Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
f6ceef78
Commit
f6ceef78
authored
Aug 26, 2024
by
ThomasNing
Browse files
merge with the develop branch
parents
536c5458
25935b57
Changes
240
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1020 additions
and
252 deletions
+1020
-252
example/62_convnd_activ/convscale_reduce/convnd_fwd_xdl_convscale_relu_amax_fp8.cpp
...nvscale_reduce/convnd_fwd_xdl_convscale_relu_amax_fp8.cpp
+82
-0
example/62_convnd_activ/convscale_reduce/run_convnd_fwd_example.inc
..._convnd_activ/convscale_reduce/run_convnd_fwd_example.inc
+98
-0
example/65_gemm_multiply_multiply/gemm_add_add_xdl_fp16.cpp
example/65_gemm_multiply_multiply/gemm_add_add_xdl_fp16.cpp
+1
-0
example/65_gemm_multiply_multiply/gemm_multiply_multiply_xdl_fp8.cpp
...gemm_multiply_multiply/gemm_multiply_multiply_xdl_fp8.cpp
+13
-5
example/CMakeLists.txt
example/CMakeLists.txt
+16
-2
example/ck_tile/01_fmha/CMakeLists.txt
example/ck_tile/01_fmha/CMakeLists.txt
+3
-4
example/ck_tile/01_fmha/codegen/cpp_symbol_map.py
example/ck_tile/01_fmha/codegen/cpp_symbol_map.py
+16
-0
example/ck_tile/01_fmha/codegen/ops/fmha_bwd.py
example/ck_tile/01_fmha/codegen/ops/fmha_bwd.py
+370
-179
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
+12
-5
example/ck_tile/01_fmha/fmha_bwd.cpp
example/ck_tile/01_fmha/fmha_bwd.cpp
+49
-18
example/ck_tile/01_fmha/fmha_bwd.hpp
example/ck_tile/01_fmha/fmha_bwd.hpp
+95
-11
example/ck_tile/01_fmha/fmha_fwd.cpp
example/ck_tile/01_fmha/fmha_fwd.cpp
+14
-11
example/ck_tile/01_fmha/fmha_fwd.hpp
example/ck_tile/01_fmha/fmha_fwd.hpp
+0
-4
example/ck_tile/01_fmha/script/run_full_test.sh
example/ck_tile/01_fmha/script/run_full_test.sh
+46
-0
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
+12
-10
include/ck/ck.hpp
include/ck/ck.hpp
+3
-3
include/ck/host_utility/device_prop.hpp
include/ck/host_utility/device_prop.hpp
+6
-0
include/ck/host_utility/flush_cache.hpp
include/ck/host_utility/flush_cache.hpp
+118
-0
include/ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp
...ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp
+43
-0
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
...ation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
+23
-0
No files found.
example/62_convnd_activ/convscale_reduce/convnd_fwd_xdl_convscale_relu_amax_fp8.cpp
0 → 100644
View file @
f6ceef78
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_reduce_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
ConvOutDataType
=
float
;
// data type of convolution result
using
OutDataType
=
ck
::
f8_t
;
// data type of final result
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ConvScaleRelu
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
ConvOutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeDataType
,
BComputeDataType
>
;
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/62_convnd_activ/convscale_reduce/run_convnd_fwd_example.inc
0 → 100644
View file @
f6ceef78
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool
run_convnd_fwd_example
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
// instantiate in and wei element ops, will
// instantiate out_element_op below for every iteration
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
run
=
[
&
](
auto
ndim_spatial
,
auto
in_layout
,
auto
wei_layout
,
auto
out_layout
)
{
constexpr
ck
::
index_t
ndim_spatial_value
=
ndim_spatial
.
value
;
using
InLayout
=
decltype
(
in_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
OutLayout
=
decltype
(
out_layout
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_grouped_conv_fwd
<
ndim_spatial_value
,
InDataType
,
WeiDataType
,
ConvOutDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdInstance
<
ndim_spatial_value
,
InLayout
,
WeiLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
);
};
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
return
run
(
ck
::
Number
<
1
>
{},
ctc
::
GNWC
{},
ctc
::
GKXC
{},
ctc
::
GNWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
return
run
(
ck
::
Number
<
2
>
{},
ctc
::
GNHWC
{},
ctc
::
GKYXC
{},
ctc
::
GNHWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
return
run
(
ck
::
Number
<
3
>
{},
ctc
::
GNDHWC
{},
ctc
::
GKZYXC
{},
ctc
::
GNDHWK
{});
}
return
true
;
}
example/65_gemm_multiply_multiply/gemm_add_add_xdl_fp16.cpp
View file @
f6ceef78
...
...
@@ -208,6 +208,7 @@ int main(int argc, char* argv[])
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
StrideD
,
StrideD
},
StrideE
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
);
...
...
example/65_gemm_multiply_multiply/gemm_multiply_multiply_xdl_fp8.cpp
View file @
f6ceef78
...
...
@@ -69,7 +69,7 @@ using AElementOp = PassThrough;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MultiplyMultiply
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultiD_Xdl_CShuffle_V3
// clang-format off
...
...
@@ -99,6 +99,8 @@ int main(int argc, char* argv[])
ck
::
index_t
StrideD
=
0
;
ck
::
index_t
StrideE
=
N
;
ck
::
index_t
KBatch
=
1
;
if
(
argc
==
1
)
{
// use default case
...
...
@@ -109,7 +111,7 @@ int main(int argc, char* argv[])
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
1
1
)
else
if
(
argc
==
1
2
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
...
...
@@ -123,13 +125,16 @@ int main(int argc, char* argv[])
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
KBatch
=
std
::
stoi
(
argv
[
11
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, KBatch
\n
"
);
exit
(
0
);
}
...
...
@@ -212,6 +217,7 @@ int main(int argc, char* argv[])
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
I0
,
I0
},
StrideE
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
);
...
...
@@ -236,10 +242,12 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
...
...
example/CMakeLists.txt
View file @
f6ceef78
...
...
@@ -72,10 +72,24 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
list
(
REMOVE_ITEM FILE_NAME
"
${
source
}
"
)
endif
()
endforeach
()
#Do not build any FP8 examples if CK_ENABLE_FP8 not set
foreach
(
source IN LISTS FILE_NAME
)
if
(
NOT DEFINED CK_ENABLE_FP8 AND source MATCHES
"_fp8"
)
message
(
"removing fp8 example
${
source
}
"
)
list
(
REMOVE_ITEM FILE_NAME
"
${
source
}
"
)
endif
()
endforeach
()
#Do not build any BF8 examples if CK_ENABLE_BF8 not set
foreach
(
source IN LISTS FILE_NAME
)
if
(
NOT DEFINED CK_ENABLE_BF8 AND source MATCHES
"_bf8"
)
message
(
"removing bf8 example
${
source
}
"
)
list
(
REMOVE_ITEM FILE_NAME
"
${
source
}
"
)
endif
()
endforeach
()
#only continue if there are some source files left on the list
if
(
FILE_NAME
)
if
(
FILE_NAME MATCHES
"_xdl"
)
list
(
REMOVE_ITEM EX_TARGETS gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
)
list
(
REMOVE_ITEM EX_TARGETS gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
gfx1200 gfx1201
)
elseif
(
FILE_NAME MATCHES
"_wmma"
)
list
(
REMOVE_ITEM EX_TARGETS gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
)
endif
()
...
...
@@ -162,7 +176,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
#only continue if there are some source files left on the list
if
(
FILE_NAME
)
if
(
FILE_NAME MATCHES
"_xdl"
)
list
(
REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
)
list
(
REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
gfx1200 gfx1201
)
elseif
(
FILE_NAME MATCHES
"_wmma"
)
list
(
REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
)
endif
()
...
...
example/ck_tile/01_fmha/CMakeLists.txt
View file @
f6ceef78
...
...
@@ -6,7 +6,7 @@ execute_process(
execute_process
(
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--api bwd --list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/bwd_blob_list.txt
--api bwd --list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/bwd_blob_list.txt
--receipt 3
)
# NOTE: for cmake, the FMHA_FWD_GEN_BLOBS/FMHA_BWD_GEN_BLOBS files must be in the same directory
...
...
@@ -23,7 +23,7 @@ add_custom_command(
add_custom_command
(
OUTPUT
${
FMHA_BWD_GEN_BLOBS
}
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--api bwd --output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
--api bwd --output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
--receipt 3
)
set
(
EXAMPLE_FMHA_FWD
"tile_example_fmha_fwd"
)
...
...
@@ -55,11 +55,10 @@ set(EXAMPLE_FMHA_BWD_COMPILE_OPTIONS)
# ... because they are auto-generated
if
(
FMHA_FWD_FAST_EXP2
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
else
()
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
endif
()
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -fgpu-flush-denormals-to-zero
)
# Allow comparing floating points directly in order to check sentinel values
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
...
...
example/ck_tile/01_fmha/codegen/cpp_symbol_map.py
View file @
f6ceef78
...
...
@@ -66,6 +66,22 @@ BIAS_CHECK_MAP = {
"alibi"
:
"bias_enum::alibi"
}
DROPOUT_MAP
=
{
"no"
:
"ck_tile::BlockDropoutBwd<false, true, false>"
,
"dropout_wg32"
:
"ck_tile::BlockDropoutBwd<true, true, false>"
,
"dropout_wg32_storerandval"
:
"ck_tile::BlockDropoutBwd<true, true, true >"
,
"dropout_wg16"
:
"ck_tile::BlockDropoutBwd<true, false, false>"
,
"dropout_wg16_storerandval"
:
"ck_tile::BlockDropoutBwd<true, false, true >"
}
DROPOUT_CHECK_MAP
=
{
"no"
:
"t.has_dropout == false"
,
"dropout_wg32"
:
"t.has_dropout == true && t.is_store_randval == false"
,
"dropout_wg32_storerandval"
:
"t.has_dropout == true && t.is_store_randval == true"
,
"dropout_wg16"
:
"t.has_dropout == true && t.is_store_randval == false"
,
"dropout_wg16_storerandval"
:
"t.has_dropout == true && t.is_store_randval == true"
,
}
MODE_MAP
=
{
"batch"
:
"false"
,
"group"
:
"true"
...
...
example/ck_tile/01_fmha/codegen/ops/fmha_bwd.py
View file @
f6ceef78
...
...
@@ -14,15 +14,13 @@ from codegen.cpp_symbol_map import *
BWD_DQDKDV_PIPELINE_MAP
=
{
"ks_kts_vr"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineKSKTSVR"
,
"qs_ks_vr_dos"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineQSKSVROGradS"
,
"ks_vr"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineKSVR"
,
"kr_ktr_vr_iglp"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineKRKTRVRIGLP"
,
"kr_ktr_vr"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineKRKTRVR"
,
}
BWD_DQDKDV_PIPELINE_ENUM_MAP
=
{
"ks_kts_vr"
:
"ck_tile::BlockFmhaBwdPipelineEnum::KSKTSVR"
,
"qs_ks_vr_dos"
:
"ck_tile::BlockFmhaBwdPipelineEnum::QSKSVROGradS"
,
"ks_vr"
:
"ck_tile::BlockFmhaBwdPipelineEnum::KSVR"
,
"kr_ktr_vr_iglp"
:
"ck_tile::BlockFmhaBwdPipelineEnum::KRKTRVR_IGLP"
,
"kr_ktr_vr"
:
"ck_tile::BlockFmhaBwdPipelineEnum::KRKTRVR"
,
}
FMHA_BWD_KERNEL_HEADER
=
"""// SPDX-License-Identifier: MIT
...
...
@@ -34,39 +32,42 @@ FMHA_BWD_KERNEL_HEADER = """// SPDX-License-Identifier: MIT
FMHA_BWD_DQ_DK_DV_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bk1}, {F_bk2}, {F_bk3}, {F_bk4}, {F_bhdq}, {F_bhdv}>;
using fmha_block_tile_{F_idx} = ck_tile::
sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bk1}, {F_bk2}, {F_bk3}, {F_bk4}, {F_bhdq}, {F_bhdv}>;
using fmha_block_warps0_{F_idx} = ck_tile::sequence<{F_rm0}, {F_rn0}, {F_rk0}>;
using fmha_block_warps1_{F_idx} = ck_tile::sequence<{F_rm1}, {F_rn1}, {F_rk1}>;
using fmha_block_warps2_{F_idx} = ck_tile::sequence<{F_rm2}, {F_rn2}, {F_rk2}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_warp_tile0_{F_idx} = ck_tile::sequence<{F_wm0}, {F_wn0}, {F_wk0}>;
using fmha_warp_tile1_{F_idx} = ck_tile::sequence<{F_wm1}, {F_wn1}, {F_wk1}>;
// TODO: simplify Gemm0~4BlockWarps in TileFmhaBwdShape
// G0&G2 -> GSdP
// G1&G3 -> GdKV
// G4 -> GdQ
using fmha_bwd_shape_{F_idx} = ck_tile::TileFmhaBwdShape<fmha_block_tile_{F_idx},
fmha_block_warps0_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps1_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps0_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps1_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps2_{F_idx},
fmha_warp_tile_{F_idx}>;
fmha_block_warps0_{F_idx},
fmha_warp_tile
0
_{F_idx},
fmha_block_warps1_{F_idx},
fmha_warp_tile
1
_{F_idx},
fmha_block_warps0_{F_idx},
fmha_warp_tile
0
_{F_idx},
fmha_block_warps1_{F_idx},
fmha_warp_tile
1
_{F_idx},
fmha_block_warps2_{F_idx},
fmha_warp_tile
0
_{F_idx}>;
using fmha_bwd_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
{F_skpad},
{F_dpad},
{F_dvpad},
{F_bias},
{F_dbias},
false,
{F_dropout},
false,
{F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};
{F_skpad},
{F_dpad},
{F_dvpad},
{F_bias},
{F_dbias},
false,
false,
false,
{F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};
using fmha_dropout_{F_idx} = {F_dropout};
using fmha_bwd_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdPipelineProblem<
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::QDataType,
...
...
@@ -86,55 +87,72 @@ using fmha_bwd_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdPipelineProblem<
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::BiasGradDataType,
fmha_bwd_shape_{F_idx},
{F_mode},
{F_deterministic},
fmha_mask_{F_idx},
fmha_dropout_{F_idx},
fmha_bwd_trait_{F_idx}>;
using fmha_bwd_pipeline_{F_idx} = {F_pipeline}<
fmha_bwd_pipeline_problem_{F_idx}>;
using fmha_bwd_pipeline_{F_idx} = {F_pipeline}<fmha_bwd_pipeline_problem_{F_idx}>;
using fmha_bwd_dk_epilogue_{F_idx} =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
typename FmhaBwdTypeConfig<{F_dtype}>::KGradDataType,
false, false>>;
using fmha_bwd_dk_epilogue_{F_idx} = ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
typename FmhaBwdTypeConfig<{F_dtype}>::KGradDataType,
{F_skpad},
{F_dpad}>>;
using fmha_bwd_dv_epilogue_{F_idx} =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
typename FmhaBwdTypeConfig<{F_dtype}>::VGradDataType,
false, false>>;
using fmha_bwd_dv_epilogue_{F_idx} = ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
typename FmhaBwdTypeConfig<{F_dtype}>::VGradDataType,
{F_skpad},
{F_dvpad}>>;
using fmha_bwd_dq_dk_dv_kernel_{F_idx} =
ck_tile::FmhaBwdDQDKDVKernel<ck_tile::FmhaBwdTilePartitioner<fmha_bwd_shape_{F_idx}>,
fmha_bwd_pipeline_{F_idx},
fmha_bwd_dk_epilogue_{F_idx},
fmha_bwd_dv_epilogue_{F_idx}>;
using dq_dk_dv_trait_{F_idx} = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_dbias}, {F_dropout}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
ck_tile::FmhaBwdDQDKDVKernel<fmha_bwd_pipeline_{F_idx},
fmha_bwd_dk_epilogue_{F_idx},
fmha_bwd_dv_epilogue_{F_idx}>;
using dq_dk_dv_trait_{F_idx} = fmha_bwd_dq_dk_dv_traits_<{F_hdim},
{F_dtype},
{F_mode},
{F_pipeline_enum},
fmha_mask_{F_idx},
fmha_dropout_{F_idx},
{F_bias},
{F_dbias},
{F_spad},
{F_skpad},
{F_dpad},
{F_dvpad},
{F_deterministic}>;
#include <iostream>
template<>
template
<>
float fmha_bwd_dq_dk_dv_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
auto [kargs, grids]
= fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks
= k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
return ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
template<>
void fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
template <>
void fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s,
fmha_bwd_args a)
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
auto [kargs, grids] = fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
using k_
= fmha_bwd_dq_dk_dv_kernel_{F_idx};
auto [kargs, grids]
= fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks
= k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(
ck_tile::stream_config{{s.stream_id_}});
}}
template<>
template
<>
std::string fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_{F_idx}>()
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
...
...
@@ -146,14 +164,15 @@ FMHA_BWD_API_FILENAME="fmha_bwd_api.cpp"
FMHA_BWD_API
=
"""
#include <iostream>
template<typename dot_do_o_trait_, typename dq_dk_dv_trait_>
template
<typename dot_do_o_trait_, typename dq_dk_dv_trait_
, typename convert_dq_trait_
>
float fmha_bwd_(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
if(s.log_level_ > 0)
std::cout << ", " << fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_>() << ", " << fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_>() << std::flush;
std::cout << ", " << fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_>() << ", " << fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_>() <<
", " << fmha_bwd_convert_dq_get_name_<convert_dq_trait_>() <<
std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_>(s_, a); }}
[=](const ck_tile::stream_config& s_){{ fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_bwd_convert_dq_oneshot_<convert_dq_trait_>(s_, a); }}
);
}}
...
...
@@ -173,38 +192,36 @@ FMHA_BWD_API_PER_HDIM_CASE=""" {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <
}}
"""
FMHA_BWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_dbias == {F_dbias}) && (t.has_dropout == {F_dropout}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using dq_dk_dv_trait_ = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_dbias}, {F_dropout}, {F_spad0}, {F_skpad}, {F_dpad}, {F_dvpad}>;
FMHA_BWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_dbias == {F_dbias}) && ({F_dropout_check}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck}) && (t.is_deterministic == {F_deterministic})) {{
using dot_do_o_trait_ = fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad1}, {F_dvpad}>;
r = fmha_bwd_<dot_do_o_trait_, dq_dk_dv_trait_>(s, a);
using dq_dk_dv_trait_ = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, {F_mask}, {F_dropout}, {F_bias}, {F_dbias}, {F_spad0}, {F_skpad}, {F_dpad}, {F_dvpad}, {F_deterministic}>;
using convert_dq_trait_ = fmha_bwd_convert_dq_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad1}, {F_dpad}, {F_deterministic}>;
r = fmha_bwd_<dot_do_o_trait_, dq_dk_dv_trait_, convert_dq_trait_>(s, a);
return r;
}}
"""
@
dataclass
class
FmhaBwdDQDKDVApiTrait
:
pipeline
:
str
pipeline
:
str
# sync with fmha_bwd_traits<>, to generate fallback calls
hdim
:
str
dtype
:
str
# data type
mode
:
str
# value from MODE_MAP
bm0
:
int
# tile size along q seqlen (block size)
bn0
:
int
# tile size along k seqlen
bhdq
:
int
# q head_dim
bhdv
:
int
# v head_dim
mask
:
str
bias
:
str
dbias
:
str
dropout
:
str
spad
:
str
skpad
:
str
dpad
:
str
dvpad
:
str
@
property
def
name
(
self
)
->
str
:
return
f
'
{
self
.
pipeline
}
-
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
dbias
}
-
{
self
.
dropout
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-
{
self
.
dvpad
}
'
hdim
:
str
dtype
:
str
# data type
mode
:
str
# value from MODE_MAP
bm0
:
int
# tile size along q seqlen (block size)
bn0
:
int
# tile size along k seqlen
bhdq
:
int
# q head_dim
bhdv
:
int
# v head_dim
mask
:
str
bias
:
str
dbias
:
str
dropout
:
str
spad
:
str
skpad
:
str
dpad
:
str
dvpad
:
str
deterministic
:
str
def
scheck
(
self
,
spad1
:
str
)
->
str
:
if
self
.
mode
==
'group'
:
...
...
@@ -212,9 +229,9 @@ class FmhaBwdDQDKDVApiTrait:
elif
self
.
spad
==
't'
and
spad1
==
't'
:
return
f
'a.seqlen_q %
{
self
.
bm0
}
!= 0'
elif
self
.
spad
==
'f'
and
spad1
==
't'
:
return
f
'a.seqlen_q %
{
self
.
bm0
}
== 0 and a.seqlen_q %
25
6 != 0'
# BlockSize
return
f
'a.seqlen_q %
{
self
.
bm0
}
== 0 and a.seqlen_q % 6
4
!= 0'
else
:
# self.skpad == 'f' and skpad1 == 'f'
return
f
'a.seqlen_q %
25
6 == 0'
# BlockSize
return
f
'a.seqlen_q % 6
4
== 0'
@
property
def
skcheck
(
self
)
->
str
:
...
...
@@ -256,16 +273,19 @@ class FmhaBwdApiPool:
per_hdim_case
=
str
()
for
j
,
hdim
in
enumerate
(
self
.
dq_dk_dv_pool
[
dtype
].
keys
()):
traits
=
self
.
dq_dk_dv_pool
[
dtype
][
hdim
]
hdim_int
=
int
(
hdim
)
inners
=
str
()
for
k
,
trait
in
enumerate
(
traits
):
if_k
=
'if'
if
k
==
0
else
'else if'
for
spad1
in
[
"t"
,
"f"
]:
if
(
(
spad1
==
"f"
and
trait
.
spad
==
"t"
)
or
(
trait
.
mode
==
"group"
and
spad1
==
"f"
)):
if
(
spad1
==
"f"
and
(
trait
.
spad
==
"t"
or
trait
.
mode
==
"group"
)):
continue
inners
=
inners
+
FMHA_BWD_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_pipeline_enum
=
BWD_DQDKDV_PIPELINE_ENUM_MAP
[
trait
.
pipeline
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_dbias
=
BOOL_MAP
[
trait
.
dbias
],
F_dropout
=
BOOL_MAP
[
trait
.
dropout
],
inners
=
inners
+
FMHA_BWD_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_pipeline_enum
=
BWD_DQDKDV_PIPELINE_ENUM_MAP
[
trait
.
pipeline
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_dbias
=
BOOL_MAP
[
trait
.
dbias
],
F_dropout_check
=
DROPOUT_CHECK_MAP
[
trait
.
dropout
],
F_dropout
=
DROPOUT_MAP
[
trait
.
dropout
],
F_scheck
=
trait
.
scheck
(
spad1
=
spad1
),
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_hdim
=
hdim
,
F_dtype
=
DTYPE_MAP
[
dtype
],
F_spad0
=
BOOL_MAP
[
trait
.
spad
],
F_spad1
=
BOOL_MAP
[
spad1
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
])
F_spad0
=
BOOL_MAP
[
trait
.
spad
],
F_spad1
=
BOOL_MAP
[
spad1
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
],
F_deterministic
=
BOOL_MAP
[
trait
.
deterministic
])
if_j
=
'if'
if
j
==
0
else
'else if'
per_hdim_case
=
per_hdim_case
+
FMHA_BWD_API_PER_HDIM_CASE
.
format
(
F_if
=
if_j
,
F_hdim
=
hdim
,
F_inner_dispatch
=
inners
)
...
...
@@ -295,81 +315,89 @@ class FmhaBwdDQDKDVTileSize:
F_bhdv
:
int
# v head_dim
F_rm0
:
int
# number of warps along q seqlen (block warps) in gemm0/gemm2
F_rn0
:
int
# number of warps along k seqlen (block warps) in gemm0/gemm2
F_rk0
:
int
# number of warps along
gemm-k
(not used) in gemm0/gemm2
F_rk0
:
int
# number of warps along
headdim_qk/v
(not used) in gemm0/gemm2
F_rm1
:
int
# number of warps along k seqlen (block warps) in gemm1/gemm3
F_rn1
:
int
# number of warps along q seqlen (block warps) in gemm1/gemm3
F_rk1
:
int
# number of warps along gemm-k (not used) in gemm1/gemm3
F_rm2
:
int
# number of warps along k seqlen (block warps) in gemm4
F_rn2
:
int
# number of warps along q seqlen (block warps) in gemm4
F_rk2
:
int
# number of warps along gemm-k (not used) in gemm4
F_wm
:
int
# warp size along m (warp size)
F_wn
:
int
# warp size along n
F_wk
:
int
# warp size along k
F_rn1
:
int
# number of warps along headdim_qk/v (block warps) in gemm1/gemm3
F_rk1
:
int
# number of warps along q seqlen (not used) in gemm1/gemm3
F_rm2
:
int
# number of warps along q seqlen (block warps) in gemm4
F_rn2
:
int
# number of warps along headdim_qk (block warps) in gemm4
F_rk2
:
int
# number of warps along k seqlen (not used) in gemm4
F_wm0
:
int
# warp size along m in gemm0/gemm2/gemm4
F_wn0
:
int
# warp size along n in gemm0/gemm2/gemm4
F_wk0
:
int
# warp size along k in gemm0/gemm2/gemm4
F_wm1
:
int
# warp size along m in gemm1/gemm3
F_wn1
:
int
# warp size along n in gemm1/gemm3
F_wk1
:
int
# warp size along k in gemm1/gemm3
F_occupancy
:
int
# occupancy
@
property
def
name
(
self
)
->
str
:
return
f
"b
{
self
.
F_bm0
}
x
{
self
.
F_bn0
}
x
{
self
.
F_bk0
}
x
{
self
.
F_bk1
}
x
{
self
.
F_bk2
}
x
{
self
.
F_bk3
}
x
{
self
.
F_bk4
}
x
{
self
.
F_bhdq
}
x
{
self
.
F_bhdv
}
"
+
\
f
"_r
{
self
.
F_rm0
}
x
{
self
.
F_rn0
}
x
{
self
.
F_rk0
}
_r
{
self
.
F_rm1
}
x
{
self
.
F_rn1
}
x
{
self
.
F_rk1
}
_r
{
self
.
F_rm2
}
x
{
self
.
F_rn2
}
x
{
self
.
F_rk2
}
"
+
\
f
"_w
{
self
.
F_wm
}
x
{
self
.
F_wn
}
x
{
self
.
F_wk
}
_o
{
self
.
F_occupancy
}
"
f
"_w
{
self
.
F_wm
0
}
x
{
self
.
F_wn
0
}
x
{
self
.
F_wk
0
}
_w
{
self
.
F_wm1
}
x
{
self
.
F_wn1
}
x
{
self
.
F_wk1
}
_o
{
self
.
F_occupancy
}
"
@
dataclass
class
FmhaBwdDQDKDVKernel
:
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_tile
:
FmhaBwdDQDKDVTileSize
F_spad
:
str
# true/false
F_skpad
:
str
#
F_dpad
:
str
#
F_dvpad
:
str
#
F_bias
:
str
#
F_dbias
:
str
#
F_dropout
:
str
#
F_mask
:
str
# value from MASK_MAP
F_mode
:
str
# value from MODE_MAP
F_pipeline
:
str
mask_impl
:
str
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_tile
:
FmhaBwdDQDKDVTileSize
F_spad
:
str
# true/false
F_skpad
:
str
#
F_dpad
:
str
#
F_dvpad
:
str
#
F_bias
:
str
#
F_dbias
:
str
#
F_dropout
:
str
#
F_mask
:
str
# value from MASK_MAP
F_mode
:
str
# value from MODE_MAP
F_deterministic
:
str
#
F_pipeline
:
str
#
mask_impl
:
str
#
@
property
def
template
(
self
)
->
str
:
return
FMHA_BWD_KERNEL_HEADER
+
\
FMHA_BWD_DQ_DK_DV_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_tile
.
F_bm0
,
F_bn0
=
self
.
F_tile
.
F_bn0
,
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk2
=
self
.
F_tile
.
F_bk2
,
F_bk3
=
self
.
F_tile
.
F_bk3
,
F_bk4
=
self
.
F_tile
.
F_bk4
,
F_bhdq
=
self
.
F_tile
.
F_bhdq
,
F_bhdv
=
self
.
F_tile
.
F_bhdv
,
F_rm0
=
self
.
F_tile
.
F_rm0
,
F_rn0
=
self
.
F_tile
.
F_rn0
,
F_rk0
=
self
.
F_tile
.
F_rk0
,
F_rm1
=
self
.
F_tile
.
F_rm1
,
F_rn1
=
self
.
F_tile
.
F_rn1
,
F_rk1
=
self
.
F_tile
.
F_rk1
,
F_rm2
=
self
.
F_tile
.
F_rm2
,
F_rn2
=
self
.
F_tile
.
F_rn2
,
F_rk2
=
self
.
F_tile
.
F_rk2
,
F_wm
=
self
.
F_tile
.
F_wm
,
F_wn
=
self
.
F_tile
.
F_wn
,
F_wk
=
self
.
F_tile
.
F_wk
,
F_spad
=
BOOL_MAP
[
self
.
F_spad
],
F_skpad
=
BOOL_MAP
[
self
.
F_skpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_dpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_dvpad
],
F_bias
=
BIAS_MAP
[
self
.
F_bias
],
F_dbias
=
BOOL_MAP
[
self
.
F_dbias
],
F_dropout
=
BOOL_MAP
[
self
.
F_dropout
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
self
.
F_mask
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_tile
.
F_bm0
,
F_bn0
=
self
.
F_tile
.
F_bn0
,
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk2
=
self
.
F_tile
.
F_bk2
,
F_bk3
=
self
.
F_tile
.
F_bk3
,
F_bk4
=
self
.
F_tile
.
F_bk4
,
F_bhdq
=
self
.
F_tile
.
F_bhdq
,
F_bhdv
=
self
.
F_tile
.
F_bhdv
,
F_rm0
=
self
.
F_tile
.
F_rm0
,
F_rn0
=
self
.
F_tile
.
F_rn0
,
F_rk0
=
self
.
F_tile
.
F_rk0
,
F_rm1
=
self
.
F_tile
.
F_rm1
,
F_rn1
=
self
.
F_tile
.
F_rn1
,
F_rk1
=
self
.
F_tile
.
F_rk1
,
F_rm2
=
self
.
F_tile
.
F_rm2
,
F_rn2
=
self
.
F_tile
.
F_rn2
,
F_rk2
=
self
.
F_tile
.
F_rk2
,
F_wm0
=
self
.
F_tile
.
F_wm0
,
F_wn0
=
self
.
F_tile
.
F_wn0
,
F_wk0
=
self
.
F_tile
.
F_wk0
,
F_wm1
=
self
.
F_tile
.
F_wm1
,
F_wn1
=
self
.
F_tile
.
F_wn1
,
F_wk1
=
self
.
F_tile
.
F_wk1
,
F_spad
=
BOOL_MAP
[
self
.
F_spad
],
F_skpad
=
BOOL_MAP
[
self
.
F_skpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_dpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_dvpad
],
F_bias
=
BIAS_MAP
[
self
.
F_bias
],
F_dbias
=
BOOL_MAP
[
self
.
F_dbias
],
F_dropout
=
DROPOUT_MAP
[
self
.
F_dropout
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
self
.
F_mask
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_deterministic
=
BOOL_MAP
[
self
.
F_deterministic
],
F_pipeline_enum
=
BWD_DQDKDV_PIPELINE_ENUM_MAP
[
self
.
F_pipeline
],
F_pipeline
=
BWD_DQDKDV_PIPELINE_MAP
[
self
.
F_pipeline
])
F_pipeline
=
BWD_DQDKDV_PIPELINE_MAP
[
self
.
F_pipeline
])
@
property
def
name
(
self
)
->
str
:
...
...
@@ -382,7 +410,7 @@ class FmhaBwdDQDKDVKernel:
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
"fmha_bwd_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_"
+
self
.
F_tile
.
name
n
=
f
"fmha_bwd_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_"
+
self
.
F_tile
.
name
+
f
'_
{
self
.
F_pipeline
}
'
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
if
self
.
F_bias
!=
'no'
:
n
+=
f
'_
{
self
.
F_bias
}
'
if
self
.
F_dbias
==
't'
:
n
+=
'_dbias'
...
...
@@ -390,7 +418,8 @@ class FmhaBwdDQDKDVKernel:
if
self
.
F_mask
==
's_mask'
:
n
+=
f
'_mask'
else
:
if
self
.
F_mask
!=
'no'
:
n
+=
f
'_m
{
self
.
F_mask
[
0
]
}
'
if
self
.
F_dropout
==
't'
:
n
+=
'_dropout'
if
self
.
F_dropout
!=
'no'
:
n
+=
f
'_
{
self
.
F_dropout
}
'
if
self
.
F_deterministic
==
't'
:
n
+=
'_deterministic'
return
n
@
property
...
...
@@ -413,19 +442,23 @@ class FmhaBwdDQDKDVKernel:
spad
=
self
.
F_spad
,
skpad
=
self
.
F_skpad
,
dpad
=
self
.
F_dpad
,
dvpad
=
self
.
F_dvpad
)
dvpad
=
self
.
F_dvpad
,
deterministic
=
self
.
F_deterministic
)
# TODO: design a more practical way to do it
# this is current supported tile size & pipeline.
def
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
dtype
:
str
)
->
Optional
[
dict
]:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
[
FmhaBwdDQDKDVTileSize
(
128
,
128
,
32
,
32
,
32
,
32
,
32
,
32
,
32
,
1
,
4
,
1
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
16
,
1
),
"qs_ks_vr_dos"
],
'64'
:
[
FmhaBwdDQDKDVTileSize
(
64
,
128
,
32
,
32
,
32
,
32
,
32
,
64
,
64
,
1
,
4
,
1
,
4
,
1
,
1
,
2
,
2
,
1
,
32
,
32
,
16
,
1
),
"qs_ks_vr_dos"
],
'128'
:
[
FmhaBwdDQDKDVTileSize
(
64
,
128
,
32
,
32
,
32
,
32
,
32
,
128
,
128
,
1
,
4
,
1
,
4
,
1
,
1
,
2
,
2
,
1
,
32
,
32
,
16
,
1
),
"ks_vr"
]
'32'
:
[
FmhaBwdDQDKDVTileSize
(
32
,
128
,
32
,
32
,
32
,
32
,
64
,
32
,
32
,
1
,
4
,
1
,
4
,
1
,
1
,
2
,
2
,
1
,
16
,
16
,
32
,
16
,
16
,
16
,
1
),
"kr_ktr_vr_iglp"
,
"kr_ktr_vr"
],
'64'
:
[
FmhaBwdDQDKDVTileSize
(
32
,
128
,
64
,
32
,
64
,
32
,
32
,
64
,
64
,
1
,
4
,
1
,
4
,
1
,
1
,
1
,
4
,
1
,
16
,
16
,
32
,
16
,
16
,
16
,
1
),
"kr_ktr_vr_iglp"
,
"kr_ktr_vr"
],
'128'
:
[
FmhaBwdDQDKDVTileSize
(
16
,
128
,
128
,
16
,
128
,
16
,
32
,
128
,
128
,
1
,
4
,
1
,
4
,
1
,
1
,
1
,
4
,
1
,
16
,
16
,
32
,
16
,
16
,
16
,
1
),
"kr_ktr_vr_iglp"
,
"kr_ktr_vr"
],
'256'
:
[
FmhaBwdDQDKDVTileSize
(
16
,
64
,
256
,
16
,
256
,
16
,
32
,
256
,
256
,
1
,
4
,
1
,
4
,
1
,
1
,
1
,
4
,
1
,
16
,
16
,
32
,
16
,
16
,
16
,
1
),
"kr_ktr_vr_iglp"
,
"kr_ktr_vr"
]
}
else
:
return
None
...
...
@@ -440,7 +473,7 @@ def get_bwd_dq_dk_dv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
d
=
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
dtype
)
if
d
==
None
:
continue
for
hdim_str
,
mode
,
mask
,
bias
,
dbias
,
dropout
,
spad
,
skpad
,
dpad
,
dvpad
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
(),
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
for
hdim_str
,
mode
,
mask
,
bias
,
dbias
,
dropout
,
spad
,
skpad
,
dpad
,
dvpad
,
deterministic
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
(),
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
],
DROPOUT_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
tile
=
d
[
hdim_str
][
0
]
ppl
=
d
[
hdim_str
][
1
]
hdim
=
int
(
hdim_str
)
...
...
@@ -448,16 +481,29 @@ def get_bwd_dq_dk_dv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
continue
if
((
bias
==
"no"
or
bias
==
"alibi"
)
and
dbias
==
"t"
):
continue
if
(
"wg32"
in
dropout
):
continue
if
(
dpad
==
"t"
or
dvpad
==
"t"
):
ppl
=
d
[
hdim_str
][
2
]
k
=
FmhaBwdDQDKDVKernel
(
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_tile
=
tile
,
F_spad
=
spad
,
F_skpad
=
skpad
,
F_dpad
=
dpad
,
F_dvpad
=
dvpad
,
F_bias
=
bias
,
F_dbias
=
dbias
,
F_dropout
=
dropout
,
F_mask
=
mask
,
F_mode
=
mode
,
F_pipeline
=
ppl
,
mask_impl
=
mask_impl
)
F_pipeline
=
ppl
,
mask_impl
=
mask_impl
,
F_deterministic
=
deterministic
)
if
kernel_filter
!=
None
:
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
continue
if
receipt
==
2
:
cond
=
dtype
in
[
'fp16'
,
'bf16'
]
cond
&=
bias
in
[
'no'
,
'alibi'
]
cond
&=
dropout
in
[
'no'
,
'dropout_wg32'
,
'dropout_wg16'
]
cond
&=
dpad
==
dvpad
if
not
cond
:
continue
if
receipt
==
3
:
cond
=
dtype
in
[
'fp16'
,
'bf16'
]
cond
&=
bias
in
[
'no'
,
'alibi'
]
cond
&=
dpad
==
dvpad
cond
&=
deterministic
==
"f"
if
not
cond
:
continue
api_pool
.
register_dq_dk_dv_traits
(
k
.
api_trait
())
...
...
@@ -468,53 +514,54 @@ def get_bwd_dq_dk_dv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
FMHA_BWD_DOT_DO_O_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_bwd_dot_do_o_trait_{F_idx} = ck_tile::TileFmhaBwdOGradDotOTraits<{F_spad},
{F_dvpad},
{F_occupancy}>;
using fmha_bwd_dot_do_o_trait_{F_idx} =
ck_tile::TileFmhaBwdOGradDotOTraits<{F_spad}, {F_dvpad}, {F_occupancy}>;
using fmha_bwd_dot_do_o_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdOGradDotOPipelineProblem<
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::OGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::DDataType,
/* BlockSize = */
25
6,
/* BlockSize = */ 6
4
,
{F_hdim},
{F_mode},
fmha_bwd_dot_do_o_trait_{F_idx}>;
using fmha_bwd_dot_do_o_{F_idx} =
typename ck_tile::BlockFmhaBwdOGradDotO<
fmha_bwd_dot_do_o_pipeline_problem_{F_idx}>;
using fmha_bwd_dot_do_o_{F_idx} =
typename ck_tile::BlockFmhaBwdOGradDotO<
fmha_bwd_dot_do_o_pipeline_problem_{F_idx}>;
using fmha_bwd_dot_do_o_kernel_{F_idx} =
ck_tile::FmhaBwdOGradDotOKernel<ck_tile::FmhaBwdOGradDotOTilePartitioner</* BlockSize = */ 256>,
fmha_bwd_dot_do_o_{F_idx}>;
ck_tile::FmhaBwdOGradDotOKernel<fmha_bwd_dot_do_o_{F_idx}>;
using dot_do_o_trait_{F_idx} = fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad}, {F_dvpad}>;
using dot_do_o_trait_{F_idx} =
fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad}, {F_dvpad}>;
#include <iostream>
template<>
template
<>
float fmha_bwd_dot_do_o_<dot_do_o_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
auto [kargs, grids]
= fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks
= k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
return ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
template<>
template
<>
void fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
auto [kargs, grids] = fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
using k_
= fmha_bwd_dot_do_o_kernel_{F_idx};
auto [kargs, grids]
= fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks
= k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(
ck_tile::stream_config{{s.stream_id_}});
}}
template<>
template
<>
std::string fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_{F_idx}>()
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
...
...
@@ -584,12 +631,150 @@ def get_bwd_dot_do_o_blobs() -> List[FmhaBwdOGradDotOKernel]:
return
gen
FMHA_BWD_CONVERT_DQ_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_bwd_convert_dq_trait_{F_idx} =
ck_tile::TileFmhaBwdConvertQGradTraits<{F_spad}, {F_dpad}, {F_occupancy}>;
using fmha_bwd_convert_dq_pipeline_problem_{F_idx} =
ck_tile::BlockFmhaBwdConvertQGradPipelineProblem<
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::AccDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::QGradDataType,
/* BlockSize = */ 256,
{F_bm0},
{F_bn0},
{F_hdim},
{F_mode},
{F_deterministic},
fmha_bwd_convert_dq_trait_{F_idx}>;
using fmha_bwd_convert_dq_{F_idx} =
typename ck_tile::BlockFmhaBwdConvertQGrad<fmha_bwd_convert_dq_pipeline_problem_{F_idx}>;
using fmha_bwd_convert_dq_kernel_{F_idx} =
ck_tile::FmhaBwdConvertQGradKernel<fmha_bwd_convert_dq_{F_idx}>;
using convert_dq_trait_{F_idx} = fmha_bwd_convert_dq_traits_<{F_hdim},
{F_dtype},
{F_mode},
{F_spad},
{F_dpad},
{F_deterministic}>;
#include <iostream>
template <>
float fmha_bwd_convert_dq_<convert_dq_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_convert_dq_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_bwd_convert_dq_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
template <>
void fmha_bwd_convert_dq_oneshot_<convert_dq_trait_{F_idx}>(const ck_tile::stream_config& s,
fmha_bwd_args a)
{{
using k_ = fmha_bwd_convert_dq_kernel_{F_idx};
auto [kargs, grids] = fmha_bwd_convert_dq_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(
ck_tile::stream_config{{s.stream_id_}});
}}
template <>
std::string fmha_bwd_convert_dq_get_name_<convert_dq_trait_{F_idx}>()
{{
using k_ = fmha_bwd_convert_dq_kernel_{F_idx};
return k_::GetName();
}}
"""
@
dataclass
class
FmhaBwdConvertQGradKernel
:
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_bm0
:
int
# tile size along q seqlen (block size)
F_bn0
:
int
# tile size along k seqlen
F_spad
:
str
# true/false
F_dpad
:
str
#
F_mode
:
str
# value from MODE_MAP
F_occupancy
:
int
#
F_deterministic
:
str
#
@
property
def
template
(
self
)
->
str
:
return
FMHA_BWD_KERNEL_HEADER
+
\
FMHA_BWD_CONVERT_DQ_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_bm0
,
F_bn0
=
self
.
F_bn0
,
F_spad
=
BOOL_MAP
[
self
.
F_spad
],
F_dpad
=
BOOL_MAP
[
self
.
F_dpad
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_occupancy
=
self
.
F_occupancy
,
F_deterministic
=
BOOL_MAP
[
self
.
F_deterministic
])
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_dpad
==
't'
:
n
+=
'd'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
"fmha_bwd_convert_dq_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_b
{
self
.
F_bm0
}
x
{
self
.
F_bn0
}
_
{
self
.
F_mode
}
_o
{
self
.
F_occupancy
}
"
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
if
self
.
F_deterministic
==
't'
:
n
+=
f
'_deterministic'
return
n
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
get_bwd_convert_dq_blobs
()
->
List
[
FmhaBwdConvertQGradKernel
]:
# TODO: we don't support tuning yet, so pick up one value for pad/occupancy
# support this in future
def
get_occupancy
(
dtype
,
hdim
):
return
2
gen
=
list
()
for
dtype
in
DTYPE_MAP
.
keys
():
d
=
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
dtype
)
if
d
==
None
:
continue
for
hdim_str
,
mode
,
spad
,
dpad
,
deterministic
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
hdim
=
int
(
hdim_str
)
tile
=
d
[
hdim_str
][
0
]
if
(
mode
==
"group"
and
spad
==
"f"
):
continue
k
=
FmhaBwdConvertQGradKernel
(
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_bm0
=
64
,
F_bn0
=
tile
.
F_bn0
,
F_spad
=
spad
,
F_dpad
=
dpad
,
F_mode
=
mode
,
F_occupancy
=
get_occupancy
(
dtype
,
hdim
),
F_deterministic
=
deterministic
)
gen
.
append
(
k
)
return
gen
def
write_single_bwd_dq_dk_dv_kernel
(
kernel
:
FmhaBwdDQDKDVKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_single_bwd_dot_do_o_kernel
(
kernel
:
FmhaBwdOGradDotOKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_single_bwd_convert_dq_kernel
(
kernel
:
FmhaBwdConvertQGradKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_bwd_api
(
api_pool
:
FmhaBwdApiPool
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
FMHA_BWD_API_FILENAME
).
write_text
(
api_pool
.
api
)
...
...
@@ -597,6 +782,9 @@ def write_blobs(output_dir : Path, kernel_filter : Optional[str], receipt, mask_
kernels
=
get_bwd_dot_do_o_blobs
()
for
kernel
in
kernels
:
write_single_bwd_dot_do_o_kernel
(
kernel
,
output_dir
)
kernels
=
get_bwd_convert_dq_blobs
()
for
kernel
in
kernels
:
write_single_bwd_convert_dq_kernel
(
kernel
,
output_dir
)
api_pool
,
kernels
=
get_bwd_dq_dk_dv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
write_single_bwd_dq_dk_dv_kernel
(
kernel
,
output_dir
)
...
...
@@ -605,6 +793,9 @@ def write_blobs(output_dir : Path, kernel_filter : Optional[str], receipt, mask_
def
list_blobs
(
file_path
:
Path
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
with
file_path
.
open
(
'a'
)
as
f
:
kernels
=
get_bwd_dot_do_o_blobs
()
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
kernels
=
get_bwd_convert_dq_blobs
()
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
_
,
kernels
=
get_bwd_dq_dk_dv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
...
...
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
View file @
f6ceef78
...
...
@@ -428,11 +428,18 @@ def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[Fm
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
else
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
if
receipt
==
1
:
if
bias
==
"bias"
:
# TODO: rocm 6.2 compiler problem if using qr_async for bias case
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
else
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
if
receipt
==
1
and
bias
!=
"bias"
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
# TODO: cover arbitraty hdim
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
# TODO: cover arbitraty hdim
elif
dtype
in
[
'fp8'
,
'bf8'
]:
...
...
example/ck_tile/01_fmha/fmha_bwd.cpp
View file @
f6ceef78
...
...
@@ -87,7 +87,11 @@ auto create_args(int argc, char* argv[])
.
insert
(
"drop_offset"
,
"0"
,
"offset for random number generator"
)
.
insert
(
"timer"
,
"gpu"
,
"gpu:gpu timer, cpu:cpu timer"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
)
.
insert
(
"deterministic"
,
"0"
,
"if set to 1 will use multi-buffer reduction strategy for dq, atomic opeartion "
"will not be used"
);
bool
result
=
arg_parser
.
parse
(
argc
,
argv
);
return
std
::
make_tuple
(
result
,
arg_parser
);
...
...
@@ -128,11 +132,6 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile
::
index_t
hdim_v
=
arg_parser
.
get_int
(
"d_v"
);
if
(
hdim_v
<
0
)
hdim_v
=
hdim_q
;
if
(
hdim_q
%
2
!=
0
||
hdim_v
%
2
!=
0
)
{
std
::
cerr
<<
"FMHA Bwd kernel currently only supports even headdim"
<<
std
::
endl
;
return
false
;
}
bool
i_perm
=
arg_parser
.
get_bool
(
"iperm"
);
// if true, will be batch * nhead * seqlen * hdim
bool
o_perm
=
arg_parser
.
get_bool
(
"operm"
);
// if false, will be batch * seqlen * nhead * hdim
...
...
@@ -177,9 +176,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
seed
.
reset
();
}
int
stream_warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
stream_repeat
=
arg_parser
.
get_int
(
"repeat"
);
bool
kname
=
arg_parser
.
get_bool
(
"kname"
);
int
stream_warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
stream_repeat
=
arg_parser
.
get_int
(
"repeat"
);
bool
kname
=
arg_parser
.
get_bool
(
"kname"
);
bool
deterministic
=
arg_parser
.
get_bool
(
"deterministic"
);
ck_tile
::
stream_config
stream_config
{
nullptr
,
true
,
...
...
@@ -265,6 +265,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
(
mode
==
mode_enum
::
batch
?
seqlen_q
:
seqstart_q_host
.
back
());
const
ck_tile
::
index_t
shape_seqlen_k
=
(
mode
==
mode_enum
::
batch
?
seqlen_k
:
seqstart_k_host
.
back
());
const
ck_tile
::
index_t
kN0
=
(
hdim_q
<=
128
)
?
128
:
64
;
const
ck_tile
::
index_t
nsplits
=
deterministic
?
ck_tile
::
integer_divide_ceil
(
max_seqlen_k
,
kN0
)
:
1
;
ck_tile
::
HostTensor
<
QDataType
>
q_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_q
));
...
...
@@ -284,9 +287,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max
_seqlen_q
});
std
::
array
<
ck_tile
::
index_t
,
3
>
{
shape_
batch
,
nhead
,
shape
_seqlen_q
});
ck_tile
::
HostTensor
<
DDataType
>
d_host
(
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max
_seqlen_q
});
std
::
array
<
ck_tile
::
index_t
,
3
>
{
shape_
batch
,
nhead
,
shape
_seqlen_q
});
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host
(
p_drop
>
0
?
get_lengths
(
true
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
...
...
@@ -302,6 +305,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
use_dbias
?
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
ck_tile
::
HostTensor
<
AccDataType
>
dq_acc_host
(
i_perm
?
std
::
array
<
ck_tile
::
index_t
,
5
>
{
nsplits
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_q
}
:
std
::
array
<
ck_tile
::
index_t
,
5
>
{
nsplits
,
shape_batch
,
shape_seqlen_q
,
nhead
,
hdim_q
});
if
(
init_method
==
0
)
{
...
...
@@ -362,6 +369,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dq_acc_buf
(
dq_acc_host
.
get_element_space_size_in_bytes
());
q_buf
.
ToDevice
(
q_host
.
data
());
k_buf
.
ToDevice
(
k_host
.
data
());
...
...
@@ -387,8 +395,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
std
::
cout
<<
"["
<<
prec
<<
"|"
<<
mode
<<
"|"
<<
io_layout
(
i_perm
,
o_perm
)
<<
"] b:"
<<
batch
<<
", h:"
<<
nhead
<<
"/"
<<
nhead_k
<<
", s:"
<<
seqlen_q
<<
"/"
<<
seqlen_k
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale:"
<<
scale
<<
", bias:"
<<
bias
<<
", dbias:"
<<
use_dbias
<<
", p_drop:"
<<
p_drop
<<
", mask:"
<<
mask
<<
std
::
flush
;
<<
", dbias:"
<<
use_dbias
<<
", p_drop:"
<<
p_drop
<<
", s_randval:"
<<
s_randval
<<
", deterministic:"
<<
deterministic
<<
", mask:"
<<
mask
<<
std
::
flush
;
std
::
size_t
workspace_size
=
dq_acc_host
.
get_element_space_size_in_bytes
()
*
sizeof
(
AccDataType
)
/
(
1024
*
1024
);
if
(
deterministic
==
1
)
{
std
::
cout
<<
"
\n
Deterministic mode ON: "
<<
workspace_size
<<
" MByte memory workspace allocated"
<<
std
::
endl
;
}
auto
fmha_traits
=
fmha_bwd_traits
{
hdim_q
,
hdim_v
,
...
...
@@ -397,7 +414,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
mask
.
type
,
bias
.
type
,
use_dbias
,
p_drop
>
0.0
f
};
p_drop
>
0.0
f
,
s_randval
,
deterministic
};
auto
fmha_args
=
[
&
]()
{
assert
(
nhead
%
nhead_k
==
0
);
/// NOTE: we broadcast bias from [1, 1, seqlen_q, seqlen_k] to [batch, nhead, seqlen_q,
...
...
@@ -422,7 +441,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_randval
=
(
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_do
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_lsed
=
max
_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_lsed
=
shape
_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_dbias
=
(
i_perm
?
shape_seqlen_q
*
max_seqlen_k
:
max_seqlen_k
);
// setup batch_stride_* arguments
...
...
@@ -433,10 +452,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_randval
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_do
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_lsed
=
(
nhead
*
max
_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_lsed
=
(
nhead
*
shape
_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_dk
=
(
nhead
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_dv
=
(
nhead
*
shape_seqlen_k
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_dbias
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
split_stride_dq_acc
=
(
shape_batch
*
nhead
*
shape_seqlen_q
*
hdim_q
);
return
fmha_bwd_args
{
q_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
...
...
@@ -452,6 +473,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
dk_buf
.
GetDeviceBuffer
(),
dv_buf
.
GetDeviceBuffer
(),
dbias_buf
.
GetDeviceBuffer
(),
dq_acc_buf
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
seqstart_k
.
GetDeviceBuffer
(),
nullptr
,
...
...
@@ -473,6 +495,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
stride_o
,
stride_randval
,
stride_do
,
stride_q
,
// stride_dq_acc
stride_q
,
// stride_dq
stride_dk
,
stride_dv
,
stride_dbias
,
...
...
@@ -484,6 +508,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
nhead_stride_randval
,
nhead_stride_do
,
nhead_stride_lsed
,
nhead_stride_q
,
// nhead_stride_dq_acc
nhead_stride_q
,
// nhead_stride_dq
nhead_stride_k
,
// nhead_stride_dk
nhead_stride_v
,
// nhead_stride_dv
nhead_stride_dbias
,
batch_stride_q
,
batch_stride_k
,
...
...
@@ -493,15 +521,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
batch_stride_randval
,
batch_stride_do
,
batch_stride_lsed
,
batch_stride_q
,
// batch_stride_dq_acc
batch_stride_q
,
// batch_stride_dq
batch_stride_dk
,
batch_stride_dv
,
batch_stride_dbias
,
split_stride_dq_acc
,
mask
.
left
,
mask
.
right
,
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
),
p_drop
,
p_undrop
,
s_randval
,
{
drop_seed
,
drop_offset
}};
}();
...
...
@@ -719,7 +749,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
if
(
o_perm
)
o_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
o_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
])
=
self
(
idx
);
});
else
o_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
o_host
(
b
,
idx
[
1
]
+
query_offset
,
idx
[
0
],
idx
[
2
])
=
self
(
idx
);
});
lse_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
lse_host
(
w
b
,
idx
[
0
],
idx
[
1
])
=
self
(
idx
);
});
lse_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
lse_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
)
=
self
(
idx
);
});
// clang-format on
q_host_refs
.
push_back
(
q_host_ref
);
...
...
@@ -738,6 +768,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
lse_buf
.
ToDevice
(
lse_host
.
data
());
dq_buf
.
SetZero
();
dbias_buf
.
SetZero
();
dq_acc_buf
.
SetZero
();
ck_tile
::
stream_config
stream_config_v
{
nullptr
,
true
,
0
,
0
,
1
,
arg_parser
.
get_str
(
"timer"
)
==
std
::
string
(
"gpu"
)};
...
...
example/ck_tile/01_fmha/fmha_bwd.hpp
View file @
f6ceef78
...
...
@@ -77,6 +77,7 @@ struct fmha_bwd_args
void
*
dk_ptr
;
void
*
dv_ptr
;
void
*
dbias_ptr
;
void
*
dq_acc_ptr
;
const
void
*
seqstart_q_ptr
;
const
void
*
seqstart_k_ptr
;
const
void
*
seqlen_k_ptr
;
...
...
@@ -97,6 +98,8 @@ struct fmha_bwd_args
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
stride_randval
;
ck_tile
::
index_t
stride_do
;
ck_tile
::
index_t
stride_dq_acc
;
ck_tile
::
index_t
stride_dq
;
ck_tile
::
index_t
stride_dk
;
ck_tile
::
index_t
stride_dv
;
ck_tile
::
index_t
stride_dbias
;
...
...
@@ -108,6 +111,10 @@ struct fmha_bwd_args
ck_tile
::
index_t
nhead_stride_randval
;
ck_tile
::
index_t
nhead_stride_do
;
ck_tile
::
index_t
nhead_stride_lsed
;
ck_tile
::
index_t
nhead_stride_dq_acc
;
ck_tile
::
index_t
nhead_stride_dq
;
ck_tile
::
index_t
nhead_stride_dk
;
ck_tile
::
index_t
nhead_stride_dv
;
ck_tile
::
index_t
nhead_stride_dbias
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_k
;
...
...
@@ -117,15 +124,17 @@ struct fmha_bwd_args
ck_tile
::
index_t
batch_stride_randval
;
ck_tile
::
index_t
batch_stride_do
;
ck_tile
::
index_t
batch_stride_lsed
;
ck_tile
::
index_t
batch_stride_dq_acc
;
ck_tile
::
index_t
batch_stride_dq
;
ck_tile
::
index_t
batch_stride_dk
;
ck_tile
::
index_t
batch_stride_dv
;
ck_tile
::
index_t
batch_stride_dbias
;
ck_tile
::
index_t
split_stride_dq_acc
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
mask_type
;
float
p_drop
;
float
p_undrop
;
bool
s_randval
;
std
::
tuple
<
uint64_t
,
uint64_t
>
drop_seed_offset
;
};
...
...
@@ -145,10 +154,10 @@ auto fmha_bwd_dq_dk_dv_create_kargs_and_grids(fmha_bwd_args args)
args
.
do_ptr
,
args
.
d_ptr
,
args
.
rand_val_ptr
,
args
.
dq_ptr
,
args
.
dk_ptr
,
args
.
dv_ptr
,
args
.
dbias_ptr
,
args
.
dq_acc_ptr
,
args
.
seqstart_q_ptr
,
args
.
seqstart_k_ptr
,
args
.
seqlen_k_ptr
,
...
...
@@ -163,6 +172,7 @@ auto fmha_bwd_dq_dk_dv_create_kargs_and_grids(fmha_bwd_args args)
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_do
,
args
.
stride_dq_acc
,
args
.
stride_dk
,
args
.
stride_dv
,
args
.
stride_dbias
,
...
...
@@ -173,13 +183,15 @@ auto fmha_bwd_dq_dk_dv_create_kargs_and_grids(fmha_bwd_args args)
args
.
nhead_stride_randval
,
args
.
nhead_stride_do
,
args
.
nhead_stride_lsed
,
args
.
nhead_stride_dq_acc
,
args
.
nhead_stride_dk
,
args
.
nhead_stride_dv
,
args
.
nhead_stride_dbias
,
args
.
batch
_stride_
lsed
,
args
.
split
_stride_
dq_acc
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
else
...
...
@@ -192,10 +204,10 @@ auto fmha_bwd_dq_dk_dv_create_kargs_and_grids(fmha_bwd_args args)
args
.
do_ptr
,
args
.
d_ptr
,
args
.
rand_val_ptr
,
args
.
dq_ptr
,
args
.
dk_ptr
,
args
.
dv_ptr
,
args
.
dbias_ptr
,
args
.
dq_acc_ptr
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
hdim_q
,
...
...
@@ -209,6 +221,7 @@ auto fmha_bwd_dq_dk_dv_create_kargs_and_grids(fmha_bwd_args args)
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_do
,
args
.
stride_dq_acc
,
args
.
stride_dk
,
args
.
stride_dv
,
args
.
stride_dbias
,
...
...
@@ -219,6 +232,9 @@ auto fmha_bwd_dq_dk_dv_create_kargs_and_grids(fmha_bwd_args args)
args
.
nhead_stride_randval
,
args
.
nhead_stride_do
,
args
.
nhead_stride_lsed
,
args
.
nhead_stride_dq_acc
,
args
.
nhead_stride_dk
,
args
.
nhead_stride_dv
,
args
.
nhead_stride_dbias
,
args
.
batch_stride_q
,
args
.
batch_stride_k
,
...
...
@@ -227,14 +243,15 @@ auto fmha_bwd_dq_dk_dv_create_kargs_and_grids(fmha_bwd_args args)
args
.
batch_stride_randval
,
args
.
batch_stride_do
,
args
.
batch_stride_lsed
,
args
.
batch_stride_dq_acc
,
args
.
batch_stride_dk
,
args
.
batch_stride_dv
,
args
.
batch_stride_dbias
,
args
.
split_stride_dq_acc
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}();
...
...
@@ -260,8 +277,7 @@ auto fmha_bwd_dot_do_o_create_kargs_and_grids(fmha_bwd_args args)
args
.
stride_o
,
args
.
nhead_stride_do
,
args
.
nhead_stride_o
,
args
.
nhead_stride_lsed
,
args
.
batch_stride_lsed
);
args
.
nhead_stride_lsed
);
}
else
{
// create batch mode kernel arguments
...
...
@@ -286,19 +302,59 @@ auto fmha_bwd_dot_do_o_create_kargs_and_grids(fmha_bwd_args args)
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
template
<
typename
FmhaBwdConvertQGradKernel
>
auto
fmha_bwd_convert_dq_create_kargs_and_grids
(
fmha_bwd_args
args
)
{
auto
kargs
=
[
&
]
{
// create group mode kernel arguments
if
constexpr
(
FmhaBwdConvertQGradKernel
::
kIsGroupMode
)
{
return
FmhaBwdConvertQGradKernel
::
MakeKargs
(
args
.
dq_acc_ptr
,
args
.
dq_ptr
,
args
.
seqstart_q_ptr
,
args
.
seqstart_k_ptr
,
args
.
hdim_q
,
args
.
stride_dq
,
args
.
stride_dq_acc
,
args
.
nhead_stride_dq
,
args
.
nhead_stride_dq_acc
,
args
.
split_stride_dq_acc
);
}
else
{
// create batch mode kernel arguments
return
FmhaBwdConvertQGradKernel
::
MakeKargs
(
args
.
dq_acc_ptr
,
args
.
dq_ptr
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
hdim_q
,
args
.
stride_dq
,
args
.
stride_dq_acc
,
args
.
nhead_stride_dq
,
args
.
nhead_stride_dq_acc
,
args
.
batch_stride_dq
,
args
.
batch_stride_dq_acc
,
args
.
split_stride_dq_acc
);
}
}();
dim3
grids
=
FmhaBwdConvertQGradKernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_q
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
ck_tile
::
BlockFmhaBwdPipelineEnum
FmhaBwdPipelineEnum_
,
typename
FmhaMask_
,
typename
FmhaDropout_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
bool
kHasBiasGrad_
,
bool
kHasDropout_
,
bool
kPadS_
,
bool
kPadSK_
,
bool
kPadD_
,
bool
kPadDv_
>
bool
kPadDv_
,
bool
kIsDeterministic_
>
struct
fmha_bwd_dq_dk_dv_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
...
...
@@ -306,13 +362,14 @@ struct fmha_bwd_dq_dk_dv_traits_
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
auto
FmhaBwdPipelineEnum
=
FmhaBwdPipelineEnum_
;
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
using
FmhaDropout
=
ck_tile
::
remove_cvref_t
<
FmhaDropout_
>
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
bool
kHasBiasGrad
=
kHasBiasGrad_
;
static
constexpr
bool
kHasDropout
=
kHasDropout_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
static
constexpr
bool
kPadD
=
kPadD_
;
static
constexpr
bool
kPadDv
=
kPadDv_
;
static
constexpr
bool
kIsDeterministic
=
kIsDeterministic_
;
};
template
<
typename
Traits_
>
...
...
@@ -343,6 +400,31 @@ void fmha_bwd_dot_do_o_oneshot_(const ck_tile::stream_config&, fmha_bwd_args);
template
<
typename
Traits_
>
std
::
string
fmha_bwd_dot_do_o_get_name_
();
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
bool
kPadS_
,
bool
kPadD_
,
bool
kIsDeterministic_
>
struct
fmha_bwd_convert_dq_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadD
=
kPadD_
;
static
constexpr
bool
kIsDeterministic
=
kIsDeterministic_
;
};
template
<
typename
Traits_
>
float
fmha_bwd_convert_dq_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
void
fmha_bwd_convert_dq_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_bwd_convert_dq_get_name_
();
// This is the public API, will be generated by script
struct
fmha_bwd_traits
{
...
...
@@ -354,6 +436,8 @@ struct fmha_bwd_traits
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bool
has_dbias
;
bool
has_dropout
;
bool
is_store_randval
;
bool
is_deterministic
;
// TODO: padding check is inside this api
};
float
fmha_bwd
(
fmha_bwd_traits
,
fmha_bwd_args
,
const
ck_tile
::
stream_config
&
);
example/ck_tile/01_fmha/fmha_fwd.cpp
View file @
f6ceef78
...
...
@@ -479,16 +479,18 @@ bool run(const ck_tile::ArgParser& arg_parser)
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
1
,
1
});
ck_tile
::
HostTensor
<
LSEDataType
>
lse_acc_host
(
1
<
num_splits
?
std
::
array
<
ck_tile
::
index_t
,
4
>
{
num_splits
,
batch
,
nhead
,
max_seqlen_q
}
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
1
<
num_splits
?
std
::
array
<
ck_tile
::
index_t
,
4
>
{
num_splits
,
shape_batch
,
nhead
,
shape_seqlen_q
}
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
ck_tile
::
HostTensor
<
OaccDataType
>
o_acc_host
(
1
<
num_splits
?
std
::
array
<
ck_tile
::
index_t
,
5
>
{
num_splits
,
batch
,
nhead
,
max_seqlen_q
,
hdim_v
}
:
std
::
array
<
ck_tile
::
index_t
,
5
>
{
1
,
1
,
1
,
1
,
1
});
// self define lse data layout as [batch, nhead, max_seqlen_q]
// batch mode of lse data layout is [batch, nhead, seqlen_q]
// group mode of lse data layout is [nhead, total_seqlen_q]
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
lse
?
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max
_seqlen_q
}
lse
?
std
::
array
<
ck_tile
::
index_t
,
3
>
{
shape_
batch
,
nhead
,
shape
_seqlen_q
}
:
std
::
array
<
ck_tile
::
index_t
,
3
>
{
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
...
...
@@ -669,8 +671,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
const
ck_tile
::
index_t
nhead_stride_bias
=
(
i_perm
?
0
*
shape_seqlen_q
*
shape_seqlen_k
:
0
*
shape_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_randval
=
(
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_lse
=
max
_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_lse_acc
=
max
_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_lse
=
shape
_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_lse_acc
=
shape
_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_o_acc
=
(
max_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
// setup batch_stride_* arguments
...
...
@@ -679,12 +681,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
hdim_v
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_bias
=
(
0
*
nhead
*
shape_seqlen_q
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_randval
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_lse
=
(
nhead
*
max
_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_lse_acc
=
(
nhead
*
max
_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_lse
=
(
nhead
*
shape
_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_lse_acc
=
(
nhead
*
shape
_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_o_acc
=
(
nhead
*
max_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
// setup split_stride_* arguments (only used in split-kv kernel)
const
ck_tile
::
index_t
split_stride_lse_acc
=
(
batch
*
nhead
*
max
_seqlen_q
);
const
ck_tile
::
index_t
split_stride_lse_acc
=
(
shape_
batch
*
nhead
*
shape
_seqlen_q
);
const
ck_tile
::
index_t
split_stride_o_acc
=
(
batch
*
nhead
*
max_seqlen_q
*
hdim_v
);
return
fmha_fwd_args
{
q_buf
.
GetDeviceBuffer
(),
...
...
@@ -996,8 +998,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
if
(
lse
)
{
ck_tile
::
HostTensor
<
SMPLComputeDataType
>
lse_host_result
({
nhead
,
real_seqlen_q
});
lse_host_result
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
lse_host
(
wb
,
idx
[
0
],
idx
[
1
]);
});
lse_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
lse_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
);
});
cur_pass
=
ck_tile
::
check_err
(
lse_host_result
,
lse_host_ref
,
...
...
example/ck_tile/01_fmha/fmha_fwd.hpp
View file @
f6ceef78
...
...
@@ -185,7 +185,6 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
batch_stride_lse
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
...
...
@@ -284,7 +283,6 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_args args)
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse_acc
,
args
.
nhead_stride_o_acc
,
args
.
batch_stride_lse_acc
,
args
.
batch_stride_o_acc
,
args
.
split_stride_lse_acc
,
args
.
split_stride_o_acc
,
...
...
@@ -376,9 +374,7 @@ auto fmha_fwd_splitkv_combine_create_kargs_and_grids(fmha_fwd_args args)
args
.
nhead_stride_o_acc
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
batch_stride_lse_acc
,
args
.
batch_stride_o_acc
,
args
.
batch_stride_lse
,
args
.
split_stride_lse_acc
,
args
.
split_stride_o_acc
);
}
...
...
example/ck_tile/01_fmha/script/run_full_test.sh
0 → 100755
View file @
f6ceef78
#!/bin/bash
#
# in order to run this script you'd first need to build the tile_example_fmha_fwd and tile_eaxmple_fmha_bwd executables in ../build/bin/
#
# run the script as "./run_full_test.sh <tag for your test environment> <branch name> <host name> <gpu_arch>
# input arguments:
# environment tag : a string describing the specifics of your test environment
# branch name : name of the branch in git repo (git status | grep -e 'On branch')
# host name : $hostname
# gpu architecture: e.g., gfx90a, or gfx942, etc.
#get the command line arguments:
export
env_type
=
$1
echo
'Environment type: '
$env_type
export
branch
=
$2
echo
'Branch name: '
$branch
export
host_name
=
$3
echo
'Host name: '
$host_name
export
GPU_arch
=
$4
echo
'GPU_arch: '
$GPU_arch
function
print_log_header
(){
rm
-f
$1
;
echo
'On branch '
$3
&>
$1
;
echo
'Node name: '
$4
>>
$1
;
#get GPU_arch and number of compute units from rocminfo
echo
-n
"GPU_arch: "
>>
$1
;
rocminfo |
grep
"Name:"
|
grep
"gfx"
>>
$1
;
rocminfo |
grep
"Compute Unit:"
>>
$1
;
hipcc
--version
|
grep
-e
'HIP version'
>>
$1
;
echo
'Environment type: '
$2
>>
$1
;
/opt/rocm/bin/amdclang++
--version
|
grep
-e
'InstalledDir'
>>
$1
;
}
#run verification tests
example/ck_tile/01_fmha/script/smoke_test_fwd.sh
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
#run performance benchmarks
export
fmha_fwd_log
=
"perf_fmha_fwd_
$GPU_arch
.log"
print_log_header
$fmha_fwd_log
$env_type
$branch
$host_name
example/ck_tile/01_fmha/script/benchmark_fwd.sh 2>&1 |
tee
-a
$fmha_fwd_log
export
fmha_bwd_log
=
"perf_fmha_bwd_
$GPU_arch
.log"
print_log_header
$fmha_bwd_log
$env_type
$branch
$host_name
example/ck_tile/01_fmha/script/benchmark_bwd.sh 2>&1 |
tee
-a
$fmha_bwd_log
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
View file @
f6ceef78
...
...
@@ -11,18 +11,19 @@ COMMON_ARGS='-v=1'
set
-x
for
prec
in
"fp16"
"bf16"
;
do
for
perm
in
0 1
;
do
for
hdim
in
32 64 128
;
do
for
hdim
in
32 64 128
256
;
do
for
mode
in
0 1
;
do
for
bias
in
"n"
"e"
"a"
;
do
for
dbias
in
0 1
;
do
for
p_drop
in
0.0 0.2
;
do
for
bias
in
"n"
"a"
;
do
for
dbias
in
0
;
do
for
p_drop
in
0.0 0.2
;
do
for
deterministic
in
0
;
do
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
2
-d
=
$hdim
-s
=
259
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
2
-d
=
$hdim
-s
=
516
-s_k
=
253
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
1
-d
=
$hdim
-s
=
500
-s_k
=
251
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
1
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
2
-d
=
$hdim
-s
=
900
-s_k
=
258
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
2
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
1
-d
=
$hdim
-s
=
987
-s_k
=
219
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
t:128,30
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
3
-h_k
=
1
-d
=
$hdim
-s
=
244
-s_k
=
499
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
b:4,35
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
2
-d
=
$hdim
-s
=
259
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-deterministic
=
$deterministic
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
2
-d
=
$hdim
-s
=
516
-s_k
=
253
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-deterministic
=
$deterministic
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
1
-d
=
$hdim
-s
=
500
-s_k
=
251
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
1
-deterministic
=
$deterministic
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
2
-d
=
$hdim
-s
=
900
-s_k
=
258
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
2
-v
=
1
-deterministic
=
$deterministic
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
1
-d
=
$hdim
-s
=
987
-s_k
=
219
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
t:128,30
-deterministic
=
$deterministic
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
3
-h_k
=
1
-d
=
$hdim
-s
=
244
-s_k
=
499
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
b:4,35
-deterministic
=
$deterministic
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
done
done
...
...
@@ -31,4 +32,5 @@ done
done
done
done
done
set
+x
include/ck/ck.hpp
View file @
f6ceef78
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -153,8 +153,8 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
// LDS direct loads using inline assembly
#define CK_USE_AMD_LDS_DIRECT_LOAD_INLINE_ASM 0
// set
stochastic rounding
as default for f8 conversions
#define CK_USE_SR_F8_CONVERSION
1
// set
rounding to nearest even
as default for f8 conversions
#define CK_USE_SR_F8_CONVERSION
0
// block synchronization only s_wait lgkmcnt(0), not vmcnt(0)
#define CK_EXPERIMENTAL_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM 1
...
...
include/ck/host_utility/device_prop.hpp
View file @
f6ceef78
...
...
@@ -65,6 +65,12 @@ inline bool is_lds_direct_load_supported()
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
;
}
inline
bool
is_bf16_atomic_supported
()
{
return
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
;
}
inline
bool
is_gfx101_supported
()
{
return
ck
::
get_device_name
()
==
"gfx1010"
||
ck
::
get_device_name
()
==
"gfx1011"
||
...
...
include/ck/host_utility/flush_cache.hpp
View file @
f6ceef78
...
...
@@ -14,6 +14,124 @@
namespace
ck
{
namespace
utility
{
template
<
typename
Argument
,
typename
DsDataType
>
struct
RotatingMemWrapperMultiD
{
static
constexpr
index_t
NumDs
=
DsDataType
::
Size
();
using
ADataType
=
decltype
(
Argument
::
p_a_grid
);
using
BDataType
=
decltype
(
Argument
::
p_b_grid
);
using
DsGridPointer
=
decltype
(
Argument
::
p_ds_grid
);
RotatingMemWrapperMultiD
()
=
delete
;
RotatingMemWrapperMultiD
(
Argument
&
arg_
,
std
::
size_t
rotating_count_
,
std
::
size_t
size_a_
,
std
::
size_t
size_b_
,
std
::
array
<
std
::
size_t
,
NumDs
>
size_ds_
)
:
arg
(
arg_
),
rotating_count
(
rotating_count_
),
size_a
(
size_a_
),
size_b
(
size_b_
),
size_ds
(
size_ds_
)
{
p_a_grids
.
push_back
(
arg
.
p_a_grid
);
p_b_grids
.
push_back
(
arg
.
p_b_grid
);
p_ds_grids
.
push_back
(
arg
.
p_ds_grid
);
for
(
size_t
i
=
1
;
i
<
rotating_count
;
i
++
)
{
{
void
*
pADeviceBuf
;
hip_check_error
(
hipMalloc
(
static_cast
<
void
**>
(
&
pADeviceBuf
),
size_a_
));
hip_check_error
(
hipMemcpy
(
static_cast
<
void
*>
(
pADeviceBuf
),
const_cast
<
void
*>
(
p_a_grids
[
0
]),
size_a_
,
hipMemcpyDeviceToDevice
));
p_a_grids
.
push_back
(
pADeviceBuf
);
}
{
void
*
pBDeviceBuf
;
hip_check_error
(
hipMalloc
(
static_cast
<
void
**>
(
&
pBDeviceBuf
),
size_b_
));
hip_check_error
(
hipMemcpy
(
static_cast
<
void
*>
(
pBDeviceBuf
),
const_cast
<
void
*>
(
p_b_grids
[
0
]),
size_b_
,
hipMemcpyDeviceToDevice
));
p_b_grids
.
push_back
(
pBDeviceBuf
);
}
{
DsGridPointer
ds_buffer
;
static_for
<
0
,
NumDs
,
1
>
{}([
&
](
auto
j
)
{
void
*
pDDeviceBuf
;
hip_check_error
(
hipMalloc
(
static_cast
<
void
**>
(
&
pDDeviceBuf
),
size_ds_
[
j
]));
hip_check_error
(
hipMemcpy
(
static_cast
<
void
*>
(
pDDeviceBuf
),
static_cast
<
const
void
*>
(
p_ds_grids
[
0
][
j
]),
size_ds_
[
j
],
hipMemcpyDeviceToDevice
));
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
ds_buffer
(
j
)
=
static_cast
<
const
DDataType
*>
(
pDDeviceBuf
);
});
p_ds_grids
.
push_back
(
ds_buffer
);
}
}
}
void
Next
()
{
if
(
rotating_count
>
1
)
{
std
::
size_t
idx
=
iter
++
%
rotating_count
;
arg
.
p_a_grid
=
reinterpret_cast
<
ADataType
>
(
p_a_grids
[
idx
]);
arg
.
p_b_grid
=
reinterpret_cast
<
BDataType
>
(
p_b_grids
[
idx
]);
arg
.
p_ds_grid
=
p_ds_grids
[
idx
];
}
}
void
Print
()
{
std
::
cout
<<
"RotatingMemWrapperMultiD: { size_a: "
<<
size_a
<<
", size_b: "
<<
size_b
<<
", rotating_count: "
<<
rotating_count
<<
"}"
<<
std
::
endl
;
}
~
RotatingMemWrapperMultiD
()
{
if
(
rotating_count
>
1
)
{
// restore ptr
arg
.
p_a_grid
=
reinterpret_cast
<
ADataType
>
(
p_a_grids
[
0
]);
arg
.
p_b_grid
=
reinterpret_cast
<
BDataType
>
(
p_b_grids
[
0
]);
arg
.
p_ds_grid
=
p_ds_grids
[
0
];
// free device mem
for
(
size_t
i
=
1
;
i
<
rotating_count
;
i
++
)
{
hip_check_error
(
hipFree
(
const_cast
<
void
*>
(
p_a_grids
[
i
])));
hip_check_error
(
hipFree
(
const_cast
<
void
*>
(
p_b_grids
[
i
])));
static_for
<
0
,
NumDs
,
1
>
{}([
&
](
auto
j
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
hip_check_error
(
hipFree
(
static_cast
<
void
*>
(
const_cast
<
DDataType
*>
(
p_ds_grids
[
i
][
j
]))));
});
}
}
}
private:
Argument
&
arg
;
std
::
size_t
iter
=
0
;
std
::
size_t
rotating_count
=
1
;
std
::
size_t
size_a
=
0
;
std
::
size_t
size_b
=
0
;
std
::
array
<
std
::
size_t
,
NumDs
>
size_ds
=
{
0
};
std
::
vector
<
const
void
*>
p_a_grids
;
std
::
vector
<
const
void
*>
p_b_grids
;
std
::
vector
<
DsGridPointer
>
p_ds_grids
;
};
template
<
typename
Argument
>
struct
RotatingMemWrapper
{
...
...
include/ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp
View file @
f6ceef78
...
...
@@ -53,6 +53,49 @@ struct DeviceGemmMultipleD : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
// GEMM:
// input : A[M, K], B[K, N],
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGemmMultipleDSplitK
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
ck
::
index_t
StrideE
,
ck
::
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
View file @
f6ceef78
...
...
@@ -126,6 +126,29 @@ struct DeviceGroupedConvFwdMultipleABD : public BaseOperator
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
APointers
p_a
,
BPointers
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
long_index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
long_index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
long_index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
long_index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
long_index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
long_index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
long_index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
long_index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
long_index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
long_index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
long_index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
long_index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
...
...
Prev
1
2
3
4
5
6
7
…
12
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment