Commit f60f9d59 authored by aska-0096's avatar aska-0096
Browse files

sanity pass, most tile size enabled. TODO: NWave!=4

parent 482ca684
......@@ -78,14 +78,17 @@ struct MultiplyMultiply
}
};
void preShuffleBuffer(const FP8* src, int N, int K, FP8* dst)
void preShuffleBuffer(const FP8* src,
FP8* dst,
int N,
int K,
int NRepeat,
int KRepeat,
int NWave,
int KLane,
int NLane,
int KPack)
{
const int NRepeat = 4;
const int KRepeat = 4;
const int NWave = 2;
const int KLane = 2;
const int NLane = 32;
const int KPack = 16;
int K0 = K / (KRepeat * KLane * KPack);
// K -> src: K0 KLane KRepeat KPack -> dst: K0 KRpeat KLane KPack, move klane inner to make all
// lanes contiguous N -> N0 NRepeat NWave NLane // todo : is NRepeat outer or inner? now it's 1
......@@ -108,12 +111,30 @@ void preShuffleBuffer(const FP8* src, int N, int K, FP8* dst)
int n3 = tempn % NLane;
int k3 = tempk % KPack; // Kpack
int outputIndex = n0 * KPack * NLane * KLane * NWave * KRepeat * NRepeat * K0 +
k0 * KPack * NLane * KLane * NWave * KRepeat * NRepeat +
n1 * KPack * NLane * KLane * NWave * KRepeat +
k2 * KPack * NLane * KLane * NWave // switch k1, k2
+ n2 * KPack * NLane * KLane + k1 * KPack * NLane + n3 * KPack + k3;
int outputIndex = n0 * KPack * NLane * KLane * NWave * KRepeat * K0 * NRepeat +
n1 * KPack * NLane * KLane * NWave * KRepeat * K0 +
k0 * KPack * NLane * KLane * NWave * KRepeat +
k2 * KPack * NLane * KLane * NWave + n2 * KPack * NLane * KLane +
k1 * KPack * NLane + n3 * KPack + k3;
#if 0
int k1 = tempk / (KLane * KPack); //KRepeat
int n1 = tempn / (NLane * NWave); //NRepeat
tempn = tempn % (NLane * NWave);
tempk = tempk % (KLane * KPack);
int n2 = tempn / NLane; // NWave
int k2 = tempk / KPack; // KLane
int n3 = tempn % NLane; // NLane
int k3 = tempk % KPack; // Kpack
int outputIndex = n0 * KPack * NLane * KLane * NWave * NRepeat * KRepeat * K0 +
k0 * KPack * NLane * KLane * NWave * NRepeat * KRepeat +
k1 * KPack * NLane * KLane * NWave * NRepeat +
n1 * KPack * NLane * KLane * NWave +
n2 * KPack * NLane * KLane +
k2 * KPack * NLane +
n3 * KPack +
k3;
#endif
dst[outputIndex] = src[n * K + k];
}
}
......@@ -124,7 +145,7 @@ using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = MultiplyMultiply;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
......@@ -139,10 +160,10 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShu
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 32, 128, 256, 16, 16, 32, 32, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, FP8>;
< Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CDEElementOp, GemmSpec, 256,
256, 256, 128,
32, 256, 128,
16, 16,
32, 32,
4, 4,
1, 2,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
1, 1, S<1, 32, 1, 8>, S<8, 8, 1>,
......@@ -245,6 +266,12 @@ int main(int argc, char* argv[])
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-2, 2});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-2, 2});
break;
case 2:
a0_m_k.GenerateTensorValue(GeneratorTensor_1<A0DataType>{});
b0_k_n.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
d0_m_n.GenerateTensorValue(GeneratorTensor_1<D0DataType>{});
d1_m_n.GenerateTensorValue(GeneratorTensor_1<D1DataType>{});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
......@@ -256,10 +283,8 @@ int main(int argc, char* argv[])
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
preShuffleBuffer(b0_k_n.mData.data(), N, K, b0_preshuffled.mData.data());
a0_device_buf.ToDevice(a0_m_k.mData.data());
// b0_device_buf.ToDevice(b0_preshuffled.mData.data());
b0_device_buf.ToDevice(b0_preshuffled.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
......@@ -274,6 +299,22 @@ int main(int argc, char* argv[])
// do GEMM
auto device_op = DeviceOpInstance{};
auto preshuffle_params = device_op.GetPreShuffleParameters();
preShuffleBuffer(b0_k_n.mData.data(),
b0_preshuffled.mData.data(),
N,
K,
preshuffle_params[0],
preshuffle_params[1],
preshuffle_params[2],
preshuffle_params[3],
preshuffle_params[4],
preshuffle_params[5]);
b0_device_buf.ToDevice(b0_preshuffled.mData.data());
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a0_device_buf.GetDeviceBuffer(),
......@@ -300,7 +341,7 @@ int main(int argc, char* argv[])
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel, 0, 50, 50, true, 50});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
......@@ -315,7 +356,7 @@ int main(int argc, char* argv[])
if(do_verification)
{
invoker.Run(argument, StreamConfig{nullptr, false, 0, 1, 1});
invoker.Run(argument, StreamConfig{nullptr, false});
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
......
......@@ -152,8 +152,8 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle<BlockGemmPipelineScheduler::Intr
__host__ __device__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
ignore = num_loop;
return TailNumber::Full;
return num_loop % 2 == 0 ? TailNumber::Even : TailNumber::Odd;
}
__device__ static constexpr auto HotLoopScheduler()
......@@ -342,7 +342,8 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle<BlockGemmPipelineScheduler::Intr
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>,
b_blockwise_copy
.template GetSrcThreadScratchIdx<Sequence<n0, k0, 0>,
Number<0>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
......@@ -394,7 +395,10 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle<BlockGemmPipelineScheduler::Intr
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>,
// b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<n0,
// k0, 0>,
b_blockwise_copy
.template GetSrcThreadScratchIdx<Sequence<n0, k0, 0>,
Number<1>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
......@@ -435,7 +439,7 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle<BlockGemmPipelineScheduler::Intr
} while(i < (num_loop - 2));
}
// tail
if constexpr(TailNum == TailNumber::Full)
if constexpr(TailNum == TailNumber::Even)
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf1);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<1>{});
......@@ -445,8 +449,8 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle<BlockGemmPipelineScheduler::Intr
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy
.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<0>{}>();
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<n0, k0, 0>,
Number<0>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
......@@ -486,8 +490,8 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle<BlockGemmPipelineScheduler::Intr
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy
.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<1>{}>();
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<n0, k0, 0>,
Number<1>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
......@@ -510,6 +514,34 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle<BlockGemmPipelineScheduler::Intr
// latency
// __builtin_amdgcn_sched_barrier(0);
}
else
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<n0, k0, 0>,
Number<0>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
}
protected:
......
......@@ -96,6 +96,51 @@ struct DeviceGemmMultipleDSplitK : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
// GEMM:
// input : A[M, K], B[K, N],
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceGemmMultipleDSplitKBPreShuffle : public BaseOperator
{
static constexpr index_t NumDTensor = DsDataType::Size();
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
ck::index_t StrideE,
ck::index_t KBatch,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
virtual std::array<int, 6> GetPreShuffleParameters() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -10,9 +10,10 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
......@@ -69,8 +70,7 @@ template <typename ALayout,
typename LDSTypeA = ComputeTypeA,
typename LDSTypeB = ComputeTypeB>
struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
: public DeviceGemmMultiD_Xdl_CShuffle_V3<
ALayout,
: public DeviceGemmMultipleDSplitKBPreShuffle<ALayout,
BLayout,
DsLayout,
CLayout,
......@@ -78,46 +78,9 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
BDataType,
DsDataType,
CDataType,
GemmAccDataType,
CShuffleDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEShuffleBlockTransferScalarPerVectors,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB,
LDSTypeA,
LDSTypeB>
CElementwiseOperation>
{
static constexpr index_t NumDTensor = DsDataType::Size();
......@@ -176,6 +139,18 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
using Argument = typename GridwiseGemm::Argument;
std::array<int, 6> GetPreShuffleParameters() override
{
std::array<int, 6> preshuffle_params{NXdlPerWave,
GridwiseGemm::KRepeat,
GridwiseGemm::NWave,
GridwiseGemm::KLane,
GridwiseGemm::NLane,
GridwiseGemm::KPack};
return preshuffle_params;
}
// Invoker
struct Invoker : public BaseInvoker
{
......@@ -277,23 +252,51 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
......@@ -436,6 +439,57 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGemmXdlUniversal"
<< "<"
<< getGemmSpecializationString(GemmSpec) << ", "
<< std::string(ALayout::name)[0]
<< std::string(BLayout::name)[0]
<< std::string(CLayout::name)[0]
<< ">"
<< " BlkSize: "
<< BlockSize << ", "
<< "BlkTile: "
<< MPerBlock<<"x"<<NPerBlock<<"x"<<KPerBlock << ", "
<< "WaveTile: "
<< MPerXDL<<"x"<<NPerXDL << ", "
<< "WaveMap: "
<< MXdlPerWave<<"x" << NXdlPerWave<<", "
<< "VmemReadVec: "
<< ABlockTransferSrcScalarPerVector<<"x"<<BBlockTransferSrcScalarPerVector<<", "
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer] << ", "
<< "BlkGemmPipelinePrefetchStages: "
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages;
// clang-format on
return str.str();
}
};
} // namespace device
......
......@@ -9,7 +9,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle.hpp"
// #include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
......@@ -31,7 +31,7 @@ template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
TailNumber TailNum = TailNumber::Even>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
......@@ -142,7 +142,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
static constexpr index_t NLane = NPerXdl;
static constexpr index_t NWave = NPerBlock / NPerXdl / NXdlPerWave;
static_assert(NLane * NWave * KLane == BlockSize);
static_assert(NXdlPerWave == 1, "only 1 validated now, tbd next week");
// static_assert(NXdlPerWave == 1, "only 1 validated now, tbd next week");
static constexpr auto MakeDsGridPointer()
{
......@@ -322,10 +322,9 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
__host__ __device__ static auto MakeBGridDescriptor_Preshuffled(index_t N0, index_t K0)
{
constexpr index_t NkSwizzle = BlockSize * KPack;
constexpr index_t NkSwizzleNumber = Number<NkSwizzle>{};
constexpr index_t NkSwizzleNumber = Number<BlockSize * KPack>{};
return make_naive_tensor_descriptor(make_tuple(N0, K0, NkSwizzleNumber),
make_tuple(K0 * NkSwizzle, NkSwizzleNumber, I1));
make_tuple(K0 * NkSwizzleNumber, NkSwizzleNumber, I1));
}
__host__ __device__ static auto MakeBGridDescriptor_BK0_N_BK1(
......@@ -650,7 +649,8 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
b_k_split_offset = k_id * karg.KRead;
// KPack * NLane * KLane * NWave * KRepeat * NRepeat * K0*N0
b_k_split_offset = k_id * karg.KRead * NLane * NWave * NXdlPerWave;
}
if(k_id < karg.KBatch - 1)
......@@ -1286,8 +1286,9 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
// N0, K0, Blocksize*KPack
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * (NPerBlock / NLane / NWave));
__builtin_amdgcn_readfirstlane(block_n_id * NXdlPerWave);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
......@@ -1334,7 +1335,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, KRepeat, KPack * BlockSize>,
Sequence<NXdlPerWave, KRepeat, KPack * BlockSize>,
Sequence<1, 1, BlockSize>, // BThreadClusterLengths,
Sequence<0, 1, 2>, // BBlockTransferClusterArrangeOrder,
BDataType,
......
......@@ -20,7 +20,7 @@ namespace instance {
#if 0
#if(defined(CK_ENABLE_F16) || defined(CK_ENABLE_FP8))
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -33,7 +33,7 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -46,7 +46,7 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -59,7 +59,7 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -72,7 +72,7 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -85,7 +85,7 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -101,7 +101,7 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
#if(defined(CK_ENABLE_BF16) || defined(CK_ENABLE_FP8))
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -111,10 +111,11 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_
BF16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -124,10 +125,11 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_
BF16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -137,10 +139,11 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_
BF16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -150,10 +153,11 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_
BF16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p3_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -163,10 +167,11 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_
BF16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p3_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......@@ -176,7 +181,8 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_
BF16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
#endif
template <typename ADataType,
......@@ -185,7 +191,8 @@ template <typename ADataType,
typename ALayout,
typename BLayout,
typename CLayout>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleDSplitK<
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGemmMultipleDSplitKBPreShuffle<
ALayout,
BLayout,
Tuple<Row, Col>,
......@@ -199,7 +206,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
ck::tensor_operation::element_wise::MultiplyMultiply>>
{
using DeviceOp =
DeviceGemmMultipleDSplitK<ALayout,
DeviceGemmMultipleDSplitKBPreShuffle<ALayout,
BLayout,
Tuple<Row, Col>,
CLayout,
......
......@@ -43,22 +43,18 @@ using device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx94__) || defined(CK_USE_GFX94) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
// Compute friendly
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 256, 128, 16, 16, 32, 32, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 224, 128, 16, 16, 32, 32, 2, 7, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 192, 128, 16, 16, 32, 32, 4, 3, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 160, 128, 16, 16, 32, 32, 2, 5, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 128, 128, 16, 16, 32, 32, 4, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 96, 128, 16, 16, 32, 32, 2, 3, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 64, 128, 16, 16, 32, 32, 4, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 256, 128, 16, 16, 32, 32, 2, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 224, 128, 16, 16, 32, 32, 1, 7, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 192, 128, 16, 16, 32, 32, 2, 3, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 160, 128, 16, 16, 32, 32, 1, 5, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 128, 256, 16, 16, 32, 32, 2, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 128, 128, 16, 16, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 96, 256, 16, 16, 32, 32, 1, 3, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
// Compute friendly
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 128, 128, 16, 16, 32, 32, 8, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 128, 128, 16, 16, 32, 32, 4, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 128, 128, 16, 16, 32, 32, 2, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 128, 128, 16, 16, 32, 32, 1, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
// N 256
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 256, 128, 16, 16, 32, 32, 8, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 256, 128, 16, 16, 32, 32, 4, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 256, 128, 16, 16, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 256, 128, 16, 16, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
// N 512
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 512, 128, 16, 16, 32, 32, 2, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 512, 128, 16, 16, 32, 32, 1, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
#endif
// clang-format on
>;
......@@ -72,25 +68,20 @@ using device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx94__) || defined(CK_USE_GFX94) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 256, 128, 16, 16, 32, 32, 1, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 224, 128, 16, 16, 16, 16, 2, 7, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 192, 256, 16, 16, 32, 32, 1, 3, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 192, 128, 16, 16, 32, 32, 1, 3, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 160, 256, 16, 16, 16, 16, 2, 5, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 128, 256, 16, 16, 32, 32, 1, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 96, 256, 16, 16, 16, 16, 2, 3, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 64, 512, 16, 16, 32, 32, 1, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 256, 128, 16, 16, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 224, 256, 16, 16, 16, 16, 1, 7, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 192, 256, 16, 16, 16, 16, 1, 6, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 160, 256, 16, 16, 16, 16, 1, 5, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 128, 256, 16, 16, 32, 32, 4, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 128, 256, 16, 16, 32, 32, 2, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 128, 256, 16, 16, 32, 32, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 96, 256, 16, 16, 16, 16, 1, 3, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 64, 512, 16, 16, 16, 16, 1, 2, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 256, 128, 8, 16, 16, 16, 1, 4, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 16, 1, 16>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 192, 256, 16, 16, 16, 16, 1, 3, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 128, 256, 16, 16, 16, 16, 1, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 16, 1, 16>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 64, 512, 16, 16, 16, 16, 1, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 128, 512, 16, 16, 32, 32, 2, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 128, 512, 16, 16, 32, 32, 1, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
// N 256
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 256, 256, 16, 16, 32, 32, 4, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 256, 256, 16, 16, 32, 32, 2, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 256, 256, 16, 16, 32, 32, 1, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 256, 512, 16, 16, 32, 32, 2, 2, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 256, 512, 16, 16, 32, 32, 1, 2, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
// N 512
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 512, 256, 16, 16, 32, 32, 2, 4, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 512, 256, 16, 16, 32, 32, 1, 4, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
#endif
// clang-format on
>;
......@@ -104,17 +95,13 @@ using device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx94__) || defined(CK_USE_GFX94) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 192, 128, 16, 16, 16, 16, 8, 6, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 160, 128, 16, 16, 16, 16, 8, 5, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 128, 128, 16, 16, 16, 16, 8, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 96, 128, 16, 16, 16, 16, 8, 3, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 64, 128, 16, 16, 16, 16, 8, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 224, 256, 128, 16, 16, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 224, 128, 16, 16, 16, 16, 8, 7, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 2, 1, S<1, 64, 1, 4>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 128, 128, 16, 16, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 64, 128, 16, 16, 32, 32, 2, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 64, 128, 16, 16, 32, 32, 1, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 64, 256, 16, 16, 16, 16, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 128, 256, 16, 16, 16, 16, 1, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 256, 256, 16, 16, 16, 16, 1, 4, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 512, 256, 16, 16, 16, 16, 1, 8, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 64, 512, 16, 16, 16, 16, 1, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 128, 512, 16, 16, 16, 16, 1, 2, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, BF16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 256, 512, 16, 16, 16, 16, 1, 4, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
#endif
// clang-format on
>;
......
......@@ -9,7 +9,7 @@ namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......
......@@ -9,7 +9,7 @@ namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......
......@@ -9,7 +9,7 @@ namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......
......@@ -9,7 +9,7 @@ namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......
......@@ -9,7 +9,7 @@ namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p3_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......
......@@ -9,7 +9,7 @@ namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p3_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
......
......@@ -24,6 +24,51 @@
namespace ck {
namespace profiler {
template <typename InOutDataType>
void preShuffleBuffer(const InOutDataType* src,
InOutDataType* dst,
int N,
int K,
int NRepeat,
int KRepeat,
int NWave,
int KLane,
int NLane,
int KPack)
{
int K0 = K / (KRepeat * KLane * KPack);
// K -> src: K0 KLane KRepeat KPack -> dst: K0 KRpeat KLane KPack, move klane inner to make all
// lanes contiguous N -> N0 NRepeat NWave NLane // todo : is NRepeat outer or inner? now it's 1
int tempn, tempk;
for(int n = 0; n < N; ++n)
{
for(int k = 0; k < K; ++k)
{
int n0 = n / (NRepeat * NLane * NWave);
int k0 = k / (KRepeat * KLane * KPack);
tempn = n % (NRepeat * NLane * NWave);
tempk = k % (KRepeat * KLane * KPack);
int n1 = tempn / (NLane * NWave);
int k1 = tempk / (KRepeat * KPack); // Klane
tempn = tempn % (NLane * NWave);
tempk = tempk % (KRepeat * KPack);
int n2 = tempn / NLane;
int k2 = tempk / KPack; // KRepeat
int n3 = tempn % NLane;
int k3 = tempk % KPack; // Kpack
int outputIndex = n0 * KPack * NLane * KLane * NWave * KRepeat * K0 * NRepeat +
n1 * KPack * NLane * KLane * NWave * KRepeat * K0 +
k0 * KPack * NLane * KLane * NWave * KRepeat +
k2 * KPack * NLane * KLane * NWave + n2 * KPack * NLane * KLane +
k1 * KPack * NLane + n3 * KPack + k3;
dst[outputIndex] = src[n * K + k];
}
}
}
template <typename ADataType,
typename BDataType,
typename ComputeDataType,
......@@ -71,6 +116,8 @@ bool profile_gemm_multiply_multiply_weight_preshuffle_impl(int do_verification,
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_preshuffled(
f_host_tensor_descriptor(K, N, StrideB, BLayout{})); // use layout only for size
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
......@@ -125,12 +172,11 @@ bool profile_gemm_multiply_multiply_weight_preshuffle_impl(int do_verification,
DeviceMem c_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
using DeviceOp =
ck::tensor_operation::device::DeviceGemmMultipleDSplitK<ALayout,
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleDSplitKBPreShuffle<
ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
......@@ -188,8 +234,20 @@ bool profile_gemm_multiply_multiply_weight_preshuffle_impl(int do_verification,
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
// TODO: Shuffle the weight
// ...
auto preshuffle_params = op_ptr->GetPreShuffleParameters();
preShuffleBuffer(b_k_n.mData.data(),
b_preshuffled.mData.data(),
N,
K,
preshuffle_params[0],
preshuffle_params[1],
preshuffle_params[2],
preshuffle_params[3],
preshuffle_params[4],
preshuffle_params[5]);
b_device_buf.ToDevice(b_preshuffled.mData.data());
std::vector<int> kbatch_list = {1, 2, 4, 8, 16};
......@@ -224,12 +282,7 @@ bool profile_gemm_multiply_multiply_weight_preshuffle_impl(int do_verification,
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
if(do_verification)
{
......
......@@ -74,10 +74,10 @@ int profile_gemm_multiply_multiply_weight_preshuffle(int argc, char* argv[])
using F32 = float;
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
// using F16 = ck::half_t;
using F8 = ck::f8_t;
using I8 = int8_t;
using I32 = int;
// using I8 = int8_t;
// using I32 = int;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment