Interwave, GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = f8_t;
using F16 = half_t;
using F32 = float;
using Row = tensor_layout::gemm::RowMajor;
using Col = tensor_layout::gemm::ColumnMajor;
template <index_t... Is>
using S = Sequence<Is...>;
using PassThrough = element_wise::PassThrough;
static constexpr auto GemmDefault = GemmSpecialization::Default;
static constexpr auto GemmKPadding = GemmSpecialization::KPadding;
static constexpr auto GemmMNPadding = GemmSpecialization::MNPadding;
static constexpr auto GemmMNKPadding = GemmSpecialization::MNKPadding;
static constexpr auto Intrawave = BlockGemmPipelineScheduler::Intrawave;
static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template <GemmSpecialization GemmSpec>
using device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_instances = std::tuple<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Compute friendly
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 16, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 224, 64, 16, 8, 16, 16, 8, 7, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 2, 1, S<1, 64, 1, 4>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 16, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 16, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 16, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
// clang-format on
>;
template <BlockGemmPipelineScheduler BlkGemmPipeSched, GemmSpecialization GemmSpec>
using device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_instances = std::tuple<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Latency friendly
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 128, 16, 8, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 16, 8, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 16, 8, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 128, 16, 8, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// Memory friendly
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 32, 128, 16, 8, 32, 32, 2, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 16, 128, 16, 8, 16, 16, 4, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 128, 32, 128, 16, 8, 32, 32, 2, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 128, 16, 128, 16, 8, 16, 16, 4, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 64, 32, 128, 16, 8, 32, 32, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 64, 16, 128, 16, 8, 16, 16, 2, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 128, 16, 8, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 16, 8, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 16, 8, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 128, 16, 8, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 64, 128, 16, 8, 16, 16, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 64, 128, 16, 8, 32, 32, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 128, 128, 16, 8, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, F8, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 128, 128, 16, 8, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_instances<GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_instances<GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_instances<GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_instances<GemmMNPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_instances<Intrawave, GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_instances<Intrawave, GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_instances<Intrawave, GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_instances<Interwave, GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_instances<Interwave, GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_instances<Interwave, GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_universal.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_gemm_universal_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
int KBatch,
int n_warmup,
int n_iter)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-1, 2});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
using DeviceOp = ck::tensor_operation::device::DeviceGemmV2<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// Run reference GEMM
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_kbatch = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 19, 20, 32, 38};
if(KBatch > 0)
{
kbatch_list = {KBatch};
}
for(std::size_t i = 0; i < kbatch_list.size(); i++)
{
auto kbatch_curr = kbatch_list[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
kbatch_curr,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
std::string op_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(
argument_ptr.get(), StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << ", KBatch "
<< kbatch_curr << std::endl;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if constexpr(is_same_v<ADataType, f8_t> || is_same_v<BDataType, f8_t> ||
is_same_v<CDataType, f8_t>)
{
std::string msg = "Error: Incorrect results!";
double rtol = 1e-1;
double atol = 1e-1;
pass = pass & ck::utils::check_err(
c_m_n_device_result, c_m_n_host_result, msg, rtol, atol);
}
else
{
#endif
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
#if defined CK_ENABLE_FP8
}
#endif
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem"
<< std::endl;
}
}
}
if constexpr(is_same<CDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<CDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<CDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<CDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " KBatch = " << best_kbatch
<< " : " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec
<< " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
......@@ -49,6 +49,7 @@ if(GPU_TARGETS MATCHES "gfx9")
list(APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp)
list(APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp)
......@@ -115,6 +116,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment