Commit f3bbfe3e authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8

parents 2b840f5a efb34741
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
#include "ck_tile/core.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/ops/moe_sorting.hpp"
struct moe_sorting_trait
{
std::string index_type;
std::string weight_type; // currently always float
};
struct moe_sorting_args : public ck_tile::MoeSortingHostArgs
{
};
float moe_sorting(moe_sorting_trait t, moe_sorting_args a, ck_tile::stream_config s);
# #!/bin/sh
EXE=./build/bin/tile_example_moe_sorting
$EXE -t=80 -e=17 -moe_buf_size=16
$EXE -t=111 -e=117 -moe_buf_size=4
$EXE -t=1000 -e=55 -moe_buf_size=1024
$EXE -t=99 -e=120 -moe_buf_size=10244
$EXE -t=175 -e=64 -k=8
$EXE -t=65 -e=8 -k=2
$EXE -t=1 -e=25
$EXE -t=31 -e=19 -k=15
$EXE -t=81 -e=37 -k=7
$EXE -t=23 -e=1 -k=1
$EXE -t=127 -e=99 -k=19
$EXE -t=71 -e=11 -k=11
$EXE -t=1 -e=1 -k=1
$EXE -t=99 -e=2 -k=1
$EXE -t=333 -e=99 -k=13
\ No newline at end of file
......@@ -12,3 +12,4 @@ add_subdirectory(09_topk_softmax)
add_subdirectory(10_rmsnorm2d)
add_subdirectory(11_add_rmsnorm2d_rdquant)
add_subdirectory(12_smoothquant)
add_subdirectory(13_moe_sorting)
......@@ -63,13 +63,15 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
#define __gfx101__
#endif
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || \
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__)
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || \
defined(__gfx10_3_generic__)
#define __gfx103__
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || \
defined(__gfx1103__) || defined(__gfx11_generic__)
#define __gfx11__
#endif
#if defined(__gfx1200__) || defined(__gfx1201__)
#if defined(__gfx1200__) || defined(__gfx1201__) || defined(__gfx12_generic__)
#define __gfx12__
#endif
......
......@@ -381,10 +381,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
{
tildes = {i_ztilde, i_ytilde, i_xtilde};
}
else
{
throw std::runtime_error("wrong! only implemented for 2D and 3D now");
}
const auto a_grid_desc_ak0_m_ak1 =
transform_conv_to_gemm.template MakeADescriptor_AK0_M_AK1<ALayout>(
......@@ -750,6 +746,12 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
}
}
// check number of dimension, only implemented for 2D and 3D now
if(NDimSpatial != 2 && NDimSpatial != 3)
{
return false;
}
return true;
}
......
......@@ -93,12 +93,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......
......@@ -60,12 +60,12 @@ __global__ void
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumGroupsToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
......@@ -117,12 +117,12 @@ __global__ void
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumGroupsToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
......
......@@ -98,12 +98,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t c_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t c_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......
......@@ -60,12 +60,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......@@ -155,12 +155,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......
......@@ -121,10 +121,10 @@ struct GridwiseTensorRearrange
__builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
// Global Memory
const index_t a_batch_offset =
__builtin_amdgcn_readfirstlane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const index_t c_batch_offset =
__builtin_amdgcn_readfirstlane(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx));
const index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx)));
const auto in_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global + a_batch_offset, in_grid_desc.GetElementSpaceSize());
......
......@@ -9,7 +9,8 @@
// TODO: Add arch limitation
namespace ck {
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || \
defined(__gfx1103__) || defined(__gfx11_generic__)
#define __gfx11__
#endif
/********************************WAVE32 MODE***********************************************/
......@@ -260,7 +261,7 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
// gfx12
/********************************WAVE32 MODE***********************************************/
#if defined(__gfx1200__) || defined(__gfx1201__)
#if defined(__gfx1200__) || defined(__gfx1201__) || defined(__gfx12_generic__)
#define __gfx12__
#endif
......
......@@ -11,13 +11,15 @@
#define __gfx94__
#endif
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || \
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__)
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || \
defined(__gfx10_3_generic__)
#define __gfx103__
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || \
defined(__gfx1103__) || defined(__gfx11_generic__)
#define __gfx11__
#endif
#if defined(__gfx1200__) || defined(__gfx1201__)
#if defined(__gfx1200__) || defined(__gfx1201__) || defined(__gfx12_generic__)
#define __gfx12__
#endif
......
......@@ -170,7 +170,7 @@ CK_TILE_DEVICE void shuffle_tile(OutTensor& out, const InTensor& in)
}
else
{
// NOT implemented
static_assert(false, "The shuffle should always happen!");
}
}
......
......@@ -23,6 +23,7 @@
#include "ck_tile/host/reference/reference_gemm.hpp"
#include "ck_tile/host/reference/reference_im2col.hpp"
#include "ck_tile/host/reference/reference_layernorm2d_fwd.hpp"
#include "ck_tile/host/reference/reference_moe_sorting.hpp"
#include "ck_tile/host/reference/reference_permute.hpp"
#include "ck_tile/host/reference/reference_reduce.hpp"
#include "ck_tile/host/reference/reference_rmsnorm2d_fwd.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
namespace ck_tile {
template <typename WeightType, typename IndexType = index_t>
CK_TILE_HOST void reference_moe_sorting(const HostTensor<IndexType>& topk_ids,
const HostTensor<WeightType>& weights,
HostTensor<IndexType>& p_sorted_token_ids,
HostTensor<WeightType>& sorted_weight,
HostTensor<IndexType>& sorted_expert_ids,
index_t& unit_cnt,
const index_t experts,
const index_t unit_size)
{
const index_t num_token = topk_ids.mDesc.get_lengths()[0];
const index_t topk = topk_ids.mDesc.get_lengths()[1];
std::vector<std::vector<IndexType>> expert_tokens(experts,
std::vector<IndexType>(unit_size, num_token));
std::vector<std::vector<WeightType>> expert_token_weights(
experts, std::vector<WeightType>(unit_size, 0));
std::vector<IndexType> expert_slices(experts, 1);
std::vector<IndexType> expert_slice_idxs(experts, 0);
for(index_t t = 0; t < num_token; t++)
{
for(index_t k = 0; k < topk; k++)
{
IndexType e = topk_ids(t, k);
WeightType w = weights(t, k);
index_t idx = expert_slice_idxs[e];
if(idx > expert_slices[e] * unit_size - 1)
{
expert_slices[e]++;
index_t new_size = expert_slices[e] * unit_size;
expert_tokens[e].resize(new_size);
expert_token_weights[e].resize(new_size);
for(index_t i = (expert_slices[e] - 1) * unit_size; i < new_size; i++)
{
expert_tokens[e][i] = num_token;
expert_token_weights[e][i] = 0;
}
}
expert_tokens[e][idx] = t;
expert_token_weights[e][idx] = w;
expert_slice_idxs[e]++;
}
}
IndexType* out_tokens = p_sorted_token_ids.data();
WeightType* out_weights = sorted_weight.data();
IndexType* out_expert_id = sorted_expert_ids.data();
for(index_t e = 0; e < experts; e++)
{
memcpy(out_tokens, expert_tokens[e].data(), sizeof(index_t) * expert_slices[e] * unit_size);
out_tokens += expert_slices[e] * unit_size;
memcpy(out_weights,
expert_token_weights[e].data(),
sizeof(WeightType) * expert_slices[e] * unit_size);
out_weights += expert_slices[e] * unit_size;
for(index_t s = 0; s < expert_slices[e]; s++)
{
out_expert_id[s] = e;
unit_cnt++;
}
out_expert_id += expert_slices[e];
}
unit_cnt *= unit_size;
return;
}
} // namespace ck_tile
......@@ -38,9 +38,7 @@ namespace ck_tile {
template <typename BlockTile_, // block size, seq<M, N>
typename WarpPerBlock_, // num warps along seq<M, N>
typename WarpTile_, // warp size, seq<M, N>
typename Vector_, // contiguous pixels(vector size) along seq<M, N>
index_t BlockSize_ =
warpSize* reduce_on_sequence(WarpPerBlock_{}, multiplies{}, number<1>{})>
typename Vector_> // contiguous pixels(vector size) along seq<M, N>)>
struct Generic2dBlockShape
{
// block size
......@@ -70,8 +68,10 @@ struct Generic2dBlockShape
// num of threads along seq<M, N>, within each warp
static constexpr index_t ThreadPerWarp_M = Warp_M / Vector_M;
static constexpr index_t ThreadPerWarp_N = Warp_N / Vector_N;
static constexpr index_t ThreadPerBlock_M = Block_M / Repeat_M / Vector_M;
static constexpr index_t ThreadPerBlock_N = Block_N / Repeat_N / Vector_N;
static constexpr index_t BlockSize = BlockSize_;
static constexpr index_t BlockSize = ThreadPerBlock_M * ThreadPerBlock_N;
};
} // namespace ck_tile
......@@ -230,7 +230,15 @@ struct PageBlockNavigator
CK_TILE_HOST_DEVICE
DataType* get_block_ptr(index_t block_index) const
{
return physical_blocks + physical_block_indices[block_index] * block_stride + fixed_offset;
if(block_index < num_blocks)
{
return physical_blocks + physical_block_indices[block_index] * block_stride +
fixed_offset;
}
else
{
return nullptr;
}
}
CK_TILE_HOST_DEVICE int32_t get_block_index(const WindowOrigin& global_window_origin) const
......
......@@ -863,6 +863,8 @@ struct BlockFmhaPipelineQXKSVSCustomPolicy : BlockFmhaPipelineQXCustomPolicy<QLo
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
constexpr index_t N1 = kBlockSize / get_warp_size();
static_assert(N2 != 0, "N2 is zero, which will lead to a division by zero error.");
static_assert(N1 != 0, "N1 is zero, which will lead to a division by zero error.");
constexpr index_t N0 = kNPerBlock / (N2 * N1);
static_assert(N0 != 0);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/elementwise.hpp"
#include "ck_tile/host/hip_check_error.hpp"
#include <string>
#include <type_traits>
namespace ck_tile {
struct MoeSortingHostArgs
{
const void* p_topk_ids;
const void* p_weights;
void* p_sorted_token_ids;
void* p_sorted_weights;
void* p_sorted_expert_ids;
void* p_total_tokens_post_pad;
void* p_moe_buf;
index_t tokens;
index_t unit_size;
index_t num_experts;
index_t topk;
index_t moe_buf_bytes;
};
template <typename Problem_>
struct MoeSortingKernel
{
using Problem = remove_cvref_t<Problem_>;
using IndexType = typename Problem::IndexType;
using WeightType = typename Problem::WeightType;
typedef MoeSortingHostArgs MoeSortingKargs;
using Hargs = MoeSortingHostArgs;
struct Kargs
{
const void* p_topk_ids;
const void* p_weights;
void* p_sorted_token_ids;
void* p_sorted_weights;
void* p_sorted_expert_ids;
void* p_total_tokens_post_pad;
void* p_moe_buf;
index_t tokens;
index_t num_experts;
index_t moe_buf_bytes;
index_t tokens_per_thread;
mdiv unit_size_mdiv;
mdiv topk_mdiv;
};
CK_TILE_HOST static constexpr auto GridSize(const Hargs& h)
{
// TODO: assume num-experts not too much
return dim3(1 + ck_tile::integer_divide_ceil(h.moe_buf_bytes, BlockSize(h).x * 16));
}
CK_TILE_HOST static constexpr auto BlockSize(const Hargs& h)
{
return dim3(ck_tile::integer_least_multiple(h.num_experts, ck_tile::get_warp_size()));
}
// in byte
CK_TILE_HOST static constexpr auto GetSmemSize(const Hargs& h)
{
const auto blocks = BlockSize(h);
return ((blocks.x + 1) * h.num_experts + (h.num_experts + 1)) * sizeof(index_t);
}
CK_TILE_HOST static constexpr auto MakeKargs(const Hargs& h)
{
Kargs k;
k.p_topk_ids = h.p_topk_ids;
k.p_weights = h.p_weights;
k.p_sorted_token_ids = h.p_sorted_token_ids;
k.p_sorted_weights = h.p_sorted_weights;
k.p_sorted_expert_ids = h.p_sorted_expert_ids;
k.p_moe_buf = h.p_moe_buf;
k.p_total_tokens_post_pad = h.p_total_tokens_post_pad;
k.tokens = h.tokens;
k.num_experts = h.num_experts;
k.moe_buf_bytes = h.moe_buf_bytes;
const auto blocks = BlockSize(h);
k.tokens_per_thread = integer_divide_ceil(h.tokens * h.topk, blocks.x);
k.unit_size_mdiv = mdiv{static_cast<uint32_t>(h.unit_size)};
k.topk_mdiv = mdiv{static_cast<uint32_t>(h.topk)};
return k;
}
CK_TILE_DEVICE index_t calc_index(index_t total_col, index_t row, index_t col) const
{
return row * total_col + col;
}
CK_TILE_DEVICE void moe_buf_set_zero_kernel(uint8x16_t* buf, index_t buf_bytes) const
{
const index_t offset = (blockIdx.x - 1) * blockDim.x + threadIdx.x;
if(offset < buf_bytes / 16)
{
buf[offset] = uint8x16_t{0};
}
}
CK_TILE_DEVICE void moe_align_block_size_kernel(const IndexType* __restrict__ topk_id,
const WeightType* __restrict__ weights,
index_t* p_sorted_token_ids,
WeightType* p_sorted_weights,
index_t* p_sorted_expert_ids,
index_t* p_total_tokens_post_pad,
const index_t num_experts,
const index_t tokens_per_thread,
const index_t numel,
const mdiv unit_size_mdiv,
const mdiv topk_mdiv,
void* smem) const
{
const index_t tid = static_cast<index_t>(threadIdx.x);
const index_t start_idx = tid * tokens_per_thread;
index_t* shared_mem = reinterpret_cast<index_t*>(smem);
index_t* tokens_cnts = shared_mem; // 2d: (blockDim.x + 1, num_experts)
index_t* cumsum = shared_mem + (blockDim.x + 1) * num_experts; // 1: (num_experts + 1)
for(int i = 0; i < num_experts; ++i)
{
tokens_cnts[calc_index(num_experts, tid + 1, i)] = 0;
}
#pragma unroll Problem_::InternalLoadUnroll
for(int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i)
{
++tokens_cnts[calc_index(num_experts, tid + 1, topk_id[i])];
}
__syncthreads();
if(tid < num_experts)
{
tokens_cnts[calc_index(num_experts, 0, tid)] = 0;
for(int i = 1; i <= static_cast<index_t>(blockDim.x); ++i)
{
tokens_cnts[calc_index(num_experts, i, tid)] +=
tokens_cnts[calc_index(num_experts, i - 1, tid)];
}
}
// __syncthreads();
if(tid == 0)
{
cumsum[0] = 0;
for(int i = 1; i <= num_experts; ++i)
{
auto current_units = [&]() {
index_t x_ = tokens_cnts[calc_index(num_experts, blockDim.x, i - 1)] +
unit_size_mdiv.divisor - 1;
index_t y_ = unit_size_mdiv.div(x_);
return max(y_, 1) * unit_size_mdiv.divisor;
}();
cumsum[i] = cumsum[i - 1] + current_units;
}
*p_total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
if(tid < num_experts)
{
for(int i = cumsum[tid]; i < cumsum[tid + 1]; i += unit_size_mdiv.divisor)
{
p_sorted_expert_ids[unit_size_mdiv.div(i)] = tid;
}
}
#pragma unroll Problem_::InternalLoadUnroll
for(int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i)
{
index_t expert_id = topk_id[i];
index_t rank_post_pad =
tokens_cnts[calc_index(num_experts, tid, expert_id)] + cumsum[expert_id];
p_sorted_token_ids[rank_post_pad] = topk_mdiv.div(i);
p_sorted_weights[rank_post_pad] = weights[i];
++tokens_cnts[calc_index(num_experts, tid, expert_id)];
}
const index_t prefill_token = topk_mdiv.div(numel);
if(tid < num_experts)
{
index_t expert_offset =
cumsum[tid] + tokens_cnts[calc_index(num_experts, blockDim.x, tid)];
while(expert_offset < cumsum[tid + 1])
{
p_sorted_token_ids[expert_offset] = prefill_token;
p_sorted_weights[expert_offset] = static_cast<WeightType>(0.0);
expert_offset++;
}
}
}
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
if(blockIdx.x > 0)
{
if(kargs.p_moe_buf)
{
moe_buf_set_zero_kernel(reinterpret_cast<uint8x16_t*>(kargs.p_moe_buf),
kargs.moe_buf_bytes);
}
return;
}
const size_t numel = kargs.tokens * kargs.topk_mdiv.divisor;
extern __shared__ char smem[];
return moe_align_block_size_kernel(static_cast<const IndexType*>(kargs.p_topk_ids),
static_cast<const WeightType*>(kargs.p_weights),
static_cast<IndexType*>(kargs.p_sorted_token_ids),
static_cast<WeightType*>(kargs.p_sorted_weights),
static_cast<IndexType*>(kargs.p_sorted_expert_ids),
static_cast<IndexType*>(kargs.p_total_tokens_post_pad),
kargs.num_experts,
kargs.tokens_per_thread,
numel,
kargs.unit_size_mdiv,
kargs.topk_mdiv,
smem);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_policy.hpp"
#include <string>
#include <type_traits>
#ifndef TOPK_SOFTMAX_USE_RAW_TILE_WINDOW
#define TOPK_SOFTMAX_USE_RAW_TILE_WINDOW 0
#endif
namespace ck_tile {
// template <typename Problem_, typename Policy_ = MoeSortingPolicy>
// struct MoeSortingPipeline
// {
// // TODO: this kernel only support warp per row
// using Problem = remove_cvref_t<Problem_>;
// using Policy = remove_cvref_t<Policy_>;
// using WeightType = typename Problem::WeightType;
// template <typename TopkIdWindow, typename WeightWindow>
// CK_TILE_DEVICE auto operator()(const TopkIdWindow& topk_id_window,
// const WeightWindow& weight_window,
// index_t* p_sorted_token_ids,
// WeightType* p_sorted_weights,
// index_t* p_sorted_expert_ids,
// index_t* p_total_tokens_post_pad,
// const index_t num_experts,
// const index_t unit_size,
// const size_t numel,
// const index_t topk)
// {
// }
// };
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment