Commit f20e48f1 authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8

parents b97c6876 0c9012fb
# permute
This folder contains example for permute kernel, which is similiar to [torch.permute](https://pytorch.org/docs/stable/generated/torch.permute.html) (combined with [torch.contiguous](https://pytorch.org/docs/stable/generated/torch.Tensor.contiguous.html)). Currently we implement a generic permute kernel that support up to rank 8 arbitrary permutation with a single kernel instance. Performance is not the first consideration, we prefer a simple and general kernel implementation using `ck_tile` in this example.
```
args:
-v weather do CPU validation or not (default:1)
-prec data type. fp16/bf16/fp32 (default:fp16)
-shape the shape of the input tensor (default:2,3,4)
-perm permute perm (default:2,1,0)
```
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_example_permute -j
```
This will result in an executable `build/bin/tile_example_permute`
## some examples
```
# torch
x=torch.randn(2,3,4,6)
y=x.permute(0,3,2,1).contiguous()
# ck_tile
./build/bin/tile_example_permute -shape=2,3,4,6 -perm=0,3,2,1
```
or you can try the smoke_test
```
# in the root of ck_tile, after you build this example
sh example/ck_tile/06_permute/script/smoke_test.sh
```
### alternative implementation
we have an alternative implementation under `alternative_impl/` folder, that can swizzle the tensor to be more friendly for data loading for matrix core layout. This can be enabled when dealing with a `rank-7` tensor, with a fixed pattern of either `0,1,4,2,5,3,6` or `0,1,2,4,5,3,6`. There are other shape limitation of this implementation, check the source code of `permute.cpp` for detail.
```
# example
./build/bin/tile_example_permute -shape=3,6,4,32,16,2,8 -perm=0,1,4,2,5,3,6 # b_n0_k0_n1_k1_n2_k2
./build/bin/tile_example_permute -shape=3,8,4,16,16,4,8 -perm=0,1,2,4,5,3,6 # b_n0_n1_k0_k1_n2_k2
```
#include "matrix_core_swizzle.hpp"
#include "matrix_core_swizzle_kernel.hpp"
float matrix_core_swizzle(matrix_core_swizzle_traits t,
matrix_core_swizzle_args a,
const ck_tile::stream_config& s)
{
if(t.data_type.compare("fp16") == 0)
{
if(t.inst.compare("32x32x8") == 0)
{
constexpr int BLOCK_SIZE = 256;
constexpr int NPerBlock = 256;
constexpr int KPerBlock = 128;
constexpr matrix_core_inst_enum Inst = matrix_core_inst_enum::MFMA_32x32x8_F16;
if(t.permute.compare("0,1,4,2,5,3,6") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
else if(t.permute.compare("0,1,2,4,5,3,6") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
else if(t.permute.compare("0,1,3,4,2,5") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_nr_kr_kw_nw_kv;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
}
else if(t.inst.compare("16x16x16") == 0)
{
constexpr int BLOCK_SIZE = 256;
constexpr int NPerBlock = 256;
constexpr int KPerBlock = 128;
constexpr matrix_core_inst_enum Inst = matrix_core_inst_enum::MFMA_16x16x16_F16;
if(t.permute.compare("0,1,4,2,5,3,6") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
else if(t.permute.compare("0,1,2,4,5,3,6") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
else if(t.permute.compare("0,1,3,4,2,5") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_nr_kr_kw_nw_kv;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
}
}
return -1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "matrix_core_swizzle_kernel.hpp"
#include <string>
struct matrix_core_swizzle_traits
{
std::string data_type; // fp16 only
std::string inst; // 32x32x8, 16x16x16
std::string permute; //
};
using matrix_core_swizzle_args = matrix_core_swizzle_host_args;
// host API
float matrix_core_swizzle(matrix_core_swizzle_traits,
matrix_core_swizzle_args,
const ck_tile::stream_config&);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/ops/gemm.hpp"
// if set to 1, slightly more instructions generated to calculate address
#ifndef MERGE_2D_013425
#define MERGE_2D_013425 0
#endif
enum class matrix_core_inst_enum
{
MFMA_32x32x8_F16 = 0,
MFMA_16x16x16_F16 = 1,
};
namespace detail {
template <matrix_core_inst_enum>
struct to_warp_gemm;
template <>
struct to_warp_gemm<matrix_core_inst_enum::MFMA_32x32x8_F16>
{
using type = ck_tile::WarpGemmMfmaF16F16F32M32N32K8;
};
template <>
struct to_warp_gemm<matrix_core_inst_enum::MFMA_16x16x16_F16>
{
using type = ck_tile::WarpGemmMfmaF16F16F32M16N16K16;
};
} // namespace detail
template <matrix_core_inst_enum Inst>
using to_warp_gemm_t = typename detail::to_warp_gemm<Inst>::type;
// TODO: in below permute pattern, the last 3 dim is within wave
enum class matrix_core_permute_style
{
permute_b_n0_k0_n1_k1_n2_k2 = 0, // 0,1,4,2,5,3,6
permute_b_n0_n1_k0_k1_n2_k2 = 1, // 0,1,2,4,5,3,6
permute_b_nr_kr_kw_nw_kv = 2, // 0,1,3,4,2,5
permute_b_nr_kr_waveflatten = permute_b_nr_kr_kw_nw_kv,
};
// assume this is B matrix, originally we have batch*n*k
// now batch* n0*n1*n2*k0*k1*k2 -> batch* n0*k0*n1*k1*n2*k2
// assume using 32x32x8-f16, 4 waves and extend the KPerLane to 8xfp16(dwordx4)
//
// 4(waves) 32(mfma_m lane)
// | |
// batch* n0*n1*n2*k0*k1*k2 -> batch* n0*k0*n1*k1*n2*k2 -> 8(thread loading)
// nr kr |
// nr 4 32 kr 2 8 2(klane)
//
// permute: 0,1,4,2,5,3,6
// or
// batch* n0*n1*n2*k0*k1*k2 -> batch* n0*n1*k0*k1*n2*k2 -> 8(thread loading)
// permute: 0,1,2,4,5,3,6
//
// this kernel only deal with fp16/bf16 data(16bit), and use 2d block size to do the swizzling
// for simplicity, only consider n/k is multiple of block-size
// independend host arg with no template
struct matrix_core_swizzle_host_args
{
const void* p_src;
void* p_dst;
int32_t batch;
int32_t n;
int32_t k;
};
// NOTE: this kernel could follow the style of generic permute kernel
// but here we pass in fixed layout as template arg and generate different kernel instance
// purposely
template <int BLOCK_SIZE_ = 256,
int NPerBlock_ = 256,
int KPerBlock_ = 128,
matrix_core_permute_style pstyle_ =
matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2,
matrix_core_inst_enum Inst_ = matrix_core_inst_enum::MFMA_32x32x8_F16>
struct matrix_core_swizzle_kernel
{
using karg = matrix_core_swizzle_host_args;
using harg = matrix_core_swizzle_host_args;
static constexpr int BLOCK_SIZE = BLOCK_SIZE_;
static constexpr int WavesPerBlock_N = 4;
static constexpr int WavesPerBlock_K = 1;
static_assert(WavesPerBlock_N * WavesPerBlock_K * 64 == BLOCK_SIZE);
static constexpr int NPerBlock = NPerBlock_;
static constexpr int KPerBlock = KPerBlock_;
static constexpr matrix_core_permute_style pstyle = pstyle_;
static constexpr matrix_core_inst_enum Inst = Inst_;
static constexpr ck_tile::index_t Alignment = 8;
karg a;
dim3 grids;
using WarpGemm = to_warp_gemm_t<Inst>;
__host__ matrix_core_swizzle_kernel(harg h)
{
a = h;
ck_tile::index_t ns = (h.n + NPerBlock - 1) / NPerBlock;
ck_tile::index_t ks = (h.k + KPerBlock - 1) / KPerBlock;
grids = dim3(ks, ns, h.batch);
}
__host__ bool is_applicable(harg h) { return h.n % NPerBlock == 0 && h.k % KPerBlock == 0; }
__host__ void operator()(const ck_tile::stream_config& s) const
{
ck_tile::kentry<BLOCK_SIZE, 1, kernel><<<grids, BLOCK_SIZE, 0, s.stream_id_>>>(a);
}
struct kernel
{
__device__ static constexpr auto get_src_dist()
{
using namespace ck_tile;
constexpr index_t K2 = Alignment;
constexpr index_t N2 = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t K1 = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t N1 = BLOCK_SIZE / get_warp_size();
static_assert(NPerBlock % (N1 * N2) == 0);
static_assert(KPerBlock % (K1 * K2) == 0);
constexpr index_t K0 = KPerBlock / (K1 * K2);
constexpr index_t N0 = NPerBlock / (N1 * N2);
// clang-format off
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,// 0
// 1 2 3 4 5 6
tuple<sequence<N0>, sequence<N1>, sequence<N2>, sequence<K0>, sequence<K1>, sequence<K2>>,
// N1 K1 N2
tuple<sequence<2>, sequence<5, 3>>,
tuple<sequence<0>, sequence<0, 0>>,
// N0 K0 K2
sequence<1, 4, 6>,
sequence<0, 0, 0>>{});
// clang-format on
}
__device__ static constexpr auto get_dst_dist()
{
using namespace ck_tile;
constexpr index_t K2 = Alignment;
constexpr index_t N2 = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t K1 = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t N1 = BLOCK_SIZE / get_warp_size();
static_assert(NPerBlock % (N1 * N2) == 0);
static_assert(KPerBlock % (K1 * K2) == 0);
constexpr index_t K0 = KPerBlock / (K1 * K2);
constexpr index_t N0 = NPerBlock / (N1 * N2);
if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2)
{
// clang-format off
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,// 0
// 1 2 3 4 5 6
tuple<sequence<N0>, sequence<K0>, sequence<N1>, sequence<K1>, sequence<N2>, sequence<K2>>,
// N1 K1 N2
tuple<sequence<3>, sequence<4, 5>>,
tuple<sequence<0>, sequence<0, 0>>,
// N0 K0 K2
sequence<1, 2, 6>,
sequence<0, 0, 0>>{});
// clang-format on
}
else if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2)
{
// clang-format off
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,// 0
// 1 2 3 4 5 6
tuple<sequence<N0>, sequence<N1>, sequence<K0>, sequence<K1>, sequence<N2>, sequence<K2>>,
// N1 K1 N2
tuple<sequence<2>, sequence<4, 5>>,
tuple<sequence<0>, sequence<0, 0>>,
// N0 K0 K2
sequence<1, 3, 6>,
sequence<0, 0, 0>>{});
// clang-format on
}
else
{
// clang-format off
// permute_b_nr_kr_kw_nw_kv or permute_b_nr_kr_waveflatten
constexpr index_t Kv = Alignment;
constexpr index_t Nw = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t Kw = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
static_assert(KPerBlock % (K1 * K2) == 0);
constexpr index_t Nr = NPerBlock / Nw;
constexpr index_t Kr = KPerBlock / (Kv * Kw);
constexpr index_t Nr_p = WavesPerBlock_N;
constexpr index_t Kr_p = WavesPerBlock_K;
constexpr index_t Nr_y = Nr / Nr_p;
constexpr index_t Kr_y = Kr / Kr_p;
return make_static_tile_distribution(
#if MERGE_2D_013425
tile_distribution_encoding<
sequence<1>,// 0 R
// major 1 2
// minor 0 1 2 0 1 2 3
tuple<sequence<Nr_y, Nr_p, Nw>, sequence<Kr_y, Kr_p, Kw, Kv>>, // H
// Nr_p, Kr_p Kw Nw
tuple<sequence<1 , 2>, sequence<2, 1>>, // p major
tuple<sequence<1 , 1>, sequence<2, 2>>, // p minor
// Nr_y Kr_y Kv
sequence<1, 2, 2>, // Y major
sequence<0, 0, 3>>{}); // y minor
#else
tile_distribution_encoding<
sequence<1>,// 0 R
// major 1 2 3
// minor 0 1 0 1 0 1 2
tuple<sequence<Nr_y, Nr_p>, sequence<Kr_y, Kr_p>, sequence<Kw, Nw, Kv>>, // H
// Nr_p, Kr_p Kw Nw
tuple<sequence<1 , 2>, sequence<3, 3>>, // p major
tuple<sequence<1 , 1>, sequence<0, 1>>, // p minor
// Nr_y Kr_y Kv
sequence<1, 2, 3>, // Y major
sequence<0, 0, 2>>{}); // y minor
#endif
// clang-format on
}
}
__device__ void operator()(karg a_)
{
using namespace ck_tile;
index_t i_k = blockIdx.x;
index_t i_n = blockIdx.y;
index_t i_b = blockIdx.z;
constexpr index_t k2 = Alignment;
constexpr index_t n2 = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t k1 = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t n1 = BLOCK_SIZE / get_warp_size();
const index_t k0 = a_.k / (k1 * k2);
const index_t n0 = a_.n / (n1 * n2);
constexpr index_t k2_tile = Alignment;
constexpr index_t n2_tile = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t k1_tile = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t n1_tile = BLOCK_SIZE / get_warp_size();
constexpr index_t k0_tile = KPerBlock / (k1_tile * k2_tile);
constexpr index_t n0_tile = NPerBlock / (n1_tile * n2_tile);
const fp16_t* p_src = reinterpret_cast<const fp16_t*>(a_.p_src) + i_b * a_.k * a_.n;
fp16_t* p_dst = reinterpret_cast<fp16_t*>(a_.p_dst) + i_b * a_.k * a_.n;
const auto src_view = [&]() {
const auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_src,
make_tuple(n0, n1, n2, k0, k1, k2),
number<Alignment>{}); // control vector load
return tmp;
}();
const auto src_window = make_tile_window(src_view,
make_tuple(number<n0_tile>{},
number<n1_tile>{},
number<n2_tile>{},
number<k0_tile>{},
number<k1_tile>{},
number<k2_tile>{}),
{i_n * n0_tile, 0, 0, i_k * k0_tile, 0, 0},
get_src_dist());
auto dst_view = [&]() {
if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2)
{
auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst,
make_tuple(n0, k0, n1, k1, n2, k2),
number<Alignment>{}); // control vector load
return tmp;
}
else if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2)
{
auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst,
make_tuple(n0, n1, k0, k1, n2, k2),
number<Alignment>{}); // control vector load
return tmp;
}
else
{
#if MERGE_2D_013425
constexpr index_t kv = Alignment;
constexpr index_t nw = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t kw = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
// constexpr index_t waveflatten = kw*nw*kv;
const index_t kr = a_.k / (k1 * k2);
const index_t nr = a_.n / nw;
auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst,
make_tuple(nr, kr, number<kw>{}, number<nw>{}, number<kv>{}),
number<Alignment>{}); // control vector load
auto tmp_1 = transform_tensor_view(
tmp,
make_tuple(
make_merge_transform(make_tuple(nr, number<nw>{})),
make_merge_transform(make_tuple(kr, number<kw>{}, number<kv>{}))),
make_tuple(sequence<0, 3>{}, sequence<1, 2, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return tmp_1;
#else
// permute_b_nr_kr_waveflatten = permute_b_nr_kr_kw_nw_kv,
constexpr index_t kv = Alignment;
constexpr index_t nw = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t kw = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t waveflatten = kw * nw * kv;
const index_t kr = a_.k / (k1 * k2);
const index_t nr = a_.n / nw;
auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst,
make_tuple(nr, kr, waveflatten),
number<Alignment>{}); // control vector load
return tmp;
#endif
}
}();
auto dst_window = [&]() {
if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2)
{
return make_tile_window(dst_view,
make_tuple(number<n0_tile>{},
number<k0_tile>{},
number<n1_tile>{},
number<k1_tile>{},
number<n2_tile>{},
number<k2_tile>{}),
{i_n * n0_tile, i_k * k0_tile, 0, 0, 0, 0},
get_dst_dist());
}
else if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2)
{
return make_tile_window(dst_view,
make_tuple(number<n0_tile>{},
number<n1_tile>{},
number<k0_tile>{},
number<k1_tile>{},
number<n2_tile>{},
number<k2_tile>{}),
{i_n * n0_tile, 0, i_k * k0_tile, 0, 0, 0},
get_dst_dist());
}
else
{
#if MERGE_2D_013425
// permute_b_nr_kr_waveflatten = permute_b_nr_kr_kw_nw_kv
return make_tile_window(dst_view,
make_tuple(number<NPerBlock>{}, number<KPerBlock>{}),
{i_n * NPerBlock, i_k * KPerBlock},
get_dst_dist());
#else
// permute_b_nr_kr_waveflatten = permute_b_nr_kr_kw_nw_kv
constexpr index_t kv = Alignment;
constexpr index_t nw = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t kw = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t waveflatten_tile = kw * nw * kv;
constexpr index_t nr_tile = NPerBlock / nw;
constexpr index_t kr_tile = KPerBlock / (kw * kv);
return make_tile_window(dst_view,
make_tuple(number<nr_tile>{},
number<kr_tile>{},
number<waveflatten_tile>{}),
{i_n * nr_tile, i_k * kr_tile, 0},
get_dst_dist());
#endif
}
}();
// actual load store
auto src_tile = load_tile(src_window);
// now we only swap the distribution from src to dst, no extra movement occurs
auto dst_tile = make_static_distributed_tensor<fp16_t>(get_dst_dist());
dst_tile.get_thread_buffer() = src_tile.get_thread_buffer();
// final store
store_tile(dst_window, dst_tile);
}
};
};
This diff is collapsed.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/permute.hpp"
#include <string>
struct permute_traits
{
std::string data_type;
};
using permute_args = ck_tile::GenericPermuteHostArgs;
// host API
float permute(permute_traits, permute_args, const ck_tile::stream_config&);
#!/bin/sh
# TODO: run this script from CK root
BUILD=build
EXE=$BUILD/bin/tile_example_permute
COMMON_ARGS='-v=1 -warmup=0 -repeat=1'
# mode=0
# export HIP_VISIBLE_DEVICES=4
if [ $# -ge 1 ] ; then
set -x
fi
$EXE -prec=fp16 -shape=3,6,4,32,16,2,8 -perm=0,1,4,2,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=5,10,4,32,8,2,8 -perm=0,1,4,2,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=3,8,4,16,16,4,8 -perm=0,1,4,2,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=3,6,4,32,16,2,8 -perm=0,1,2,4,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=5,10,4,32,8,2,8 -perm=0,1,2,4,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=3,8,4,16,16,4,8 -perm=0,1,2,4,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=2,8,16,8,4,8 -perm=0,1,3,4,2,5 $COMMON_ARGS
$EXE -prec=fp16 -shape=1,24,32,16,2,8 -perm=0,1,3,4,2,5 $COMMON_ARGS
echo "------------------------------------------------------------------"
for prec in "fp8" "fp16" "fp32" ; do
$EXE -prec=$prec -shape=3,8 -perm=1,0 $COMMON_ARGS
$EXE -prec=$prec -shape=48,6,8 -perm=2,1,0 $COMMON_ARGS
$EXE -prec=$prec -shape=24,128,3 -perm=0,2,1 $COMMON_ARGS
$EXE -prec=$prec -shape=4,10,7,6 -perm=0,2,3,1 $COMMON_ARGS
$EXE -prec=$prec -shape=8,24,36,10 -perm=3,1,2,0 $COMMON_ARGS
$EXE -prec=$prec -shape=8,1,36,4 -perm=2,1,0,3 $COMMON_ARGS
$EXE -prec=$prec -shape=5,10,16,2,36,4 -perm=4,5,2,1,0,3 $COMMON_ARGS
$EXE -prec=$prec -shape=2,32,8,3,6,2,5,4 -perm=5,2,4,7,1,6,3,0 $COMMON_ARGS
echo "------------------------------------------------------------------"
done
add_executable(tile_example_topk_softmax EXCLUDE_FROM_ALL topk_softmax.cpp topk_softmax_api.cpp)
target_include_directories(tile_example_topk_softmax PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/)
set(EXAMPLE_TOPK_SOFTMAX_COMPILE_OPTIONS)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list(APPEND EXAMPLE_TOPK_SOFTMAX_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal)
# list(APPEND EXAMPLE_TOPK_SOFTMAX_COMPILE_OPTIONS -v --save-temps -Wno-gnu-line-marker)
target_compile_options(tile_example_topk_softmax PRIVATE ${EXAMPLE_TOPK_SOFTMAX_COMPILE_OPTIONS})
# topk-softmax
This folder contains example for topk-softmax kernel using ck_tile tile-programming implementation. This kernel is often used in Moe model, before launching the fused-moe-gemm block. The input is a `token*expert` 2d matrix. The op will do a softmax per row(`expert`), then find the `topk` value for each row. Output is a `token*topk` weight(usually fp32) and index(int32) 2d tensor.
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_example_topk_softmax -j
```
This will result in an executable `build/bin/tile_example_topk_softmax`
## example
```
args:
-v weather do CPU validation or not (default:1)
-pr_i input data type. fp16/fp32 (representing 8/16/32 bit data) (default:fp16)
-pr_w output weight data type(currently only fp32 supported now) (default:fp32)
-t number of input tokens (default:32)
-e number of experts (default:8)
-k topk (default:2)
-st_i row stride of input, -1 means same as experts (default:-1)
-st_o row stride of output/indices, -1 means same as topk (default:-1)
-seed seed to be used, -1 means random every time (default:-1)
-kname when set to 1 it will print kernel name (default:0)
```
#!/bin/sh
EXE=./build/bin/tile_example_topk_softmax
for pr_i in "fp16" "bf16" ; do
$EXE -pr_i=$pr_i -t=80 -e=17
$EXE -pr_i=$pr_i -t=111 -e=117
$EXE -pr_i=$pr_i -t=1000 -e=55
$EXE -pr_i=$pr_i -t=99 -e=180
$EXE -pr_i=$pr_i -t=175 -e=64 -k=8
$EXE -pr_i=$pr_i -t=65 -e=8 -k=2
$EXE -pr_i=$pr_i -t=1 -e=25
$EXE -pr_i=$pr_i -t=31 -e=19 -k=15
$EXE -pr_i=$pr_i -t=81 -e=37 -k=7
$EXE -pr_i=$pr_i -t=199 -e=128 -k=13
$EXE -pr_i=$pr_i -t=23 -e=1 -k=1
$EXE -pr_i=$pr_i -t=127 -e=99 -k=19 -st_i=233 -st_o=31
$EXE -pr_i=$pr_i -t=71 -e=11 -k=11 -st_i=30 -st_o=12
$EXE -pr_i=$pr_i -t=1 -e=1 -k=1
$EXE -pr_i=$pr_i -t=99 -e=2 -k=1 -st_i=11 -st_o=5
$EXE -pr_i=$pr_i -t=333 -e=99 -k=13 -st_i=191 -st_o=17
done
This diff is collapsed.
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "topk_softmax_api.hpp"
#define TOPK_SOFTMAX_DISPATCH(experts_) \
constexpr ck_tile::index_t ts_experts = experts_; \
using ts_problem = ck_tile:: \
TopkSoftmaxWarpPerRowProblem<ts_input_type, ts_weight_type, ts_index_type, ts_experts>; \
using ts_pipeline = ck_tile::TopkSoftmaxWarpPerRowPipeline<ts_problem>; \
\
using kernel = ck_tile::TopkSoftmaxKernel<ts_pipeline>; \
\
auto kargs = kernel::MakeKargs(a); \
\
const dim3 grids = kernel::GridSize(a); \
constexpr dim3 blocks = kernel::BlockSize(); \
\
float ave_time = ck_tile::launch_kernel( \
s, ck_tile::make_kernel<blocks.x, 1>(kernel{}, grids, blocks, 0, kargs)); \
\
return ave_time;
float topk_softmax(topk_softmax_trait t, topk_softmax_kargs a, ck_tile::stream_config s)
{
if(t.input_type == "fp16" && t.weight_type == "fp32")
{
using ts_input_type = ck_tile::fp16_t;
using ts_weight_type = float;
using ts_index_type = ck_tile::index_t;
#if 1
if(t.experts <= 8)
{
TOPK_SOFTMAX_DISPATCH(8)
}
else if(t.experts <= 16)
{
TOPK_SOFTMAX_DISPATCH(16)
}
else if(t.experts <= 32)
{
TOPK_SOFTMAX_DISPATCH(32)
}
else if(t.experts <= 64)
{
TOPK_SOFTMAX_DISPATCH(64)
}
else if(t.experts <= 128)
{
TOPK_SOFTMAX_DISPATCH(128)
}
else if(t.experts <= 192)
{
TOPK_SOFTMAX_DISPATCH(192)
}
#else
if(t.experts <= 128)
{
TOPK_SOFTMAX_DISPATCH(128)
}
#endif
}
else if(t.input_type == "bf16" && t.weight_type == "fp32")
{
#if 1
using ts_input_type = ck_tile::bf16_t;
using ts_weight_type = float;
using ts_index_type = ck_tile::index_t;
if(t.experts <= 8)
{
TOPK_SOFTMAX_DISPATCH(8)
}
else if(t.experts <= 16)
{
TOPK_SOFTMAX_DISPATCH(16)
}
else if(t.experts <= 32)
{
TOPK_SOFTMAX_DISPATCH(32)
}
else if(t.experts <= 64)
{
TOPK_SOFTMAX_DISPATCH(64)
}
else if(t.experts <= 128)
{
TOPK_SOFTMAX_DISPATCH(128)
}
else if(t.experts <= 192)
{
TOPK_SOFTMAX_DISPATCH(192)
}
#endif
}
return -1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/ops/topk_softmax.hpp"
#include <string>
struct topk_softmax_trait
{
std::string input_type;
std::string weight_type; // currently always float
int experts;
};
struct topk_softmax_kargs : public ck_tile::TopkSoftmaxHostArgs
{
};
float topk_softmax(topk_softmax_trait t, topk_softmax_kargs a, ck_tile::stream_config s);
set(TILE_RMSNORM2D_FWD "tile_rmsnorm2d_fwd")
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message("adding ${TILE_RMSNORM2D_FWD}")
file(GLOB INSTANCE_SRCS instances/*.cpp)
add_executable(${TILE_RMSNORM2D_FWD} EXCLUDE_FROM_ALL rmsnorm2d_fwd.cpp)
target_include_directories(${TILE_RMSNORM2D_FWD} PRIVATE ${CMAKE_CURRENT_LIST_DIR})
target_sources(${TILE_RMSNORM2D_FWD} PRIVATE ${INSTANCE_SRCS})
set(TILE_RMSNORM2D_FWD_COMPILE_OPTIONS)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list(APPEND TILE_RMSNORM2D_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal)
target_compile_options(${TILE_RMSNORM2D_FWD} PRIVATE ${TILE_RMSNORM2D_FWD_COMPILE_OPTIONS})
set(EXAMPLE_RMSNORM2D_FWD "tile_example_rmsnorm2d_fwd")
add_executable(${EXAMPLE_RMSNORM2D_FWD} EXCLUDE_FROM_ALL example_rmsnorm2d_fwd.cpp)
target_compile_options(${EXAMPLE_RMSNORM2D_FWD} PRIVATE ${TILE_RMSNORM2D_FWD_COMPILE_OPTIONS})
# TODO: we have to turn off this global prop, otherwise the progress bar generated
# by cmake will print too many files, execvp: /bin/sh: Argument list too long
# however, this property may affect global
# TODO: consider codegen a makefile by us
set_property(GLOBAL PROPERTY RULE_MESSAGES OFF)
# Rmsnorm2D forward
This folder contains example for Rmsnorm2D forward using ck_tile tile-programming implementation.
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_rmsnorm2d_fwd -j
```
This will result in an executable `build/bin/tile_rmsnorm2d_fwd`
## cmdline
```
args:
-m m dimension (default:3328)
-n m dimension (default:4096)
-e epsilon (default:1e-5)
-v cpu validation or not (default:1)
-prec precision (default:fp16)
```
This diff is collapsed.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
#if 0
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 2, 128, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 2, 128, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 4, 64, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 1, 256, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment