Commit f64b1375 authored by coderfeli's avatar coderfeli
Browse files

merge haocong branch

parents 88412f9e f18cfec4
......@@ -722,9 +722,6 @@ CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;ROCM
pipeline {
agent none
triggers {
parameterizedCron(CRON_SETTINGS)
}
options {
parallelsAlwaysFailFast()
}
......
add_example_executable(example_gemm_multiply_multiply_xdl_fp8 gemm_multiply_multiply_xdl_fp8.cpp)
# target_compile_options(example_gemm_multiply_multiply_xdl_fp8 PRIVATE -mllvm -greedy-reverse-local-assignment=1 -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable(example_gemm_multiply_multiply_xdl_fp8_ab_scale gemm_multiply_multiply_xdl_fp8_ab_scale.cpp)
add_example_executable(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle gemm_multiply_multiply_xdl_fp8_bpreshuffle.cpp)
# target_compile_options(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle PRIVATE -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable(example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp)
add_example_executable(example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp)
add_example_executable(example_moe_gemm1 moe_gemm1.cpp)
......
......@@ -5,6 +5,7 @@
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v3.hpp"
namespace ck {
template <BlockGemmPipelineVersion BlkGemmPipelineVer,
......@@ -76,6 +77,30 @@ constexpr auto BlockGemmBPreshufflePipeline_Selector()
NRepeat,
KPack>{};
}
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
static_assert(MRepeat >= 4, "MRepeat should at least be 4 in BlockGemmPipelineVersion::v3");
return BlockwiseGemmXdlops_pipeline_bpreshuffle_v3<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
else
{
std::cerr << "BlockGemmPipeline configuration is not available" << std::endl;
......
......@@ -144,7 +144,7 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlockGemmPipelineScheduler::I
static constexpr index_t PrefetchStages = 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
static constexpr index_t GlobalBufferNum = 2;
template <typename TileDesc_M0_M1_M2_K>
__host__ __device__ static constexpr auto MakeAGemmMmaTileDescriptor(const TileDesc_M0_M1_M2_K&)
......@@ -249,7 +249,7 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlockGemmPipelineScheduler::I
constexpr auto b_block_origin_idx = make_tuple(I0, I0, I0, I0);
// Global prefetch A1 B1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
......@@ -258,12 +258,13 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlockGemmPipelineScheduler::I
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
__builtin_amdgcn_sched_barrier(0);
// // Local prefill A1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, I0);
// // Global prefetch A2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// Local prefetch A1
......@@ -296,13 +297,12 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlockGemmPipelineScheduler::I
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(local_read_buf));
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, mfma_reg_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, local_read_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// printf("bid %d tid %d %f %f\n", blockIdx.x, threadIdx.x,
......
......@@ -8,7 +8,7 @@
namespace ck {
// Compute optimized pipeline
// GlobalPrefetchStages: 2
// GlobalPrefetchStages: 3
// LocalPreFillStages: 2
// LocalPreFetchStages: 2
// LocalSharedMemoryBuffer: 2
......@@ -142,9 +142,9 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
using Base::AMmaKStride;
using Base::BMmaKStride;
static constexpr index_t PrefetchStages = 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
static constexpr index_t PrefetchStages = 3;
static constexpr index_t PrefillStages = 2;
static constexpr index_t GlobalBufferNum = 2;
template <typename TileDesc_M0_M1_M2_K>
__host__ __device__ static constexpr auto MakeAGemmMmaTileDescriptor(const TileDesc_M0_M1_M2_K&)
......@@ -183,80 +183,24 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
__device__ static constexpr auto HotLoopScheduler()
{
#if 0
// A/B split schedule
// compiler is likely to use ds_read2 when instruction width smaller than 16bytes
constexpr auto num_ds_read_inst_a =
HotLoopInstList::A_LDS_Read_Width * sizeof(ADataType) == 16
? HotLoopInstList::A_LDS_Read_Inst_Num
: HotLoopInstList::A_LDS_Read_Inst_Num / 2;
constexpr auto num_ds_write_inst_a = HotLoopInstList::A_LDS_Write_Inst_Num;
// constexpr auto num_ds_read_inst_a = HotLoopInstList::A_LDS_Read_Inst_Num;
constexpr auto num_buffer_load_inst_a = HotLoopInstList::A_Buffer_Load_Inst_Num;
constexpr auto num_buffer_load_inst_b = HotLoopInstList::B_Buffer_Load_Inst_Num;
constexpr auto num_mfma_inst = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto mfma_cycle = NPerXDL == 16 ? 16 : 32;
constexpr auto ds_read_a_issue_cycle =
HotLoopInstList::A_LDS_Read_Width * sizeof(ADataType) == 16 ? 8 : 4;
constexpr auto ds_read_a_mfma_rate =
(mfma_cycle - 4 + 2 * ds_read_a_issue_cycle - 1) / (2 * ds_read_a_issue_cycle);
constexpr auto num_dsread_a_mfma =
(num_ds_read_inst_a + ds_read_a_mfma_rate - 1) / ds_read_a_mfma_rate;
// stage 1
constexpr auto num_mfma_stage1 = num_mfma_inst - num_dsread_a_mfma;
constexpr auto num_mfma_per_issue =
num_mfma_stage1 / (num_buffer_load_inst_a + num_buffer_load_inst_b);
constexpr auto num_dswrite_per_issue_a = num_ds_write_inst_a / num_buffer_load_inst_a;
static_for<0, num_buffer_load_inst_a, 1>{}([&](auto i) {
// B global + A local
static_for<0, num_buffer_load_inst_b / 2, 1>{}([&](auto i) {
ignore = i;
static_for<0, num_dswrite_per_issue_a, 1>{}([&](auto idswrite) {
ignore = idswrite;
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(
0x008, num_mfma_per_issue - num_dswrite_per_issue_a, 0); // MFMA
});
static_for<0, num_buffer_load_inst_b, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(0x008, num_mfma_per_issue, 0); // MFMA
});
// stage 2
static_for<0, num_dsread_a_mfma, 1>{}([&](auto i) {
if constexpr((num_ds_read_inst_a - (i + 1) * ds_read_a_mfma_rate) >=
ds_read_a_mfma_rate)
{
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_a_mfma_rate, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(0x100,
num_ds_read_inst_a - (num_dsread_a_mfma - 1) *
ds_read_a_mfma_rate,
0); // DS read
}
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read B
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read A
});
#endif
constexpr auto num_ds_read_inst_a = HotLoopInstList::A_LDS_Read_Inst_Num;
constexpr auto num_buffer_load_inst_a = HotLoopInstList::A_Buffer_Load_Inst_Num;
constexpr auto num_buffer_load_inst_b = HotLoopInstList::B_Buffer_Load_Inst_Num;
// B global
static_for<0, num_buffer_load_inst_b, 1>{}([&](auto i) {
static_for<0, num_buffer_load_inst_b / 2, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read B
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read A
});
// A global
......@@ -269,11 +213,11 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
});
// A local
static_for<0, num_ds_read_inst_a / 2, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 2, 0); // DS read
});
// static_for<0, num_ds_read_inst_a / 2, 1>{}([&](auto i) {
// ignore = i;
// __builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
// __builtin_amdgcn_sched_group_barrier(0x100, 2, 0); // DS read
// });
}
template <bool HasMainLoop,
......@@ -311,11 +255,12 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
StaticallyIndexedArray<decltype(a_thread_buf), Number<2>{}> a_thread_bufs;
StaticallyIndexedArray<decltype(b_thread_buf), Number<2>{}> b_thread_bufs;
constexpr auto b_block_origin_idx = make_tuple(I0, I0, I0, I0);
// Global prefetch A1, B1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
......@@ -325,11 +270,11 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// // Local prefill A1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I0));
// Local prefill A1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I0), I0);
// // Global prefetch A2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
// Global prefetch A2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I1);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// Local prefetch A1
......@@ -341,10 +286,17 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(m0, I0, I0, k0, I0, I0),
a_thread_buf);
a_thread_bufs(I0));
});
});
// Local prefill A2
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I1), I1);
// // Global prefetch A3
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// Initialize C
c_thread_buf.Clear();
......@@ -357,17 +309,30 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
do
{
auto LoopFunc = [&](auto mfma_reg_buf, auto local_read_buf) {
block_sync_lds();
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(local_read_buf));
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(local_read_buf));
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(m0, I0, I0, k0, I0, I0),
a_block_buf.At(local_read_buf),
a_thread_desc_,
make_tuple(m0, I0, I0, k0, I0, I0),
a_thread_bufs(local_read_buf));
});
});
a_blockwise_copy.RunWrite(
a_block_desc, a_block_buf.At(mfma_reg_buf), mfma_reg_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, local_read_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
static_for<0, MRepeat, 1>{}([&](auto m0) {
......@@ -378,7 +343,8 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
a_thread_bufs[mfma_reg_buf]
[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf]
......@@ -401,19 +367,6 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
});
});
block_sync_lds();
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(m0, I0, I0, k0, I0, I0),
a_block_buf.At(local_read_buf),
a_thread_desc_,
make_tuple(m0, I0, I0, k0, I0, I0),
a_thread_buf);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
};
......@@ -422,18 +375,32 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
LoopFunc(I1, I0);
i += 2;
} while(i < (num_loop - 2));
} while(i < (num_loop - 3));
}
// tail
if constexpr(TailNum == TailNumber::Even)
{
auto ReadWriteCompFunc = [&](auto mfma_reg, auto local_read_reg) {
block_sync_lds();
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(I1));
b_thread_bufs(local_read_reg));
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I1));
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(m0, I0, I0, k0, I0, I0),
a_block_buf.At(local_read_reg),
a_thread_desc_,
make_tuple(m0, I0, I0, k0, I0, I0),
a_thread_bufs(local_read_reg));
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(mfma_reg), mfma_reg);
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
......@@ -443,10 +410,10 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
a_thread_bufs[mfma_reg][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I0][Number<b_thread_desc_.CalculateOffset(
b_thread_bufs[mfma_reg][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
......@@ -463,21 +430,30 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
};
auto ReadCompFunc = [&](auto mfma_reg, auto local_read_reg) {
block_sync_lds();
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(local_read_reg));
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(m0, I0, I0, k0, I0, I0),
a_block_buf.At(I1),
a_block_buf.At(local_read_reg),
a_thread_desc_,
make_tuple(m0, I0, I0, k0, I0, I0),
a_thread_buf);
a_thread_bufs(local_read_reg));
});
});
__builtin_amdgcn_sched_barrier(0);
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
......@@ -486,10 +462,10 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
a_thread_bufs[mfma_reg][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I1][Number<b_thread_desc_.CalculateOffset(
b_thread_bufs[mfma_reg][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
......@@ -505,12 +481,12 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
});
});
});
// Let's leak last MFMA block to epilogue region, cover the potential lds-shuffle
// latency
// __builtin_amdgcn_sched_barrier(0);
}
else
{
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
};
auto CompFunc = [&](auto mfma_reg) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
......@@ -519,10 +495,10 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
a_thread_bufs[mfma_reg][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I0][Number<b_thread_desc_.CalculateOffset(
b_thread_bufs[mfma_reg][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
......@@ -538,6 +514,18 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v2<BlockGemmPipelineScheduler::I
});
});
});
};
if constexpr(TailNum == TailNumber::Even)
{
ReadCompFunc(I0, I1);
CompFunc(I1);
}
else if constexpr(TailNum == TailNumber::Odd)
{
ReadWriteCompFunc(I0, I1);
ReadCompFunc(I1, I0);
CompFunc(I0);
}
}
......
......@@ -11,15 +11,6 @@
namespace ck {
enum struct BlockGemmPipelineVersion
{
v1, // Naive
v2, // Mem
v3, // Comp
v4, // Comp, double lds buffer
v5, // Comp, double global prefetch register buffer
};
template <BlockGemmPipelineVersion BlkGemmPipelineVer,
BlockGemmPipelineScheduler BlkGemmPipeSche,
index_t BlockSize,
......
......@@ -155,158 +155,6 @@ struct BlockwiseGemmXdlops_pipeline_v1<BlockGemmPipelineScheduler::Intrawave,
return TailNumber::Full;
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
typename AThreadBuffer,
typename BThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
AThreadBuffer& a_thread_buf_tail,
BThreadBuffer& b_thread_buf_tail,
index_t num_loop) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
// -------------------------------------------------------------------------------------------
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
i += 1;
} while(i < (num_loop - 1));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
});
a_thread_buf_tail = a_thread_buf;
b_thread_buf_tail = b_thread_buf;
}
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
......@@ -480,6 +328,7 @@ struct BlockwiseGemmXdlops_pipeline_v1<BlockGemmPipelineScheduler::Intrawave,
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
......@@ -607,191 +456,6 @@ struct BlockwiseGemmXdlops_pipeline_v1<BlockGemmPipelineScheduler::Interwave,
return TailNumber::Full;
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
typename AThreadBuffer,
typename BThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
AThreadBuffer& a_thread_buf_tail,
BThreadBuffer& b_thread_buf_tail,
index_t num_loop) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
// -------------------------------------------------------------------------------------------
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * KPerInnerLoop>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
// NOTE: Synchronize threads in a workgroup at the start of each MAC cluster,
// but except the first, as we can shorten non-MAC cluster a bit and there's no
// observable negative impact. The desired effect is waves in a workgroup
// executing MAC in sync. This avoids some out-of-sync waves hijacking MAC
// resource from other workgroups and reducing the chance of latency hiding by
// waiting for the rest of the workgroup at the eventual sync point.
if constexpr(k0.value != 0 || KRepeat == 1)
{
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_sched_barrier(0);
}
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
// The block_sync_lds() here performs double duty:
// A) safeguard against data hazard because barrier from
// blockwise_gemm is moved here B) reduce VMEM FIFO congestion by
// applying small delays to different wavefronts It is performed
// near the end of MAC cluster to minimize lgkmcnt penalty
if constexpr(k0.value == KRepeat - 1 &&
k_.value == KPerInnerLoop - KPack &&
m0.value == MRepeat - 1 && n0.value == NRepeat - 1)
{
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
__builtin_amdgcn_sched_barrier(0);
}
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
if constexpr(k_.value == 0 && m0.value == 0 && n0.value == 0)
{
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(1);
__builtin_amdgcn_sched_barrier(0);
}
});
});
});
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(0);
__builtin_amdgcn_sched_barrier(0);
});
// block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
i += 1;
} while(i < (num_loop - 1));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * KPerInnerLoop>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
});
a_thread_buf_tail = a_thread_buf;
b_thread_buf_tail = b_thread_buf;
}
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
......@@ -1023,6 +687,7 @@ struct BlockwiseGemmXdlops_pipeline_v1<BlockGemmPipelineScheduler::Interwave,
}
}
protected:
// K->M loopover
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor(
make_tuple(Number<MRepeat>{}, I1, Number<KRepeat>{}, Number<KPerInnerLoop>{}),
......
......@@ -262,227 +262,6 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
});
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
typename AThreadBuffer,
typename BThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
AThreadBuffer& a_thread_buf_tail,
BThreadBuffer& b_thread_buf_tail,
index_t num_loop) const
{
__builtin_amdgcn_sched_barrier(0);
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
// Global prefetch 2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Initialize C
c_thread_buf.Clear();
// Local prefetch 1
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
i += 1;
} while(i < (num_loop - 2));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf_tail);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf_tail);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
}
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
......@@ -635,69 +414,11 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
__builtin_amdgcn_sched_barrier(0);
i += 1;
} while(i < (num_loop - 2));
} while(i < (num_loop - 1));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
......@@ -731,6 +452,7 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
......
......@@ -234,316 +234,6 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
__builtin_amdgcn_sched_barrier(0);
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
typename AThreadBuffer,
typename BThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
AThreadBuffer& a_thread_buf_tail,
BThreadBuffer& b_thread_buf_tail,
index_t num_loop) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
StaticallyIndexedArray<decltype(a_thread_buf), Number<2>{}> a_thread_bufs;
StaticallyIndexedArray<decltype(b_thread_buf), Number<2>{}> b_thread_bufs;
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I0));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(I0));
// Local prefetch 1
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(I0));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(I0),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(I0));
});
});
});
// Global prefetch 2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Local prefill 2
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I1));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(I1));
// Global prefetch 3
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
// This hot loop has two legacy loopover, to implement the double local buffer strategy
do
{
auto LoopFunc = [&](auto lds_read_buf,
auto lds_read_reg_buf,
auto lds_write_buf,
auto mfma_reg_buf) {
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(lds_read_buf),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(lds_write_buf));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(lds_write_buf));
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_bufs[mfma_reg_buf]
[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf]
[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
HotLoopScheduler();
};
LoopFunc(I1, I1, I0, I0);
LoopFunc(I0, I0, I1, I1);
i += HotloopUnroll;
} while(i < (num_loop - PrefetchStages));
}
auto ReadWriteCompFunc = [&](auto lds_read_buf,
auto lds_read_reg_buf,
auto lds_write_buf,
auto mfma_reg_buf) {
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(lds_read_buf),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(lds_write_buf));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(lds_write_buf));
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_bufs[mfma_reg_buf][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
HotLoopScheduler();
};
auto ReadCompFunc = [&](auto lds_read_buf, auto lds_read_reg_buf, auto mfma_reg_buf) {
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(lds_read_buf),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_bufs[mfma_reg_buf][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
HotLoopScheduler();
};
auto CompFunc = [&](auto mfma_reg_buf) {
a_thread_buf_tail = a_thread_bufs[mfma_reg_buf];
b_thread_buf_tail = b_thread_bufs[mfma_reg_buf];
};
// tail
if constexpr(TailNum == TailNumber::Odd)
{
ReadWriteCompFunc(I1, I1, I0, I0);
ReadCompFunc(I0, I0, I1);
CompFunc(I0);
}
else if constexpr(TailNum == TailNumber::Even)
{
ReadCompFunc(I1, I1, I0);
CompFunc(I1);
}
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
......@@ -873,6 +563,7 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
......
......@@ -316,270 +316,6 @@ struct BlockwiseGemmXdlops_pipeline_v5<BlockGemmPipelineScheduler::Intrawave,
__builtin_amdgcn_sched_barrier(0);
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
typename AThreadBuffer,
typename BThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
AThreadBuffer& a_thread_buf_tail,
BThreadBuffer& b_thread_buf_tail,
index_t num_loop) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_loop.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_loop.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, I0);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, I0);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf, I0);
// Global prefetch 2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, I0);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Global prefetch 3
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I1);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, I1);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Initialize C
c_thread_buf.Clear();
// Local prefetch 1
block_sync_lds();
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_loop.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, I0),
a_block_buf,
a_thread_desc_loop,
make_tuple(m0, I0, I0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_loop.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, I0),
b_block_buf,
b_thread_desc_loop,
make_tuple(n0, I0, I0, I0),
b_thread_buf);
});
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
auto LoopFunc = [&](auto vmem_buf) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KRepeat, 1>{}([&](auto k0) {
if constexpr(k0 == (KRepeat - 1))
{
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, vmem_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf, vmem_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, vmem_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, vmem_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
block_sync_lds();
}
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_loop.CalculateOffset(
make_tuple(m0, I0, I0, ik))>{}];
});
static_for<0, KPack, 1>{}([&](auto ik) {
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_loop.CalculateOffset(
make_tuple(n0, I0, I0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
a_thread_copy_loop.Run(
a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<(k0 + 1) % KRepeat * AMmaKStride>{}),
a_block_buf,
a_thread_desc_loop,
make_tuple(m0, I0, I0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_loop.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<(k0 + 1) % KRepeat * BMmaKStride>{}),
b_block_buf,
b_thread_desc_loop,
make_tuple(n0, I0, I0, I0),
b_thread_buf);
});
});
HotLoopScheduler();
};
LoopFunc(I0);
LoopFunc(I1);
i += HotloopUnroll;
} while(i < (num_loop - PrefetchStages));
}
// tail
auto ReadWriteCompFunc = [&](auto vmem_buf) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KRepeat, 1>{}([&](auto k0) {
if constexpr(k0 == (KRepeat - 1))
{
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, vmem_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf, vmem_buf);
block_sync_lds();
}
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_loop.CalculateOffset(
make_tuple(m0, I0, I0, ik))>{}];
});
static_for<0, KPack, 1>{}([&](auto ik) {
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_loop.CalculateOffset(
make_tuple(n0, I0, I0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
a_thread_copy_loop.Run(
a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<(k0 + 1) % KRepeat * AMmaKStride>{}),
a_block_buf,
a_thread_desc_loop,
make_tuple(m0, I0, I0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_loop.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<(k0 + 1) % KRepeat * BMmaKStride>{}),
b_block_buf,
b_thread_desc_loop,
make_tuple(n0, I0, I0, I0),
b_thread_buf);
});
});
HotLoopScheduler();
};
auto ReadCompFunc = [&]() {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf_tail);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf_tail);
});
});
HotLoopScheduler();
};
if constexpr(TailNum == TailNumber::Odd)
{
ReadWriteCompFunc(I0);
ReadWriteCompFunc(I1);
ReadCompFunc();
}
else if constexpr(TailNum == TailNumber::Even)
{
ReadWriteCompFunc(I0);
ReadCompFunc();
}
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
......@@ -891,18 +627,19 @@ struct BlockwiseGemmXdlops_pipeline_v5<BlockGemmPipelineScheduler::Intrawave,
}
}
protected:
// A[MRepeat, I1, I1, KPack]
static constexpr auto a_thread_desc_loop =
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{}, I1, I1, Number<KPack>{}));
// B[NRepeat, N1, N2, KPack]
static constexpr auto b_thread_desc_loop =
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(Number<NRepeat>{}, I1, I1, Number<KPack>{}));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<ADataType,
ComputeDataType,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_loop),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
......@@ -912,19 +649,15 @@ struct BlockwiseGemmXdlops_pipeline_v5<BlockGemmPipelineScheduler::Intrawave,
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<BDataType,
ComputeDataType,
decltype(b_block_desc_n0_n1_n2_k),
decltype(b_thread_desc_loop),
decltype(b_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_loop{Base::CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_loop{Base::CalculateBThreadOriginDataIndex()};
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
using Base::b_thread_desc_;
AThreadCopy a_thread_copy_{Base::CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_{Base::CalculateBThreadOriginDataIndex()};
using Base::c_thread_desc_;
};
......
......@@ -157,7 +157,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
}
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(arg.M, arg.N);
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(arg.M, arg.N, arg.KBatch);
float ave_time = 0;
......@@ -249,30 +249,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
// if(arg.KBatch > 1)
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// Run(kernel);
// }
// else
// {
// const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// Run(kernel);
// }
// }
// else
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
......@@ -295,65 +272,199 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
// else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
// {
// if(arg.KBatch > 1)
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel =
// kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// Run(kernel);
// }
// else
// {
// const auto kernel =
// kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// Run(kernel);
// }
// }
// else
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel =
// kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::Set,
// minimum_occupancy,
// TailNumber::Odd>;
// Run(kernel);
// }
// else
// {
// const auto kernel =
// kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::Set,
// minimum_occupancy,
// TailNumber::Even>;
// Run(kernel);
// }
// }
// }
else
{
throw std::runtime_error("todo: only v1 & v2 support now");
}
}
#if 0
else
{
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
throw std::runtime_error("todo: only v3 support now");
}
}
#endif
return ave_time;
}
......@@ -406,13 +517,10 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_sorted_token_ids,
const void* p_sorted_expert_ids,
const void* p_a,
static auto MakeArgument(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
index_t NumTokens,
index_t M,
index_t N,
index_t K,
......@@ -425,13 +533,10 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{static_cast<const index_t*>(p_sorted_token_ids),
static_cast<const index_t*>(p_sorted_expert_ids),
static_cast<const ADataType*>(p_a),
return Argument{static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
NumTokens,
M,
N,
K,
......@@ -448,8 +553,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
......@@ -463,16 +567,13 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
index_t KBatch,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
CElementwiseOperation c_element_op) override
{
// assert(0, "no impl");
return std::make_unique<Argument>(nullptr, nullptr,
static_cast<const ADataType*>(p_a),
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
M,
M,
N,
K,
StrideA,
......
......@@ -1220,38 +1220,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
return c_grid_desc_mblock_mperblock_nblock_nperblock;
}
__device__ static constexpr auto EpilogueScheduler()
{
constexpr auto epilogue_tile = MPerBlock * NPerBlock * CShuffleMXdlPerWavePerShuffle *
CShuffleNXdlPerWavePerShuffle / (MXdlPerWave * NXdlPerWave);
constexpr auto num_mfma_inst = BlockwiseGemmPipe::HotLoopInstList::C_MFMA_Inst_Num *
CShuffleMXdlPerWavePerShuffle *
CShuffleNXdlPerWavePerShuffle / (MXdlPerWave * NXdlPerWave);
constexpr auto num_ds_write_inst =
epilogue_tile / BlockSize; // DefaultMFMA, per-element write
constexpr auto num_ds_read_inst =
epilogue_tile / BlockSize / CShuffleBlockTransferScalarPerVector_NPerBlock;
constexpr auto num_buffer_store_inst = num_ds_read_inst;
// MFMA:ds_write=1:2
constexpr auto num_ds_write_issue = num_ds_write_inst / 2;
constexpr auto num_mfma_block_sync = (num_mfma_inst - num_ds_write_issue) / 2;
constexpr auto mfma_ds_write_rate = MXdlPerWave == 16 ? 2 : 4;
// Hide ds_write issue latency
static_for<0, num_ds_write_issue, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, mfma_ds_write_rate, 0); // DS write
});
// Hide block_sync + ds_read latency
__builtin_amdgcn_sched_group_barrier(0x008, num_mfma_block_sync, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, num_ds_read_inst, 0); // DS read
// Hide block_sync latency
__builtin_amdgcn_sched_group_barrier(0x008, num_mfma_block_sync, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x040, num_buffer_store_inst, 0); // VMEM write
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
......@@ -1429,15 +1397,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
constexpr auto a_thread_desc = blockwise_gemm_pipeline.a_thread_desc_;
constexpr auto b_thread_desc = blockwise_gemm_pipeline.b_thread_desc_;
constexpr auto c_thread_desc = blockwise_gemm_pipeline.c_thread_desc_;
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeTypeA>(
a_thread_desc.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeTypeA>(
b_thread_desc.GetElementSpaceSize());
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
......@@ -1455,16 +1414,10 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
b_block_buf,
b_block_slice_copy_step,
c_thread_buf,
a_thread_buf,
b_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
// Last block MFMA
auto xdlops_gemm = blockwise_gemm_pipeline.xdlops_gemm;
constexpr auto KRepeat = blockwise_gemm_pipeline.KRepeat;
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
......@@ -1624,9 +1577,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock;
const auto EGlobalMemoryDataOperation = CGlobalMemoryDataOperation;
// C: LDS -> VGPR
// D: Global -> VGPR
// E: =Epilogue(C, D), VGPR -> Global
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7r3<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType{})),
......@@ -1685,84 +1635,10 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
constexpr auto KPerInnerLoop = blockwise_gemm_pipeline.KPerInnerLoop;
static_for<0, CShuffleMXdlPerWavePerShuffle, 1>{}([&](auto m0) {
static_for<0, CShuffleNXdlPerWavePerShuffle, 1>{}([&](auto n0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
vector_type<ComputeTypeA, KPack> a_thread_vec;
vector_type<ComputeTypeB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeTypeA>()(ik) =
a_thread_buf[Number<a_thread_desc.CalculateOffset(
make_tuple(m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeTypeA>()(ik) =
b_thread_buf[Number<b_thread_desc.CalculateOffset(
make_tuple(n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeTypeA, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
});
__builtin_amdgcn_sched_barrier(0);
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
if constexpr(access_id < num_access - 1)
{
constexpr auto shuffle_m0 =
sfc_c_vgpr.GetIndexTupleOfNumber(access_id + Number<1>{})[Number<0>{}];
constexpr auto shuffle_n0 =
sfc_c_vgpr.GetIndexTupleOfNumber(access_id + Number<1>{})[Number<1>{}];
static_for<0, CShuffleMXdlPerWavePerShuffle, 1>{}([&](auto m0) {
static_for<0, CShuffleNXdlPerWavePerShuffle, 1>{}([&](auto n0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
vector_type<ComputeTypeA, KPack> a_thread_vec;
vector_type<ComputeTypeB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeTypeA>()(ik) =
a_thread_buf[Number<a_thread_desc.CalculateOffset(
make_tuple(shuffle_m0 + m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeTypeA>()(ik) =
b_thread_buf[Number<b_thread_desc.CalculateOffset(
make_tuple(shuffle_n0 + n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeTypeA,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset = c_thread_desc.CalculateOffset(
make_tuple(shuffle_m0 + m0, shuffle_n0 + n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
});
}
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
......@@ -1796,8 +1672,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
// EpilogueScheduler();
}
});
}
......@@ -1990,15 +1864,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
constexpr auto a_thread_desc = blockwise_gemm_pipeline.a_thread_desc_;
constexpr auto b_thread_desc = blockwise_gemm_pipeline.b_thread_desc_;
constexpr auto c_thread_desc = blockwise_gemm_pipeline.c_thread_desc_;
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeTypeA>(
a_thread_desc.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeTypeA>(
b_thread_desc.GetElementSpaceSize());
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
......@@ -2016,16 +1881,10 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
b_block_bufs,
b_block_slice_copy_step,
c_thread_buf,
a_thread_buf,
b_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
// Last block MFMA
auto xdlops_gemm = blockwise_gemm_pipeline.xdlops_gemm;
constexpr auto KRepeat = blockwise_gemm_pipeline.KRepeat;
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
......@@ -2243,84 +2102,10 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
constexpr auto KPerInnerLoop = blockwise_gemm_pipeline.KPerInnerLoop;
static_for<0, CShuffleMXdlPerWavePerShuffle, 1>{}([&](auto m0) {
static_for<0, CShuffleNXdlPerWavePerShuffle, 1>{}([&](auto n0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
vector_type<ComputeTypeA, KPack> a_thread_vec;
vector_type<ComputeTypeB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeTypeA>()(ik) =
a_thread_buf[Number<a_thread_desc.CalculateOffset(
make_tuple(m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeTypeA>()(ik) =
b_thread_buf[Number<b_thread_desc.CalculateOffset(
make_tuple(n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeTypeA, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
});
__builtin_amdgcn_sched_barrier(0);
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
if constexpr(access_id < num_access - 1)
{
constexpr auto shuffle_m0 =
sfc_c_vgpr.GetIndexTupleOfNumber(access_id + Number<1>{})[Number<0>{}];
constexpr auto shuffle_n0 =
sfc_c_vgpr.GetIndexTupleOfNumber(access_id + Number<1>{})[Number<1>{}];
static_for<0, CShuffleMXdlPerWavePerShuffle, 1>{}([&](auto m0) {
static_for<0, CShuffleNXdlPerWavePerShuffle, 1>{}([&](auto n0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
vector_type<ComputeTypeA, KPack> a_thread_vec;
vector_type<ComputeTypeB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeTypeA>()(ik) =
a_thread_buf[Number<a_thread_desc.CalculateOffset(
make_tuple(shuffle_m0 + m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeTypeA>()(ik) =
b_thread_buf[Number<b_thread_desc.CalculateOffset(
make_tuple(shuffle_n0 + n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeTypeA,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset = c_thread_desc.CalculateOffset(
make_tuple(shuffle_m0 + m0, shuffle_n0 + n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
});
}
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
......@@ -2354,8 +2139,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
// EpilogueScheduler();
}
});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -73,9 +73,39 @@ struct ReferencefpAintBGemm : public device::BaseOperator
ScaleDataType v_scale;
ADataType v_converted_b;
// use PassThrough instead of ConvertBF16RTN for reference calculation
if constexpr(is_same_v<AElementwiseOperation,
ck::tensor_operation::element_wise::ConvertBF16RTN>)
{
ck::tensor_operation::element_wise::PassThrough{}(v_a, arg.a_m_k_(m, k));
}
else
{
arg.a_element_op_(v_a, arg.a_m_k_(m, k));
}
// same for B matrix
if constexpr(is_same_v<BElementwiseOperation,
ck::tensor_operation::element_wise::ConvertBF16RTN>)
{
ck::tensor_operation::element_wise::PassThrough{}(v_b, arg.b_k_n_(k, n));
}
else
{
arg.b_element_op_(v_b, arg.b_k_n_(k, n));
}
// same for scale matrix
if constexpr(is_same_v<BElementwiseOperation,
ck::tensor_operation::element_wise::ConvertBF16RTN>)
{
ck::tensor_operation::element_wise::PassThrough{}(v_scale,
arg.scale_k_n_(k, n));
}
else
{
arg.b_element_op_(v_scale, arg.scale_k_n_(k, n));
}
v_converted_b = type_convert<ADataType>(v_b) * v_scale;
v_acc += ck::type_convert<AccDataType>(v_a) *
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment