Commit f23a2e2a authored by Jakub Piasecki's avatar Jakub Piasecki
Browse files

resolved conflicts

parents f3eb5a18 c0adab48
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
add_custom_target(example_gemm_mx)
add_example_executable(example_gemm_mx_fp8 gemm_mx_fp8.cpp)
add_example_dependencies(example_gemm_mx example_gemm_mx_fp8)
# GEMM Examples for Microscaling Formats
## example_gemm_mx_fp8
```bash
# arg1: verification (0=no, 1=CPU)
# arg2: initialization (0=no init, 1=integer value, 2=decimal value)
# arg3: time kernel (0=no, 1=yes)
# arg4: verbosity (0=no info, 1=verbose info)
# arg5 to 10: M (16x), N(16x), K(16x), StrideA, StrideB, StrideC
./bin/example_gemm_mx_fp8 1 1 0 1
```
```bash
# Implies: ./bin/example_gemm_mx_fp8 1 2 0 0
./bin/example_gemm_mx_fp8
```
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_ab_scale.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_mx_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
using ScaleDataType = ck::e8m0_bexp_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct ExecutionConfig final
{
int do_verification = 1; // (0=no, 1=CPU)
int init_method = 2; // (0=no init, 1=integer value, 2=decimal value)
bool time_kernel = false; // (0=no, 1=yes)
int verbosity = 0; // (0=no info, 1=verbose info)
};
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
};
bool parse_cmd_args(int argc, char* argv[], ProblemSize& problem_size, ExecutionConfig& config)
{
if(argc == 1)
{
// use default case
}
else if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.verbosity = std::stoi(argv[4]);
}
else if(argc == 11)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.verbosity = std::stoi(argv[4]);
problem_size.M = std::stoi(argv[5]);
problem_size.N = std::stoi(argv[6]);
problem_size.K = std::stoi(argv[7]);
problem_size.StrideA = std::stoi(argv[8]);
problem_size.StrideB = std::stoi(argv[9]);
problem_size.StrideC = std::stoi(argv[10]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4: verbosity (0=no info, 1=verbose info)" << std::endl
<< "arg5 to 10: M (16x), N(16x), K(16x), StrideA, StrideB, StrideC" << std::endl;
return false;
}
return true;
}
template <typename ADataType,
typename BDataType,
typename XDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename CElementWiseOp,
typename AccDataType,
typename CShuffleDataType,
ck::index_t MXVectorSize>
bool run_mx_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using ELayout = CLayout;
using DsLayout = ck::Tuple<>;
using DsDataType = ck::Tuple<>;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = CElementWiseOp;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto BlkGemmPSched = ck::BlockGemmPipelineScheduler::Intrawave;
static constexpr auto BlkGemmPVer = ck::BlockGemmPipelineVersion::v3;
#if 1
// XXX: These parameters should not exist in MX-native GEMM kernel
static constexpr ck::index_t Scale_Block_M = 128;
static constexpr ck::index_t Scale_Block_N = 128;
#endif
static constexpr ck::index_t Scale_Block_K = MXVectorSize;
// XXX: DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3 is not designed to utilize MX-specific MFMA
// instructions.
//
// XXX: DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3 is not designed to utilize device-optimized
// scaled type convert functions.
//
// XXX: In DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3, KPerBlock is expected to be equal to
// ScaleBlockK (aka MXVectorSize).
// Additionally, the following is also expected:
// static_assert(ScaleBlockM % MPerBlock == 0);
// static_assert(ScaleBlockN % NPerBlock == 0);
// In MX-native GEMM kernel these requirements should be relaxed.
//
// XXX: It appears, by default we are using mfma_f32_16x16x4xf32
// MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeB>::selected_mfma.k_per_blk =
// MfmaSelector<float, 16, 16, float>::selected_mfma.k_per_blk = mfma_f32_16x16x4xf32
// XXX: GridwiseGemmMultiD_ABScale_xdl_cshuffle_v3 assumes scale type is float
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3
// ######| ALayout| BLayout| DsLayout| CLayout| ADataType| AScale| BDataType| BScale| DsDataType| CDataType| GemmAcc| CShuffleDataType|AElementwise|BElementwise| CElementwise| GemmSpec|Block| ScaleBlockM| ScaleBlockN| ScaleBlockK| M| N| K| AK1| BK1| M| N|MXdl|NXdl|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer| ABlock|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer| BBlock| CShuffle| CShuffle|CShuffleBlockTransfer|CDEShuffleBlockTransfer| BlkGemm| BlkGemm|ComputeTypeA|ComputeTypeB|LDSTypeA|LDSTypeB|
// ######| | | | | | DataType| | DataType| | | DataType| | Operation| Operation| Operation| | Size| | | | Per| Per| Per| | | Per| Per| Per| Per| ThreadCluster| ThreadCluster|SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|LdsExtraM| ThreadCluster| ThreadCluster|SrcAccessOrder| SrcVector| SrcScalar| DstScalar|LdsExtraN| MXdl| NXdl| ClusterLengths| Scalar| PipeSched| PipelineVer| | | | |
// ######| | | | | | | | | | | | | | | | | | | | |Block|Block| Block| | | XDL| XDL|Wave|Wave| Lengths| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths| ArrangeOrder| | Dim| PerVector| PerVector_BK1| | PerWave| PerWave| MBlock_MPerBlock| PerVectors| | | | | | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AK0_M_AK1| | | | | | | BK0_N_BK1| | | | | |PerShuffle|PerShuffle| NBlock_NPerBlock| | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, XDataType, BDataType, XDataType, DsDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, Scale_Block_M, Scale_Block_N, Scale_Block_K, 128, 128, 128, 16, 16, 16, 16, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlkGemmPSched, BlkGemmPVer, float, float, float, float>;
// clang-format on
auto M = problem_size.M;
auto N = problem_size.N;
auto K = problem_size.K;
auto StrideA = problem_size.StrideA;
auto StrideB = problem_size.StrideB;
auto StrideC = problem_size.StrideC;
auto f_host_tensor_descriptor =
[](ck::index_t row, ck::index_t col, ck::index_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1});
}
else
{
return HostTensorDescriptor({row, col}, {1, stride});
}
};
auto f_get_default_stride =
[](ck::index_t row, ck::index_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<ck::index_t>(col);
}
else
{
return static_cast<ck::index_t>(row);
}
}
else
return static_cast<ck::index_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
StrideC = f_get_default_stride(M, N, StrideC, CLayout{});
if(K % Scale_Block_K != 0)
{
throw std::runtime_error("wrong! K must be multiple of Scale_Block_K (16 or 32)");
};
auto Scale_Stride_AM = f_get_default_stride(M, K / Scale_Block_K, StrideA, ALayout{});
auto Scale_Stride_BN = f_get_default_stride(K / Scale_Block_K, N, StrideB, BLayout{});
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<XDataType> a_m_k_scale(
f_host_tensor_descriptor(M, K / Scale_Block_K, Scale_Stride_AM, ALayout{})); // scales for A
Tensor<XDataType> b_k_n_scale(
f_host_tensor_descriptor(K / Scale_Block_K, N, Scale_Stride_BN, BLayout{})); // scales for B
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{})); // host verification
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{})); // device result downloaded to host
if(config.verbosity >= 0)
{
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "a_m_k_scale: " << a_m_k_scale.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "b_k_n_scale: " << b_k_n_scale.mDesc << std::endl;
std::cout << "c_m_n_device_result: " << c_m_n_device_result.mDesc << std::endl;
}
switch(config.init_method)
{
case 0:
if(config.verbosity > 0)
{
std::cout << "NOTE: No input data initialization." << std::endl;
}
break;
case 1:
case 2:
ck::utils::FillConstant<ADataType>{ck::type_convert<ADataType>(1.0f)}(a_m_k);
ck::utils::FillConstant<XDataType>{ck::type_convert<XDataType>(0.5f)}(a_m_k_scale);
ck::utils::FillConstant<BDataType>{ck::type_convert<BDataType>(1.0f)}(b_k_n);
ck::utils::FillConstant<XDataType>{ck::type_convert<XDataType>(2.0f)}(b_k_n_scale);
if(config.verbosity > 0)
{
std::cout << "Init A = {1}" << std::endl;
std::cout << "Init A scale = {0.5}" << std::endl;
std::cout << "Init B = {1}" << std::endl;
std::cout << "Init B scale = {2.0}" << std::endl;
std::cout << "Expect C = {K}" << std::endl;
}
break;
default:
if(config.verbosity > 0)
{
std::cout << "NOTE: No input data initialization." << std::endl;
}
}
if(config.verbosity > 0)
std::cout << "Device memory allocation..." << std::endl;
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem a_scale_device_buf(sizeof(XDataType) * a_m_k_scale.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem b_scale_device_buf(sizeof(XDataType) * b_k_n_scale.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
if(config.verbosity > 0)
std::cout << "Upload data to device..." << std::endl;
a_device_buf.ToDevice(a_m_k.mData.data());
a_scale_device_buf.ToDevice(a_m_k_scale.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
b_scale_device_buf.ToDevice(b_k_n_scale.mData.data());
if(config.verbosity > 0)
std::cout << "Done." << std::endl;
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumDTensor = DsDataType::Size();
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, NumDTensor>{},
c_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, NumDTensor>{},
StrideC,
a_scale_device_buf.GetDeviceBuffer(),
b_scale_device_buf.GetDeviceBuffer(),
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong!\n"
"Provided combination of compilation and runtime parameters is "
"not consistent with the supported device_gemm arguments.");
}
if(config.verbosity > 0)
std::cout << "Computing GEMM on device..." << std::endl;
float ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, config.verbosity, 20, 50});
bool res_verified = true;
if(config.do_verification > 0)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
if(config.verbosity > 0)
{
std::cout << "Done." << std::endl;
std::cout << "Computing GEMM on host..." << std::endl;
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceMXGemm<ADataType,
BDataType,
CDataType,
AccDataType,
float,
PassThrough,
PassThrough,
PassThrough,
float,
float>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k,
a_m_k_scale,
b_k_n,
b_k_n_scale,
c_m_n_host_result,
PassThrough{},
PassThrough{},
PassThrough{});
ref_invoker.Run(ref_argument);
if(config.verbosity > 0)
{
std::cout << "Done." << std::endl;
std::cout << "Comparing results..." << std::endl;
}
if(config.init_method == 1)
{
res_verified =
res_verified && std::abs(static_cast<float>(K) - c_m_n_device_result(0, 0)) <= 0.0f;
std::cout << "Expected vs Computed: " << 1.0f * K << " vs " << c_m_n_device_result(0, 0)
<< ((res_verified) ? " (PASSED!)" : " (FAILED!)") << std::endl;
}
res_verified = res_verified && ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!");
if(config.verbosity > 0 && res_verified)
std::cout << "Done." << std::endl;
}
else
{
if(config.verbosity > 0)
std::cout << "Done." << std::endl;
}
if(config.time_kernel)
{
std::size_t flop = std::size_t(2) * M * N * K + M * K + K * N; // GEMM + A scale + B scale
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N +
sizeof(XDataType) * (M * K + K * N) / Scale_Block_K;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
}
return res_verified;
}
template <typename ADataType,
typename BDataType,
typename XDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename CElementWiseOp,
typename AccDataType,
typename CShuffleDataType,
ck::index_t MXVectorSize>
bool run_mx_gemm_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
return parse_cmd_args(argc, argv, problem_size, config) &&
run_mx_gemm<ADataType,
BDataType,
XDataType,
CDataType,
ALayout,
BLayout,
CLayout,
CElementWiseOp,
AccDataType,
CShuffleDataType,
MXVectorSize>(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_mx_common.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
#if 1
// XXX: MX-native GEMM kernel will work with e8m0_bexp_t scale type
using XDataType = float;
#else
using XDataType = ck::e8m0_bexp_t;
#endif
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = float;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using CElementOp = PassThrough; // elementwise transformation for C matrix
constexpr ck::index_t mx_vector_size = 128; // scaling block size
int main(int argc, char* argv[])
{
return run_mx_gemm_example<ADataType,
BDataType,
XDataType,
CDataType,
ALayout,
BLayout,
CLayout,
CElementOp,
AccDataType,
CShuffleDataType,
mx_vector_size>(argc, argv)
? 0
: -1;
}
...@@ -23,34 +23,34 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -23,34 +23,34 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
message("adding example ${EXAMPLE_NAME}") message("adding example ${EXAMPLE_NAME}")
set(result 1) set(result 1)
if(DEFINED DTYPES) if(DEFINED DTYPES)
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
set(test 0) set(test 0)
if((source MATCHES "_fp16" OR source MATCHES "_f16") AND NOT "fp16" IN_LIST DTYPES) if((source MATCHES "_fp16" OR source MATCHES "_f16") AND NOT "fp16" IN_LIST DTYPES)
set(test 1) set(test 1)
endif() endif()
if((source MATCHES "_fp32" OR source MATCHES "_f32") AND NOT "fp32" IN_LIST DTYPES) if((source MATCHES "_fp32" OR source MATCHES "_f32") AND NOT "fp32" IN_LIST DTYPES)
set(test 1) set(test 1)
endif() endif()
if((source MATCHES "_fp64" OR source MATCHES "_f64") AND NOT "fp64" IN_LIST DTYPES) if((source MATCHES "_fp64" OR source MATCHES "_f64") AND NOT "fp64" IN_LIST DTYPES)
set(test 1) set(test 1)
endif() endif()
if((source MATCHES "_fp8" OR source MATCHES "_f8") AND NOT "fp8" IN_LIST DTYPES) if((source MATCHES "_fp8" OR source MATCHES "_f8") AND NOT "fp8" IN_LIST DTYPES)
set(test 1) set(test 1)
endif() endif()
if((source MATCHES "_bf8" OR source MATCHES "_bf8") AND NOT "bf8" IN_LIST DTYPES) if((source MATCHES "_bf8" OR source MATCHES "_bf8") AND NOT "bf8" IN_LIST DTYPES)
set(test 1) set(test 1)
endif() endif()
if((source MATCHES "_bf16" OR source MATCHES "_b16") AND NOT "bf16" IN_LIST DTYPES) if((source MATCHES "_bf16" OR source MATCHES "_b16") AND NOT "bf16" IN_LIST DTYPES)
set(test 1) set(test 1)
endif() endif()
if((source MATCHES "_int8" OR source MATCHES "_i8") AND NOT "int8" IN_LIST DTYPES) if((source MATCHES "_int8" OR source MATCHES "_i8") AND NOT "int8" IN_LIST DTYPES)
set(test 1) set(test 1)
endif() endif()
if(test EQUAL 1) if(test EQUAL 1)
message("removing example source file ${source} ") message("removing example source file ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}") list(REMOVE_ITEM FILE_NAME "${source}")
endif() endif()
endforeach() endforeach()
endif() endif()
set(EX_TARGETS ${SUPPORTED_GPU_TARGETS}) set(EX_TARGETS ${SUPPORTED_GPU_TARGETS})
...@@ -83,6 +83,13 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -83,6 +83,13 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
list(REMOVE_ITEM FILE_NAME "${source}") list(REMOVE_ITEM FILE_NAME "${source}")
endif() endif()
endforeach() endforeach()
#Do not build any microscaling examples if gfx950 target is not on the list
foreach(source IN LISTS FILE_NAME)
if(NOT EX_TARGETS MATCHES "gfx950" AND source MATCHES "_mx")
message("removing microscaling example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any FP8 examples if CK_ENABLE_FP8 not set #Do not build any FP8 examples if CK_ENABLE_FP8 not set
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
if(NOT DEFINED CK_ENABLE_FP8 AND source MATCHES "_fp8") if(NOT DEFINED CK_ENABLE_FP8 AND source MATCHES "_fp8")
...@@ -102,7 +109,9 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -102,7 +109,9 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
if(FILE_NAME MATCHES "_xdl") if(FILE_NAME MATCHES "_xdl")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic) list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
elseif(FILE_NAME MATCHES "_wmma") elseif(FILE_NAME MATCHES "_wmma")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030) list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx950)
elseif(FILE_NAME MATCHES "_mx") #only build mx example for gfx950
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
endif() endif()
set_source_files_properties(${FILE_NAME} PROPERTIES LANGUAGE HIP) set_source_files_properties(${FILE_NAME} PROPERTIES LANGUAGE HIP)
add_executable(${EXAMPLE_NAME} ${FILE_NAME}) add_executable(${EXAMPLE_NAME} ${FILE_NAME})
...@@ -195,7 +204,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME) ...@@ -195,7 +204,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
if(FILE_NAME MATCHES "_xdl") if(FILE_NAME MATCHES "_xdl")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic) list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
elseif(FILE_NAME MATCHES "_wmma") elseif(FILE_NAME MATCHES "_wmma")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030) list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx950)
endif() endif()
set_source_files_properties(${FILE_NAME} PROPERTIES LANGUAGE HIP) set_source_files_properties(${FILE_NAME} PROPERTIES LANGUAGE HIP)
add_executable(${EXAMPLE_NAME} ${FILE_NAME}) add_executable(${EXAMPLE_NAME} ${FILE_NAME})
......
...@@ -102,6 +102,11 @@ else() ...@@ -102,6 +102,11 @@ else()
list(APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -DCK_TILE_FMHA_FWD_APPENDKV_API=0) list(APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -DCK_TILE_FMHA_FWD_APPENDKV_API=0)
endif() endif()
# conditionally specify the use of OCP_FP8
if(CK_USE_OCP_FP8)
list(APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -DCK_TILE_USE_OCP_FP8)
endif()
# Allow comparing floating points directly in order to check sentinel values # Allow comparing floating points directly in order to check sentinel values
list(APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal) list(APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal)
list(APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-float-equal) list(APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-float-equal)
......
...@@ -19,16 +19,12 @@ float gemm_(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s) ...@@ -19,16 +19,12 @@ float gemm_(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s)
constexpr bool kPadN = false; constexpr bool kPadN = false;
constexpr bool kPadK = false; constexpr bool kPadK = false;
constexpr bool kTilePermute = false;
// The rank and permutation will also be generate out by the CodeGen part.
constexpr ck_tile::index_t kOutputRank = 2;
constexpr int kBlockPerCu = 1; constexpr int kBlockPerCu = 1;
// This part comes from the Codegen // This part comes from the Codegen
constexpr ck_tile::index_t M_Tile = 128; constexpr ck_tile::index_t M_Tile = 128;
constexpr ck_tile::index_t N_Tile = 128; constexpr ck_tile::index_t N_Tile = 128;
constexpr ck_tile::index_t K_Tile = 32; constexpr ck_tile::index_t K_Tile = 64;
constexpr ck_tile::index_t M_Warp = 2; constexpr ck_tile::index_t M_Warp = 2;
constexpr ck_tile::index_t N_Warp = 2; constexpr ck_tile::index_t N_Warp = 2;
...@@ -36,40 +32,33 @@ float gemm_(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s) ...@@ -36,40 +32,33 @@ float gemm_(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s)
constexpr ck_tile::index_t M_Warp_Tile = 32; constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32; constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8; constexpr ck_tile::index_t K_Warp_Tile = 16;
// Whether doing the CShuffle (transpose before the global memory), depending on the output
// layout.
constexpr bool CShuffleEpilogue =
std::is_same_v<CLayout, ck_tile::tensor_layout::gemm::ColumnMajor>;
using CodegenGemmShape = using CodegenGemmShape =
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>, ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>, ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>; ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTile2DPartitioner<CodegenGemmShape>; using TilePartitioner = ck_tile::GemmTile1DPartitioner<CodegenGemmShape>;
using GemmEpilogue = std::conditional_t<
CShuffleEpilogue,
ck_tile::CShuffleEpilogue<ck_tile::CShuffleEpilogueProblem<AccDataType,
CDataType,
kPadM,
kPadN,
kTilePermute,
kOutputRank,
1,
0,
TilePartitioner::MPerBlock,
TilePartitioner::NPerBlock>>,
ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadM, kPadN>>>;
using CodegenGemmTraits = using CodegenGemmTraits =
ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>; ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using CodegenPipelineProblem = ck_tile:: using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>; GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>; using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
using GemmEpilogue = ck_tile::CShuffleEpilogue<
ck_tile::CShuffleEpilogueProblem<AccDataType,
CDataType,
CLayout,
CodegenPipelineProblem::kBlockSize,
TilePartitioner::MPerBlock,
TilePartitioner::NPerBlock,
M_Warp,
N_Warp,
M_Warp_Tile,
N_Warp_Tile,
K_Warp_Tile,
CodegenPipelineProblem::TransposeC>>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM. // ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy. // Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = ck_tile::GemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>; using Kernel = ck_tile::GemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>;
...@@ -86,8 +75,11 @@ float gemm_(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s) ...@@ -86,8 +75,11 @@ float gemm_(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s)
if(s.log_level_ > 0) if(s.log_level_ > 0)
{ {
std::cout << "Launching kernel with args:" std::cout << "Launching kernel with args: " << Kernel::GetName() << '\n'
<< " grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}" << "shape: " << CodegenGemmShape::GetName() << '\n'
<< "problem: " << CodegenPipelineProblem::GetName() << '\n'
<< "pipeline: " << CodegenGemmPipeline::GetName() << '\n'
<< "grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}"
<< ", blocks: {" << blocks.x << ", " << blocks.y << ", " << blocks.z << "}" << ", blocks: {" << blocks.x << ", " << blocks.y << ", " << blocks.z << "}"
<< std::endl; << std::endl;
} }
...@@ -136,12 +128,32 @@ int run_gemm_example(int argc, char* argv[]) ...@@ -136,12 +128,32 @@ int run_gemm_example(int argc, char* argv[])
using Row = ck_tile::tensor_layout::gemm::RowMajor; using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor; using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string a_layout = arg_parser.get_str("a_layout"); std::string data_type = arg_parser.get_str("prec");
std::string b_layout = arg_parser.get_str("b_layout"); std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "C") if(a_layout == "R" && b_layout == "C")
{ {
return run_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{}); if(data_type == "fp16")
{
return run_gemm_example_with_layouts<ck_tile::half_t>(argc, argv, Row{}, Col{}, Row{});
}
else if(data_type == "bf16")
{
return run_gemm_example_with_layouts<ck_tile::bf16_t>(argc, argv, Row{}, Col{}, Row{});
}
else if(data_type == "fp8")
{
return run_gemm_example_with_layouts<ck_tile::fp8_t>(argc, argv, Row{}, Col{}, Row{});
}
else if(data_type == "bf8")
{
return run_gemm_example_with_layouts<ck_tile::bf8_t>(argc, argv, Row{}, Col{}, Row{});
}
else
{
throw std::runtime_error("Unsupported data_type!");
}
} }
else else
{ {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
#define CK_TILE_PIPELINE_COMPUTE 1
#define CK_TILE_PIPELINE_MEMORY 2
#ifndef CK_TILE_PIPELINE_DEFAULT
#define CK_TILE_PIPELINE_DEFAULT CK_TILE_PIPELINE_COMPUTE
#endif
#if(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE)
#define GEMM_PIPELINE ck_tile::GemmPipelineAgBgCrMem
#define UNIVERSAL_GEMM_PIPELINE ck_tile::BaseGemmPipelineAgBgCrMem
#define GEMM_PIPELINE_SCHEDULER ck_tile::GemmPipelineScheduler::Interwave
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE)
#define GEMM_PIPELINE ck_tile::GemmPipelineAgBgCrCompV3
#define UNIVERSAL_GEMM_PIPELINE ck_tile::BaseGemmPipelineAgBgCrCompV3
#define GEMM_PIPELINE_SCHEDULER ck_tile::GemmPipelineScheduler::Intrawave
#else
#error "unsupported CK_TILE_PIPELINE_DEFAULT value"
#endif
template <typename DataType>
struct GemmBasicTypeConfig;
template <>
struct GemmBasicTypeConfig<ck_tile::half_t>
{
using ADataType = ck_tile::half_t;
using BDataType = ck_tile::half_t;
using AccDataType = float;
using CDataType = ck_tile::half_t;
// ToDo: Add more bias config to support different categories of GEMM.
};
template <>
struct GemmBasicTypeConfig<ck_tile::bf16_t>
{
using ADataType = ck_tile::bf16_t;
using BDataType = ck_tile::bf16_t;
using AccDataType = float;
using CDataType = ck_tile::bf16_t;
};
template <>
struct GemmBasicTypeConfig<ck_tile::fp8_t>
{
using ADataType = ck_tile::fp8_t;
using BDataType = ck_tile::fp8_t;
using AccDataType = float;
using CDataType = ck_tile::half_t;
};
template <>
struct GemmBasicTypeConfig<ck_tile::bf8_t>
{
using ADataType = ck_tile::bf8_t;
using BDataType = ck_tile::bf8_t;
using AccDataType = float;
using CDataType = ck_tile::half_t;
};
template <typename T>
struct DataTypeTraits;
template <>
struct DataTypeTraits<float>
{
static constexpr const char* name = "fp32";
};
template <>
struct DataTypeTraits<double>
{
static constexpr const char* name = "fp64";
};
template <>
struct DataTypeTraits<ck_tile::half_t>
{
static constexpr const char* name = "fp16";
};
template <>
struct DataTypeTraits<ck_tile::bf16_t>
{
static constexpr const char* name = "bf16";
};
template <>
struct DataTypeTraits<ck_tile::fp8_t>
{
static constexpr const char* name = "fp8";
};
template <>
struct DataTypeTraits<ck_tile::bf8_t>
{
static constexpr const char* name = "bf8";
};
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3840", "m dimension")
.insert("n", "4096", "n dimension")
.insert("k", "2048", "k dimension")
.insert("a_layout", "R", "A tensor data layout - Row by default")
.insert("b_layout", "C", "B tensor data layout - Column by default")
.insert("c_layout", "R", "C tensor data layout - Row by default")
.insert("stride_a", "0", "Tensor A stride")
.insert("stride_b", "0", "Tensor B stride")
.insert("stride_c", "0", "Tensor C stride")
.insert("v", "2", "0. No validation, 1. Validation on CPU, 2. Validation on GPU")
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("split_k", "1", "splitK value");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
// host API
float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s);
...@@ -32,6 +32,7 @@ static constexpr inline auto is_row_major(Layout layout_) ...@@ -32,6 +32,7 @@ static constexpr inline auto is_row_major(Layout layout_)
ck_tile::tensor_layout::gemm::RowMajor>>{}; ck_tile::tensor_layout::gemm::RowMajor>>{};
} }
template <typename ADataType, typename BDataType, typename AccDataType, typename CDataType>
auto calculate_rtol_atol(const ck_tile::index_t K, auto calculate_rtol_atol(const ck_tile::index_t K,
const ck_tile::index_t kbatch, const ck_tile::index_t kbatch,
const float max_accumulated_value) const float max_accumulated_value)
...@@ -52,7 +53,13 @@ auto calculate_rtol_atol(const ck_tile::index_t K, ...@@ -52,7 +53,13 @@ auto calculate_rtol_atol(const ck_tile::index_t K,
return ck_tile::make_tuple(std::max(rtol, rtol_split_k), std::max(atol, atol_split_k)); return ck_tile::make_tuple(std::max(rtol, rtol_split_k), std::max(atol, atol_split_k));
} }
template <typename ALayout, typename BLayout, typename CLayout> template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf, float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
ck_tile::DeviceMem& b_k_n_dev_buf, ck_tile::DeviceMem& b_k_n_dev_buf,
ck_tile::DeviceMem& c_m_n_dev_buf, ck_tile::DeviceMem& c_m_n_dev_buf,
...@@ -96,13 +103,16 @@ float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf, ...@@ -96,13 +103,16 @@ float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
std::cout << "Run Gemm kernel with M =" << M << " N =" << N << " K =" << K std::cout << "Run Gemm kernel with M =" << M << " N =" << N << " K =" << K
<< " StrideA =" << stride_A << " StrideB =" << stride_B << " StrideC =" << stride_C << " StrideA =" << stride_A << " StrideB =" << stride_B << " StrideC =" << stride_C
<< " : " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << " A_Layout =" << ALayout::name << " B_Layout =" << BLayout::name
<< std::endl; << " C_Layout =" << CLayout::name << " A Type = " << DataTypeTraits<ADataType>::name
<< " B Type = " << DataTypeTraits<BDataType>::name
<< " C Type = " << DataTypeTraits<CDataType>::name << " : " << ave_time << " ms, "
<< tflops << " TFlops, " << gb_per_sec << " GB/s, " << std::endl;
return ave_time; return ave_time;
} }
template <typename ALayout, typename BLayout, typename CLayout> template <typename PrecType, typename ALayout, typename BLayout, typename CLayout>
int run_gemm_example_with_layouts(int argc, int run_gemm_example_with_layouts(int argc,
char* argv[], char* argv[],
const ALayout a_layout = ALayout{}, const ALayout a_layout = ALayout{},
...@@ -113,6 +123,11 @@ int run_gemm_example_with_layouts(int argc, ...@@ -113,6 +123,11 @@ int run_gemm_example_with_layouts(int argc,
if(!result) if(!result)
return -1; return -1;
using ADataType = typename GemmBasicTypeConfig<PrecType>::ADataType;
using BDataType = typename GemmBasicTypeConfig<PrecType>::BDataType;
using CDataType = typename GemmBasicTypeConfig<PrecType>::CDataType;
using AccDataType = typename GemmBasicTypeConfig<PrecType>::AccDataType;
ck_tile::index_t M = arg_parser.get_int("m"); ck_tile::index_t M = arg_parser.get_int("m");
ck_tile::index_t N = arg_parser.get_int("n"); ck_tile::index_t N = arg_parser.get_int("n");
ck_tile::index_t K = arg_parser.get_int("k"); ck_tile::index_t K = arg_parser.get_int("k");
...@@ -149,18 +164,19 @@ int run_gemm_example_with_layouts(int argc, ...@@ -149,18 +164,19 @@ int run_gemm_example_with_layouts(int argc,
c_m_n_dev_buf.SetZero(); c_m_n_dev_buf.SetZero();
c_m_n_dev_result.SetZero(); c_m_n_dev_result.SetZero();
invoke_gemm<ALayout, BLayout, CLayout>(a_m_k_dev_buf, invoke_gemm<ADataType, BDataType, AccDataType, CDataType, ALayout, BLayout, CLayout>(
b_k_n_dev_buf, a_m_k_dev_buf,
c_m_n_dev_buf, b_k_n_dev_buf,
M, c_m_n_dev_buf,
N, M,
K, N,
stride_A, K,
stride_B, stride_A,
stride_C, stride_B,
kbatch, stride_C,
n_warmup, kbatch,
n_repeat); n_warmup,
n_repeat);
c_m_n_dev_buf.FromDevice(c_m_n_dev_result.data()); c_m_n_dev_buf.FromDevice(c_m_n_dev_result.data());
bool pass = true; bool pass = true;
...@@ -175,8 +191,9 @@ int run_gemm_example_with_layouts(int argc, ...@@ -175,8 +191,9 @@ int run_gemm_example_with_layouts(int argc,
a_m_k, b_k_n, c_m_n_host_ref); a_m_k, b_k_n, c_m_n_host_ref);
const float max_accumulated_value = const float max_accumulated_value =
*std::max_element(c_m_n_host_ref.mData.begin(), c_m_n_host_ref.mData.end()); *std::max_element(c_m_n_host_ref.mData.begin(), c_m_n_host_ref.mData.end());
const auto rtol_atol = calculate_rtol_atol(K, kbatch, max_accumulated_value); const auto rtol_atol = calculate_rtol_atol<ADataType, BDataType, AccDataType, CDataType>(
pass = ck_tile::check_err(c_m_n_dev_result, K, kbatch, max_accumulated_value);
pass = ck_tile::check_err(c_m_n_dev_result,
c_m_n_host_ref, c_m_n_host_ref,
"Error: Incorrect results!", "Error: Incorrect results!",
rtol_atol.at(ck_tile::number<0>{}), rtol_atol.at(ck_tile::number<0>{}),
...@@ -185,7 +202,7 @@ int run_gemm_example_with_layouts(int argc, ...@@ -185,7 +202,7 @@ int run_gemm_example_with_layouts(int argc,
std::cout << "Relative error threshold: " << rtol_atol.at(ck_tile::number<0>{}) std::cout << "Relative error threshold: " << rtol_atol.at(ck_tile::number<0>{})
<< " Absolute error threshold: " << rtol_atol.at(ck_tile::number<1>{}) << " Absolute error threshold: " << rtol_atol.at(ck_tile::number<1>{})
<< std::endl; << std::endl;
std::cout << "The CPU veification result is:" << (pass ? "correct" : "fail") << std::endl; std::cout << "The CPU verification result is:" << (pass ? "correct" : "fail") << std::endl;
} }
else if(arg_parser.get_int("v") == 2) else if(arg_parser.get_int("v") == 2)
{ {
...@@ -232,8 +249,9 @@ int run_gemm_example_with_layouts(int argc, ...@@ -232,8 +249,9 @@ int run_gemm_example_with_layouts(int argc,
c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data()); c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data());
const float max_accumulated_value = const float max_accumulated_value =
*std::max_element(c_m_n_gpu_ref.mData.begin(), c_m_n_gpu_ref.mData.end()); *std::max_element(c_m_n_gpu_ref.mData.begin(), c_m_n_gpu_ref.mData.end());
const auto rtol_atol = calculate_rtol_atol(K, kbatch, max_accumulated_value); const auto rtol_atol = calculate_rtol_atol<ADataType, BDataType, AccDataType, CDataType>(
pass = ck_tile::check_err(c_m_n_dev_result, K, kbatch, max_accumulated_value);
pass = ck_tile::check_err(c_m_n_dev_result,
c_m_n_gpu_ref, c_m_n_gpu_ref,
"Error: Incorrect results!", "Error: Incorrect results!",
rtol_atol.at(ck_tile::number<0>{}), rtol_atol.at(ck_tile::number<0>{}),
...@@ -242,7 +260,7 @@ int run_gemm_example_with_layouts(int argc, ...@@ -242,7 +260,7 @@ int run_gemm_example_with_layouts(int argc,
std::cout << "Relative error threshold: " << rtol_atol.at(ck_tile::number<0>{}) std::cout << "Relative error threshold: " << rtol_atol.at(ck_tile::number<0>{})
<< " Absolute error threshold: " << rtol_atol.at(ck_tile::number<1>{}) << " Absolute error threshold: " << rtol_atol.at(ck_tile::number<1>{})
<< std::endl; << std::endl;
std::cout << "The GPU veification result is: " << (pass ? "correct" : "fail") << std::endl; std::cout << "The GPU verification result is: " << (pass ? "correct" : "fail") << std::endl;
} }
return pass; return pass;
......
#!/bin/sh #!/bin/sh
EXE="$(find . -name tile_example_gemm_basic -type f | head -n 1)" EXE="$(find . -name tile_example_gemm_basic -type f | head -n 1)"
VALID=0 VALID=1
for b_matrix_layout in "R" "C"; do
for b_matrix_layout in "C"; do
for m in "64" "512" "1024" "2048"; do for m in "64" "512" "1024" "2048"; do
for n in "512" "1024" "2048"; do for n in "512" "1024" "2048"; do
for k in "64" "512" "1024" "2048"; do for k in "64" "512" "1024" "2048"; do
$EXE -prec=fp16 -b=1 -m=$m -n=$n -k=$k -a_layout="R" -b_layout="$b_matrix_layout" -c_layout="R" -v=$VALID $EXE -prec=fp16 -m=$m -n=$n -k=$k -a_layout="R" -b_layout="$b_matrix_layout" -c_layout="R" -v=$VALID
done done
done done
done done
......
#!/bin/sh
EXE="$(find . -name tile_example_gemm_basic -type f | head -n 1)"
VALID=1
for b_matrix_layout in "C"; do
for m in "64" "512" "1024" "2048"; do
for n in "512" "1024" "2048"; do
for k in "64" "512" "1024" "2048"; do
$EXE -prec=fp8 -m=$m -n=$n -k=$k -a_layout="R" -b_layout="$b_matrix_layout" -c_layout="R" -v=$VALID
done
done
done
done
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment