Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
f20e48f1
Commit
f20e48f1
authored
Nov 05, 2024
by
aska-0096
Browse files
Merge branch 'develop' of
https://github.com/ROCm/composable_kernel
into update_cka8w8
parents
b97c6876
0c9012fb
Changes
361
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2246 additions
and
58 deletions
+2246
-58
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
+12
-0
include/ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp
...orm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp
+240
-0
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp
...ine/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp
+95
-0
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_one_pass.hpp
.../pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_one_pass.hpp
+142
-0
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_problem.hpp
...t/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_problem.hpp
+41
-0
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_three_pass.hpp
...ipeline/add_rmsnorm2d_rdquant_fwd_pipeline_three_pass.hpp
+266
-0
include/ck_tile/ops/common.hpp
include/ck_tile/ops/common.hpp
+1
-0
include/ck_tile/ops/common/generic_2d_block_shape.hpp
include/ck_tile/ops/common/generic_2d_block_shape.hpp
+3
-4
include/ck_tile/ops/elementwise.hpp
include/ck_tile/ops/elementwise.hpp
+8
-0
include/ck_tile/ops/elementwise/unary_element_wise_operation.hpp
.../ck_tile/ops/elementwise/unary_element_wise_operation.hpp
+1163
-0
include/ck_tile/ops/epilogue.hpp
include/ck_tile/ops/epilogue.hpp
+2
-0
include/ck_tile/ops/epilogue/default_2d_epilogue.hpp
include/ck_tile/ops/epilogue/default_2d_epilogue.hpp
+17
-11
include/ck_tile/ops/epilogue/dynamic_quant_epilogue.hpp
include/ck_tile/ops/epilogue/dynamic_quant_epilogue.hpp
+188
-0
include/ck_tile/ops/fmha.hpp
include/ck_tile/ops/fmha.hpp
+1
-0
include/ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp
include/ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp
+8
-6
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp
+9
-7
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp
...ile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp
+5
-4
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp
...mha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp
+20
-16
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_default_policy.hpp
...ock_fmha_fwd_splitkv_pipeline_qr_ks_vs_default_policy.hpp
+15
-6
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp
...ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp
+10
-4
No files found.
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_one_pass.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_problem.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_three_pass.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
namespace
ck_tile
{
// host side args
// X = A + B, Y = Rmsnorm2d(X), QY = RowwiseDynamicQuant(Y) = SaturateCast(Y / YScale)
struct
AddRmsnorm2dRdquantFwdHostArgs
{
const
void
*
p_a
;
// [m ,n], input, fp16/bf16
const
void
*
p_b
;
// [m ,n], input, fp16/bf16
const
void
*
p_gamma
;
// [1, n], gamma, prec same as input
void
*
p_x
;
// [m, n], output, p_a + p_b, fp16/bf16
void
*
p_yscale
;
// [m, 1], output, rowwise quant scale (amax / 127) of reuslt of rmsnorm2d(x)
void
*
p_qy
;
// [m, n], output, result of quant tensor of rmsnorm2d(x) int8
float
epsilon
;
index_t
m
;
index_t
n
;
index_t
stride
;
// row_stride
};
// TODO: Extract some type to wrapper class
template
<
typename
Pipeline_
>
struct
AddRmsnorm2dRdquantFwd
{
using
Pipeline
=
remove_cvref_t
<
Pipeline_
>
;
using
Problem
=
typename
Pipeline
::
Problem
;
using
ADataType
=
remove_cvref_t
<
typename
Problem
::
ADataType
>
;
using
BDataType
=
remove_cvref_t
<
typename
Problem
::
BDataType
>
;
using
GammaDataType
=
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
QYDataType
=
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
static
constexpr
bool
kSaveX
=
Problem
::
kSaveX
;
static
constexpr
index_t
Block_M
=
Problem
::
BlockShape
::
Block_M
;
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
static
constexpr
bool
kPadM
=
false
;
// always no need to pad along M
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
bool
kThreePass
=
Problem
::
kThreePass
;
static
constexpr
index_t
ThreadPerWarp_N
=
Problem
::
BlockShape
::
ThreadPerWarp_N
;
static
constexpr
index_t
Vector_N
=
Problem
::
BlockShape
::
Vector_N
;
static
constexpr
index_t
Repeat_N
=
Problem
::
BlockShape
::
Repeat_N
;
static
constexpr
auto
I0
=
number
<
0
>
{};
static
constexpr
auto
I1
=
number
<
1
>
{};
struct
Kargs
{
const
void
*
p_a
;
const
void
*
p_b
;
const
void
*
p_gamma
;
void
*
p_x
;
void
*
p_yscale
;
void
*
p_qy
;
float
epsilon
;
index_t
m
;
index_t
n
;
index_t
stride
;
// row_stride
};
using
Hargs
=
AddRmsnorm2dRdquantFwdHostArgs
;
CK_TILE_HOST
static
constexpr
Kargs
MakeKargs
(
const
Hargs
&
hargs
)
{
return
Kargs
{
hargs
.
p_a
,
hargs
.
p_b
,
hargs
.
p_gamma
,
hargs
.
p_x
,
hargs
.
p_yscale
,
hargs
.
p_qy
,
hargs
.
epsilon
,
hargs
.
m
,
hargs
.
n
,
hargs
.
stride
};
}
CK_TILE_HOST
static
constexpr
auto
GridSize
(
const
Hargs
&
hargs
)
{
return
dim3
(
integer_divide_ceil
(
hargs
.
m
,
Block_M
));
}
CK_TILE_HOST
static
constexpr
auto
BlockSize
()
{
return
Problem
::
BlockShape
::
BlockSize
;
}
// clang-format off
template
<
typename
T
>
struct
t2s
;
template
<
>
struct
t2s
<
float
>
{
static
constexpr
const
char
*
name
=
"fp32"
;
};
template
<
>
struct
t2s
<
ck_tile
::
fp16_t
>
{
static
constexpr
const
char
*
name
=
"fp16"
;
};
template
<
>
struct
t2s
<
ck_tile
::
bf16_t
>
{
static
constexpr
const
char
*
name
=
"bf16"
;
};
template
<
>
struct
t2s
<
ck_tile
::
fp8_t
>
{
static
constexpr
const
char
*
name
=
"fp8"
;
};
template
<
>
struct
t2s
<
ck_tile
::
bf8_t
>
{
static
constexpr
const
char
*
name
=
"bf8"
;
};
// clang-format on
// in byte
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Pipeline
::
GetSmemSize
();
}
CK_TILE_HOST
static
std
::
string
GetName
()
{
// clang-format off
using
S_
=
typename
Problem
::
BlockShape
;
auto
surfix
=
[
&
]
()
{
std
::
string
n
;
if
(
kPadN
)
n
+=
"_pn"
;
if
(
kSaveX
)
n
+=
"_x"
;
if
(
kThreePass
)
n
+=
"_2p"
;
return
n
;
}();
#define _SS_ std::string
#define _TS_ std::to_string
return
_SS_
(
"add_rmsnorm2d_rdquant_fwd_"
)
+
_SS_
(
t2s
<
XDataType
>::
name
)
+
"_"
+
_TS_
(
S_
::
Block_M
)
+
"x"
+
_TS_
(
S_
::
Block_N
)
+
"_"
+
_TS_
(
S_
::
WarpPerBlock_M
)
+
"x"
+
_TS_
(
S_
::
WarpPerBlock_N
)
+
"_"
+
_TS_
(
S_
::
Warp_M
)
+
"x"
+
_TS_
(
S_
::
Warp_N
)
+
"_"
+
_TS_
(
S_
::
Vector_M
)
+
"x"
+
_TS_
(
S_
::
Vector_N
)
+
"_"
+
_SS_
(
Pipeline
::
name
)
+
surfix
;
#undef _SS_
#undef _TS_
// clang-format on
}
CK_TILE_DEVICE
void
operator
()(
Kargs
kargs
)
const
{
const
auto
iM
=
get_block_id
()
*
Block_M
;
const
auto
a_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
ADataType
*>
(
kargs
.
p_a
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
const
auto
b_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
BDataType
*>
(
kargs
.
p_b
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
const
auto
gamma_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
GammaDataType
*>
(
kargs
.
p_gamma
),
make_tuple
(
kargs
.
n
),
make_tuple
(
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_N
>
{}),
sequence
<
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_N
>
{}),
{
0
});
}();
auto
x_window
=
[
&
]()
{
if
constexpr
(
kSaveX
)
{
const
auto
tmp2_
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
XDataType
*>
(
kargs
.
p_x
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
return
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
}();
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}
else
return
make_null_tile_window
(
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}));
}();
auto
yscale_window
=
[
&
]()
{
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
YScaleDataType
*>
(
kargs
.
p_yscale
),
make_tuple
(
kargs
.
m
),
make_tuple
(
1
),
number
<
1
>
{});
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{}),
sequence
<
kPadM
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{}),
{
iM
});
}();
auto
qy_window
=
[
&
]()
{
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
QYDataType
*>
(
kargs
.
p_qy
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
__shared__
char
smem
[
GetSmemSize
()];
Pipeline
{}(
a_window
,
b_window
,
gamma_window
,
x_window
,
yscale_window
,
qy_window
,
static_cast
<
const
ComputeDataType
>
(
kargs
.
epsilon
),
kargs
.
n
,
smem
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d_problem.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d.hpp"
namespace
ck_tile
{
struct
AddRmsnorm2dRdquantFwdPipelineDefaultPolicy
{
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
MakeABXBlockTileDistribution
()
{
using
S
=
typename
Problem
::
BlockShape
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
S
::
Repeat_M
,
S
::
WarpPerBlock_M
,
S
::
ThreadPerWarp_M
,
S
::
Vector_M
>
,
sequence
<
S
::
Repeat_N
,
S
::
WarpPerBlock_N
,
S
::
ThreadPerWarp_N
,
S
::
Vector_N
>>
,
tuple
<
sequence
<
1
,
2
>
,
sequence
<
1
,
2
>>
,
tuple
<
sequence
<
1
,
1
>
,
sequence
<
2
,
2
>>
,
sequence
<
1
,
1
,
2
,
2
>
,
sequence
<
0
,
3
,
0
,
3
>>
{});
}
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
MakeGammaBlockTileDistribution
()
{
using
S
=
typename
Problem
::
BlockShape
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<
S
::
WarpPerBlock_M
,
S
::
ThreadPerWarp_M
>
,
tuple
<
sequence
<
S
::
Repeat_N
,
S
::
WarpPerBlock_N
,
S
::
ThreadPerWarp_N
,
S
::
Vector_N
>>
,
tuple
<
sequence
<
0
,
1
>
,
sequence
<
0
,
1
>>
,
tuple
<
sequence
<
0
,
1
>
,
sequence
<
1
,
2
>>
,
sequence
<
1
,
1
>
,
sequence
<
0
,
3
>>
{});
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2d
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
ComputeDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2d
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
ComputeDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dSync
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dCrossWarpSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
ComputeDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dCrossWarpSync
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
if
constexpr
(
Problem
::
kNeedCrossWarpSync
)
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
ComputeDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
using
block_reduce2d
=
BlockReduce2d
<
P_
>
;
using
x_block_tile
=
decltype
(
make_static_distributed_tensor
<
typename
Problem
::
ComputeDataType
>
(
MakeABXBlockTileDistribution
<
Problem
>
()));
using
y_block_tile
=
decltype
(
block_reduce2d
::
template
MakeYBlockTile
<
x_block_tile
>());
return
GetBlockReduce2dCrossWarpSync
<
Problem
>
().
template
GetSmemSize
<
y_block_tile
>();
}
else
{
return
1
;
// zero size arrays are an extension
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_one_pass.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp"
#include <string>
#include <type_traits>
namespace
ck_tile
{
template
<
typename
Problem_
,
typename
Policy_
=
AddRmsnorm2dRdquantFwdPipelineDefaultPolicy
>
struct
AddRmsnorm2dRdquantFwdPipelineOnePass
{
using
Problem
=
ck_tile
::
remove_cvref_t
<
Problem_
>
;
using
Policy
=
ck_tile
::
remove_cvref_t
<
Policy_
>
;
using
ADataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ADataType
>
;
using
BDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
BDataType
>
;
using
GammaDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
ComputeDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
XDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
YScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
QYDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
static
constexpr
bool
kHasGamma
=
!
std
::
is_same_v
<
GammaDataType
,
ck_tile
::
null_type
>
;
static
constexpr
bool
kSaveX
=
Problem
::
kSaveX
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockAddRmsnorm2dRdquantFwdProblem::kPadM
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
const
char
*
name
=
[]()
{
if
constexpr
(
kNeedCrossWarpSync
)
return
"bpr_op"
;
// block per row
else
return
"wpr_op"
;
// warp per row
}();
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
AWindow
,
typename
BWindow
,
typename
GammaWindow
,
typename
XWindow
,
typename
YScaleWindow
,
typename
QYWindow
>
CK_TILE_DEVICE
auto
operator
()(
const
AWindow
&
a_window_
,
const
BWindow
&
b_window_
,
const
GammaWindow
&
gamma_window_
,
XWindow
&
x_window
,
YScaleWindow
&
yscale_window
,
QYWindow
&
qy_window
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
row_size
,
void
*
smem
)
const
{
const
auto
a_window
=
make_tile_window
(
a_window_
,
Policy
::
template
MakeABXBlockTileDistribution
<
Problem
>());
const
auto
b_window
=
make_tile_window
(
b_window_
,
Policy
::
template
MakeABXBlockTileDistribution
<
Problem
>());
const
auto
gamma_window
=
make_tile_window
(
gamma_window_
,
Policy
::
template
MakeGammaBlockTileDistribution
<
Problem
>());
auto
reduce_square_sum_func
=
ReduceOp
::
SquareAdd
{};
auto
reduce_sum_func
=
ReduceOp
::
Add
{};
auto
reduce_absmax_func
=
ReduceOp
::
AbsMax
{};
auto
reduce_max_func
=
ReduceOp
::
Max
{};
auto
block_reduce2d
=
Policy
::
template
GetBlockReduce2d
<
Problem
>();
auto
block_reduce2d_sync
=
Policy
::
template
GetBlockReduce2dSync
<
Problem
>();
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
const
auto
a
=
load_tile
(
a_window
);
const
auto
b
=
load_tile
(
b_window
);
const
auto
gamma
=
load_tile
(
gamma_window
);
auto
x
=
tile_elementwise_in
(
[
&
](
const
auto
&
a_
,
const
auto
&
b_
)
{
return
type_convert
<
ComputeDataType
>
(
a_
)
+
type_convert
<
ComputeDataType
>
(
b_
);
},
a
,
b
);
if
constexpr
(
kSaveX
)
store_tile
(
x_window
,
cast_tile
<
XDataType
>
(
x
));
// compute mean square, each-thread->cross-lane->cross-warp
auto
square_sum
=
block_reduce2d
(
x
,
reduce_square_sum_func
.
GetIdentityValue
<
ComputeDataType
>
(),
reduce_square_sum_func
);
block_reduce2d_sync
(
square_sum
,
reduce_sum_func
);
block_reduce2d_cross_warp_sync
(
square_sum
,
smem
,
reduce_sum_func
);
auto
inv_rms
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
type_convert
<
ComputeDataType
>
(
1.0
f
)
/
(
sqrt
(
v_
/
row_size
+
epsilon
));
},
square_sum
);
// rmsnorm computation
auto
y
=
make_static_distributed_tensor
<
ComputeDataType
>
(
x
.
get_tile_distribution
());
sweep_tile
(
y
,
[
&
,
inv_rms_
=
inv_rms
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
constexpr
auto
j_idx
=
make_tuple
(
idx
[
number
<
1
>
{}]);
const
auto
gamma_
=
type_convert
<
ComputeDataType
>
(
gamma
[
j_idx
]);
const
auto
x_
=
type_convert
<
ComputeDataType
>
(
x
[
idx
]);
auto
y_
=
x_
*
inv_rms_
[
i_idx
]
*
gamma_
;
y
(
idx
)
=
type_convert
<
ComputeDataType
>
(
y_
);
});
// compute absmax, each-thread->cross-lane->cross-warp
auto
absmax
=
block_reduce2d
(
y
,
reduce_absmax_func
.
GetIdentityValue
<
ComputeDataType
>
(),
reduce_absmax_func
);
block_reduce2d_sync
(
absmax
,
reduce_max_func
);
block_reduce2d_cross_warp_sync
(
absmax
,
smem
,
reduce_max_func
);
// ex: yscale = absmax / 127 if int8
auto
yscale
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
v_
/
type_convert
<
ComputeDataType
>
(
numeric
<
QYDataType
>::
max
());
},
absmax
);
store_tile
(
yscale_window
,
cast_tile
<
YScaleDataType
>
(
yscale
));
// quantize y to qy
auto
qy
=
make_static_distributed_tensor
<
QYDataType
>
(
y
.
get_tile_distribution
());
sweep_tile
(
qy
,
[
&
,
yscale_
=
yscale
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
auto
qy_
=
y
[
idx
]
/
yscale_
[
i_idx
];
qy
(
idx
)
=
saturates
<
QYDataType
>
{}(
qy_
);
});
store_tile
(
qy_window
,
qy
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_problem.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/utility/type_traits.hpp"
namespace
ck_tile
{
// X = A + B, Y = Rmsnorm2d(X), QY = RowwiseDynamicQuant(Y) = SaturateCast(Y / YScale)
template
<
typename
ADataType_
,
typename
BDataType_
,
typename
GammaDataType_
,
typename
ComputeDataType_
,
typename
XDataType_
,
typename
YScaleDataType_
,
typename
QYDataType_
,
typename
BlockShape_
,
bool
kPadN_
,
bool
kSaveX_
,
bool
kThreePass_
>
struct
AddRmsnorm2dRdquantFwdPipelineProblem
{
using
ADataType
=
remove_cvref_t
<
ADataType_
>
;
using
BDataType
=
remove_cvref_t
<
BDataType_
>
;
using
GammaDataType
=
remove_cvref_t
<
GammaDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
YScaleDataType
=
remove_cvref_t
<
YScaleDataType_
>
;
using
QYDataType
=
remove_cvref_t
<
QYDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
static
constexpr
bool
kNeedCrossLaneSync
=
BlockShape
::
ThreadPerWarp_N
>
1
;
static
constexpr
bool
kNeedCrossWarpSync
=
BlockShape
::
WarpPerBlock_N
>
1
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
kSaveX
=
kSaveX_
;
static
constexpr
bool
kThreePass
=
kThreePass_
;
};
}
// namespace ck_tile
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_three_pass.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp"
#include <string>
#include <type_traits>
namespace
ck_tile
{
template
<
typename
Problem_
,
typename
Policy_
=
AddRmsnorm2dRdquantFwdPipelineDefaultPolicy
>
struct
AddRmsnorm2dRdquantFwdPipelineThreePass
{
using
Problem
=
ck_tile
::
remove_cvref_t
<
Problem_
>
;
using
Policy
=
ck_tile
::
remove_cvref_t
<
Policy_
>
;
using
ADataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ADataType
>
;
using
BDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
BDataType
>
;
using
GammaDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
ComputeDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
XDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
YScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
QYDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
static
constexpr
bool
kHasGamma
=
!
std
::
is_same_v
<
GammaDataType
,
ck_tile
::
null_type
>
;
static
constexpr
bool
kSaveX
=
Problem
::
kSaveX
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockAddRmsnorm2dRdquantFwdProblem::kPadM
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
const
char
*
name
=
[]()
{
if
constexpr
(
kNeedCrossWarpSync
)
return
"bpr_tp"
;
// block per row
else
return
"wpr_tp"
;
// warp per row
}();
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
AWindow
,
typename
BWindow
,
typename
GammaWindow
,
typename
XWindow
,
typename
YScaleWindow
,
typename
QYWindow
>
CK_TILE_DEVICE
auto
operator
()(
const
AWindow
&
a_window_
,
const
BWindow
&
b_window_
,
const
GammaWindow
&
gamma_window_
,
XWindow
&
x_window_
,
YScaleWindow
&
yscale_window
,
QYWindow
&
qy_window
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
row_size
,
void
*
smem
)
const
{
auto
a_window
=
make_tile_window
(
a_window_
,
Policy
::
template
MakeABXBlockTileDistribution
<
Problem
>());
auto
b_window
=
make_tile_window
(
b_window_
,
Policy
::
template
MakeABXBlockTileDistribution
<
Problem
>());
auto
x_window
=
[
&
]()
{
if
constexpr
(
kSaveX
)
return
make_tile_window
(
x_window_
,
Policy
::
template
MakeABXBlockTileDistribution
<
Problem
>());
else
return
x_window_
;
}();
auto
gamma_window
=
make_tile_window
(
gamma_window_
,
Policy
::
template
MakeGammaBlockTileDistribution
<
Problem
>());
auto
reduce_square_sum_func
=
ReduceOp
::
SquareAdd
{};
auto
reduce_sum_func
=
ReduceOp
::
Add
{};
auto
reduce_absmax_func
=
ReduceOp
::
AbsMax
{};
auto
reduce_max_func
=
ReduceOp
::
Max
{};
auto
block_reduce2d
=
Policy
::
template
GetBlockReduce2d
<
Problem
>();
auto
block_reduce2d_sync
=
Policy
::
template
GetBlockReduce2dSync
<
Problem
>();
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
index_t
num_n_tile_iteration
=
__builtin_amdgcn_readfirstlane
(
integer_divide_ceil
(
row_size
,
Block_N
));
using
XTensorType
=
decltype
(
cast_tile
<
ComputeDataType
>
(
load_tile
(
a_window
)));
auto
square_sum
=
block_reduce2d
.
template
MakeYBlockTile
<
XTensorType
>();
set_tile
(
square_sum
,
reduce_square_sum_func
.
GetIdentityValue
<
ComputeDataType
>
());
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
const
auto
a
=
load_tile
(
a_window
);
const
auto
b
=
load_tile
(
b_window
);
auto
x
=
tile_elementwise_in
(
[
&
](
const
auto
&
a_
,
const
auto
&
b_
)
{
return
type_convert
<
ComputeDataType
>
(
a_
)
+
type_convert
<
ComputeDataType
>
(
b_
);
},
a
,
b
);
if
constexpr
(
kSaveX
)
store_tile
(
x_window
,
cast_tile
<
XDataType
>
(
x
));
block_reduce2d
(
x
,
square_sum
,
reduce_square_sum_func
);
move_tile_window
(
x_window
,
{
0
,
Block_N
});
move_tile_window
(
a_window
,
{
0
,
Block_N
});
move_tile_window
(
b_window
,
{
0
,
Block_N
});
}
block_reduce2d_sync
(
square_sum
,
reduce_sum_func
);
block_reduce2d_cross_warp_sync
(
square_sum
,
smem
,
reduce_sum_func
);
auto
inv_rms
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
type_convert
<
ComputeDataType
>
(
1.0
f
)
/
(
sqrt
(
v_
/
row_size
+
epsilon
));
},
square_sum
);
// reverse read x to reuse cache
ck_tile
::
index_t
stride_to_right_most_window
=
row_size
%
Block_N
==
0
?
row_size
-
Block_N
:
row_size
-
row_size
%
Block_N
;
if
constexpr
(
kSaveX
)
move_tile_window
(
x_window
,
{
0
,
-
Block_N
});
else
{
move_tile_window
(
a_window
,
{
0
,
-
Block_N
});
move_tile_window
(
b_window
,
{
0
,
-
Block_N
});
}
move_tile_window
(
gamma_window
,
{
stride_to_right_most_window
});
using
YTensorType
=
XTensorType
;
auto
absmax
=
block_reduce2d
.
template
MakeYBlockTile
<
YTensorType
>();
set_tile
(
absmax
,
reduce_absmax_func
.
GetIdentityValue
<
ComputeDataType
>
());
// rmsnorm computation + absmax(threadwise reduce)
if
constexpr
(
kSaveX
)
__syncthreads
();
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
auto
x
=
[
&
]()
{
if
constexpr
(
kSaveX
)
{
return
load_tile
(
x_window
);
}
else
{
const
auto
a
=
load_tile
(
a_window
);
const
auto
b
=
load_tile
(
b_window
);
return
tile_elementwise_in
(
[
&
](
const
auto
&
a_
,
const
auto
&
b_
)
{
return
type_convert
<
ComputeDataType
>
(
a_
)
+
type_convert
<
ComputeDataType
>
(
b_
);
},
a
,
b
);
}
}();
auto
gamma
=
load_tile
(
gamma_window
);
auto
y
=
make_static_distributed_tensor
<
ComputeDataType
>
(
x
.
get_tile_distribution
());
sweep_tile
(
y
,
[
&
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
constexpr
auto
j_idx
=
make_tuple
(
idx
[
number
<
1
>
{}]);
const
auto
gamma_
=
type_convert
<
ComputeDataType
>
(
gamma
[
j_idx
]);
const
auto
x_
=
type_convert
<
ComputeDataType
>
(
x
[
idx
]);
auto
y_
=
x_
*
inv_rms
[
i_idx
]
*
gamma_
;
y
(
idx
)
=
type_convert
<
ComputeDataType
>
(
y_
);
});
block_reduce2d
(
y
,
absmax
,
reduce_absmax_func
);
if
constexpr
(
kSaveX
)
move_tile_window
(
x_window
,
{
0
,
-
Block_N
});
else
{
move_tile_window
(
a_window
,
{
0
,
-
Block_N
});
move_tile_window
(
b_window
,
{
0
,
-
Block_N
});
}
move_tile_window
(
gamma_window
,
{
-
Block_N
});
}
// compute absmax, cross-lane->cross-warp
block_reduce2d_sync
(
absmax
,
reduce_max_func
);
block_reduce2d_cross_warp_sync
(
absmax
,
smem
,
reduce_max_func
);
// ex: yscale = absmax / 127 if int8
auto
yscale
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
v_
/
type_convert
<
ComputeDataType
>
(
numeric
<
QYDataType
>::
max
());
},
absmax
);
store_tile
(
yscale_window
,
cast_tile
<
YScaleDataType
>
(
yscale
));
// quantize y to qy
// recompute rmsnorm, try to save y in the future
if
constexpr
(
kSaveX
)
move_tile_window
(
x_window
,
{
0
,
Block_N
});
else
{
move_tile_window
(
a_window
,
{
0
,
Block_N
});
move_tile_window
(
b_window
,
{
0
,
Block_N
});
}
move_tile_window
(
gamma_window
,
{
Block_N
});
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
auto
x
=
[
&
]()
{
if
constexpr
(
kSaveX
)
{
return
load_tile
(
x_window
);
}
else
{
const
auto
a
=
load_tile
(
a_window
);
const
auto
b
=
load_tile
(
b_window
);
return
tile_elementwise_in
(
[
&
](
const
auto
&
a_
,
const
auto
&
b_
)
{
return
type_convert
<
ComputeDataType
>
(
a_
)
+
type_convert
<
ComputeDataType
>
(
b_
);
},
a
,
b
);
}
}();
auto
gamma
=
load_tile
(
gamma_window
);
auto
y
=
make_static_distributed_tensor
<
ComputeDataType
>
(
x
.
get_tile_distribution
());
auto
qy
=
make_static_distributed_tensor
<
QYDataType
>
(
y
.
get_tile_distribution
());
sweep_tile
(
y
,
[
&
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
constexpr
auto
j_idx
=
make_tuple
(
idx
[
number
<
1
>
{}]);
const
auto
gamma_
=
type_convert
<
ComputeDataType
>
(
gamma
[
j_idx
]);
const
auto
x_
=
type_convert
<
ComputeDataType
>
(
x
[
idx
]);
auto
y_
=
x_
*
inv_rms
[
i_idx
]
*
gamma_
;
auto
qy_
=
y_
/
yscale
[
i_idx
];
qy
(
idx
)
=
saturates
<
QYDataType
>
{}(
qy_
);
});
store_tile
(
qy_window
,
qy
);
if
constexpr
(
kSaveX
)
move_tile_window
(
x_window
,
{
0
,
Block_N
});
else
{
move_tile_window
(
a_window
,
{
0
,
Block_N
});
move_tile_window
(
b_window
,
{
0
,
Block_N
});
}
move_tile_window
(
gamma_window
,
{
Block_N
});
move_tile_window
(
qy_window
,
{
0
,
Block_N
});
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/common.hpp
View file @
f20e48f1
...
...
@@ -3,4 +3,5 @@
#pragma once
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/
layernorm2d/kernel/layernorm2d_fwd
_shape.hpp
→
include/ck_tile/ops/
common/generic_2d_block
_shape.hpp
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18-2023
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
24
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace
ck_tile
{
/*
// clang-format off
...
...
@@ -42,7 +41,7 @@ template <typename BlockTile_, // block size, seq<M, N>
typename
Vector_
,
// contiguous pixels(vector size) along seq<M, N>
index_t
BlockSize_
=
warpSize
*
reduce_on_sequence
(
WarpPerBlock_
{}
,
multiplies
{}
,
number
<
1
>{})
>
struct
Layernorm2d
Shape
struct
Generic2dBlock
Shape
{
// block size
static
constexpr
index_t
Block_M
=
BlockTile_
::
at
(
number
<
0
>
{});
...
...
include/ck_tile/ops/elementwise.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/elementwise/unary_element_wise_operation.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/elementwise/unary_element_wise_operation.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include <type_traits>
namespace
ck_tile
{
namespace
element_wise
{
#if 0
struct PassThroughPack2
{
template <typename Y, typename X>
CK_TILE_HOST_DEVICE void operator()(Y& y, const X& x) const;
CK_TILE_HOST_DEVICE constexpr void operator()(ck_tile::half2_t& y, const ck_tile::f8x2_t& x) const
{
auto t = type_convert<float2_t>(x);
y = type_convert<half2_t>(t);
}
constexpr const static bool is_pack2_invocable = true;
};
#endif
struct
PassThrough
{
template
<
typename
Y
,
typename
X
>
CK_TILE_HOST_DEVICE
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
double
,
double
>
(
double
&
y
,
const
double
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
double
>
(
float
&
y
,
const
double
&
x
)
const
{
y
=
type_convert
<
float
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
double
,
float
>
(
double
&
y
,
const
float
&
x
)
const
{
y
=
type_convert
<
double
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
ck_tile
::
fp16_t
>
(
ck_tile
::
fp16_t
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
float
>
(
ck_tile
::
fp16_t
&
y
,
const
float
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
fp16_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
bf16_t
,
ck_tile
::
bf16_t
>
(
ck_tile
::
bf16_t
&
y
,
const
ck_tile
::
bf16_t
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
int32_t
,
int32_t
>
(
int32_t
&
y
,
const
int32_t
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
bf16_t
,
float
>
(
ck_tile
::
bf16_t
&
y
,
const
float
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
bf16_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
ck_tile
::
bf16_t
>
(
float
&
y
,
const
ck_tile
::
bf16_t
&
x
)
const
{
y
=
type_convert
<
float
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
bf16_t
,
ck_tile
::
fp16_t
>
(
ck_tile
::
bf16_t
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
bf16_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
ck_tile
::
fp16_t
>
(
float
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
y
=
type_convert
<
float
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
int8_t
,
int8_t
>
(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
int8_t
>
(
ck_tile
::
fp16_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
fp16_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
bf16_t
,
int8_t
>
(
ck_tile
::
bf16_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
bf16_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
uint8_t
,
uint8_t
>
(
uint8_t
&
y
,
const
uint8_t
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
int8_t
,
int32_t
>
(
int8_t
&
y
,
const
int32_t
&
x
)
const
{
y
=
type_convert
<
int8_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
int32_t
,
int8_t
>
(
int32_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
type_convert
<
int32_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
int8_t
,
float
>
(
int8_t
&
y
,
const
float
&
x
)
const
{
y
=
type_convert
<
int8_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
int8_t
>
(
float
&
y
,
const
int8_t
&
x
)
const
{
y
=
type_convert
<
float
>
(
x
);
}
#ifdef CK_TILE_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
int4_t
,
int4_t
>
(
int4_t
&
y
,
const
int4_t
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
int4_t
,
int
>
(
int4_t
&
y
,
const
int
&
x
)
const
{
y
=
type_convert
<
int4_t
>
(
x
);
}
#endif
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp8_t
,
ck_tile
::
fp8_t
>
(
ck_tile
::
fp8_t
&
y
,
const
ck_tile
::
fp8_t
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
ck_tile
::
fp8_t
>
(
float
&
y
,
const
ck_tile
::
fp8_t
&
x
)
const
{
y
=
type_convert
<
float
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp8_t
,
float
>
(
ck_tile
::
fp8_t
&
y
,
const
float
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
fp8_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
ck_tile
::
fp8_t
>
(
ck_tile
::
fp16_t
&
y
,
const
ck_tile
::
fp8_t
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
fp16_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp8_t
,
ck_tile
::
fp16_t
>
(
ck_tile
::
fp8_t
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
fp8_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
bf8_t
,
ck_tile
::
bf8_t
>
(
ck_tile
::
bf8_t
&
y
,
const
ck_tile
::
bf8_t
&
x
)
const
{
y
=
x
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
ck_tile
::
bf8_t
>
(
float
&
y
,
const
ck_tile
::
bf8_t
&
x
)
const
{
y
=
type_convert
<
float
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
bf8_t
,
float
>
(
ck_tile
::
bf8_t
&
y
,
const
float
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
bf8_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
ck_tile
::
bf8_t
>
(
ck_tile
::
fp16_t
&
y
,
const
ck_tile
::
bf8_t
&
x
)
const
{
y
=
type_convert
<
ck_tile
::
fp16_t
>
(
x
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
bf8_t
,
ck_tile
::
fp16_t
>
(
ck_tile
::
bf8_t
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
y
=
ck_tile
::
type_convert
<
ck_tile
::
bf8_t
>
(
x
);
}
};
#if 0
struct UnaryConvert
{
template <typename Y, typename X>
CK_TILE_HOST_DEVICE void operator()(Y& y, const X& x) const
{
y = type_convert<Y>(x);
}
};
struct ConvertBF16RTN
{
// convert to bf16 using round to nearest (rtn)
template <typename Y, typename X>
CK_TILE_HOST_DEVICE void operator()(Y& y, const X& x) const
{
// check Y datatype
static_assert(std::is_same_v<Y, ck_tile::bf16_t>, "Data type is not supported by this operation!");
// check X datatype
static_assert(std::is_same_v<X, float> || std::is_same_v<X, ck_tile::fp16_t>,
"Data type is not supported by this operation!");
y = bf16_convert_rtn<Y>(x);
}
};
struct ConvertF8SR
{
// convert to fp8 using stochastic rounding (SR)
template <typename Y, typename X>
CK_TILE_HOST_DEVICE void operator()(Y& y, const X& x) const
{
// check Y datatype
static_assert(std::is_same_v<Y, ck_tile::fp8_t> || std::is_same_v<Y, ck_tile::bf8_t>,
"Data type is not supported by this operation!");
// check X datatype
static_assert(std::is_same_v<X, float> || std::is_same_v<X, ck_tile::fp16_t>,
"Data type is not supported by this operation!");
y = f8_convert_sr<Y>(x);
}
};
struct ConvertF8RNE
{
// convert to fp8 using rounding to nearest even
template <typename Y, typename X>
CK_TILE_HOST_DEVICE void operator()(Y& y, const X& x) const
{
// check Y datatype
static_assert(std::is_same_v<Y, ck_tile::fp8_t> || std::is_same_v<Y, ck_tile::bf8_t>,
"Data type is not supported by this operation!");
// check X datatype
static_assert(std::is_same_v<X, float> || std::is_same_v<X, ck_tile::fp16_t>,
"Data type is not supported by this operation!");
y = f8_convert_rne<Y>(x);
}
};
#endif
struct
Scale
{
CK_TILE_HOST_DEVICE
Scale
(
float
scale
=
1.
f
)
:
scale_
(
scale
)
{}
template
<
typename
Y
,
typename
X
>
CK_TILE_HOST_DEVICE
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
{
y
=
ck_tile
::
type_convert
<
Y
>
(
ck_tile
::
type_convert
<
float
>
(
x
)
*
scale_
);
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
ck_tile
::
fp16_t
>
(
ck_tile
::
fp16_t
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
y
=
ck_tile
::
type_convert
<
ck_tile
::
fp16_t
>
(
scale_
)
*
x
;
};
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
bf16_t
,
ck_tile
::
bf16_t
>
(
ck_tile
::
bf16_t
&
y
,
const
ck_tile
::
bf16_t
&
x
)
const
{
const
float
x_tmp
=
ck_tile
::
type_convert
<
float
>
(
x
);
const
float
y_tmp
=
scale_
*
x_tmp
;
y
=
ck_tile
::
type_convert
<
ck_tile
::
bf16_t
>
(
y_tmp
);
};
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
y
=
scale_
*
x
;
};
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
double
,
double
>
(
double
&
y
,
const
double
&
x
)
const
{
y
=
scale_
*
x
;
};
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
int8_t
,
int8_t
>
(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
ck_tile
::
type_convert
<
int8_t
>
(
scale_
*
ck_tile
::
type_convert
<
float
>
(
x
));
};
float
scale_
;
};
struct
ScaleAndResetNaNToMinusInfinity
{
CK_TILE_HOST_DEVICE
ScaleAndResetNaNToMinusInfinity
(
float
scale
)
:
scale_
(
scale
)
{}
template
<
typename
Y
,
typename
X
>
CK_TILE_HOST_DEVICE
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
y
=
ck_tile
::
isnan
(
x
)
?
-
numeric
<
float
>::
infinity
()
:
scale_
*
x
;
};
float
scale_
;
};
struct
UnaryDivide
{
CK_TILE_HOST_DEVICE
UnaryDivide
(
const
int32_t
divider
=
1
)
:
divider_
(
divider
)
{}
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
x
/
type_convert
<
T
>
(
divider_
);
};
int32_t
divider_
=
1
;
};
struct
UnarySquare
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
#ifdef CK_TILE_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
||
std
::
is_same_v
<
T
,
int4_t
>
#endif
,
"Data type is not supported by this operation!"
);
y
=
x
*
x
;
};
};
struct
UnaryAbs
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
abs
(
x
);
};
};
struct
UnarySqrt
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
sqrt
(
x
);
};
};
struct
Relu
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
,
"Data type is not supported by this operation!"
);
y
=
x
>
0
?
x
:
0
;
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()(
ck_tile
::
bf16_t
&
y
,
const
ck_tile
::
bf16_t
&
x
)
const
{
float
x_f32
=
ck_tile
::
type_convert
<
float
>
(
x
);
float
y_f32
=
x_f32
>
0
?
x_f32
:
0
;
y
=
ck_tile
::
type_convert
<
ck_tile
::
bf16_t
>
(
y_f32
);
}
};
// Fast GeLU
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+tanh(sqrt(2/pi)*(x+0.044715*x^3)))
// host code use higher accuracy "exp" and "div"
// gpu code use lower accuracy "_ocml_exp_f32" and "rcp" function
struct
FastGelu
{
template
<
typename
Y
,
typename
X
>
CK_TILE_HOST
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
typename
Y
,
typename
X
>
CK_TILE_DEVICE
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
CK_TILE_HOST
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
// const float u = -2.f * x * (0.035677f * x * x + 0.797885f);
const
float
c1
=
-
2.0
*
0.035677
f
;
const
float
c2
=
-
2.0
*
0.797885
f
;
const
float
u
=
x
*
(
c1
*
x
*
x
+
c2
);
const
float
emu
=
exp
(
u
);
y
=
x
/
(
1.
f
+
emu
);
}
// device code, use lower precision "__ocml_exp_f32" and "rcp"
template
<
>
CK_TILE_DEVICE
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
// const float u = 2.f * x * (0.035677f * x * x + 0.797885f);
const
float
c1
=
-
2.0
*
0.035677
f
;
const
float
c2
=
-
2.0
*
0.797885
f
;
const
float
u
=
x
*
(
c1
*
x
*
x
+
c2
);
const
float
emu
=
__ocml_exp_f32
(
u
);
y
=
x
*
ck_tile
::
rcp
(
1.
f
+
emu
);
}
template
<
>
CK_TILE_HOST
void
operator
()
<
ck_tile
::
fp16_t
,
ck_tile
::
fp16_t
>
(
ck_tile
::
fp16_t
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
type_convert
<
float
>
(
x
));
y
=
type_convert
<
ck_tile
::
fp16_t
>
(
y_f
);
}
template
<
>
CK_TILE_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
ck_tile
::
fp16_t
>
(
ck_tile
::
fp16_t
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
type_convert
<
float
>
(
x
));
y
=
type_convert
<
ck_tile
::
fp16_t
>
(
y_f
);
}
template
<
>
CK_TILE_HOST
void
operator
()
<
ck_tile
::
fp16_t
,
float
>
(
ck_tile
::
fp16_t
&
y
,
const
float
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
x
);
y
=
type_convert
<
ck_tile
::
fp16_t
>
(
y_f
);
}
template
<
>
CK_TILE_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
float
>
(
ck_tile
::
fp16_t
&
y
,
const
float
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
x
);
y
=
type_convert
<
ck_tile
::
fp16_t
>
(
y_f
);
}
template
<
>
CK_TILE_HOST
void
operator
()
<
ck_tile
::
bf16_t
,
float
>
(
ck_tile
::
bf16_t
&
y
,
const
float
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
x
);
y
=
type_convert
<
ck_tile
::
bf16_t
>
(
y_f
);
}
template
<
>
CK_TILE_DEVICE
void
operator
()
<
ck_tile
::
bf16_t
,
float
>
(
ck_tile
::
bf16_t
&
y
,
const
float
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
x
);
y
=
type_convert
<
ck_tile
::
bf16_t
>
(
y_f
);
}
template
<
>
CK_TILE_DEVICE
void
operator
()
<
ck_tile
::
bf16_t
,
ck_tile
::
bf16_t
>
(
ck_tile
::
bf16_t
&
y
,
const
ck_tile
::
bf16_t
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
type_convert
<
float
>
(
x
));
y
=
type_convert
<
ck_tile
::
bf16_t
>
(
y_f
);
}
template
<
>
CK_TILE_HOST
void
operator
()
<
ck_tile
::
bf16_t
,
ck_tile
::
bf16_t
>
(
ck_tile
::
bf16_t
&
y
,
const
ck_tile
::
bf16_t
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
type_convert
<
float
>
(
x
));
y
=
type_convert
<
ck_tile
::
bf16_t
>
(
y_f
);
}
};
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+erf(x/sqrt(2)))
struct
Gelu
{
template
<
typename
Y
,
typename
X
>
CK_TILE_HOST_DEVICE
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
y
=
0.5
f
*
x
*
(
1.
f
+
erf
(
float
(
0.70710678118
f
*
x
)));
}
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp16_t
,
ck_tile
::
fp16_t
>
(
ck_tile
::
fp16_t
&
y
,
const
ck_tile
::
fp16_t
&
x
)
const
{
y
=
ck_tile
::
fp16_t
(
0.5
)
*
x
*
(
ck_tile
::
fp16_t
(
1
)
+
ck_tile
::
fp16_t
(
erf
(
float
(
0.70710678118
f
*
x
))));
}
};
struct
Sigmoid
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
constexpr
T
one
=
type_convert
<
T
>
(
1
);
y
=
one
/
(
one
+
ck_tile
::
exp
(
-
x
));
};
};
struct
Silu
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
constexpr
T
one
=
type_convert
<
T
>
(
1
);
y
=
x
*
(
one
/
(
one
+
ck_tile
::
exp
(
-
x
)));
};
};
struct
TanH
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
tanh
(
x
);
};
};
struct
ACos
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
acos
(
x
);
};
};
struct
Neg
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
neg
(
x
);
};
};
struct
ATan
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
atan
(
x
);
};
};
struct
Sin
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
sin
(
x
);
};
};
struct
ASinH
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
asinh
(
x
);
};
};
struct
Cos
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
cos
(
x
);
};
};
struct
ACosH
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
acosh
(
x
);
};
};
struct
Tan
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
tan
(
x
);
};
};
struct
ATanH
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
atanh
(
x
);
};
};
struct
SinH
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
sinh
(
x
);
};
};
struct
Ceil
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
ceil
(
x
);
};
};
struct
Exp
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
exp
(
x
);
};
};
struct
CosH
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
cosh
(
x
);
};
};
struct
Floor
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
floor
(
x
);
};
};
struct
Log
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
log
(
x
);
};
};
struct
ASin
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
asin
(
x
);
};
};
struct
Rcp
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
,
"Data type is not supported by this operation!"
);
y
=
ck_tile
::
rcp
(
x
);
};
};
struct
Swish
{
Swish
(
float
beta
=
1.0
f
)
:
beta_
(
beta
)
{}
template
<
typename
Y
,
typename
X
>
CK_TILE_HOST_DEVICE
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
X
,
float
>
||
std
::
is_same_v
<
X
,
double
>
||
std
::
is_same_v
<
X
,
ck_tile
::
fp16_t
>
,
"Data type is not supported by this operation!"
);
static_assert
(
std
::
is_same_v
<
Y
,
float
>
||
std
::
is_same_v
<
Y
,
double
>
||
std
::
is_same_v
<
Y
,
ck_tile
::
fp16_t
>
,
"Data type is not supported by this operation!"
);
float
bx
=
-
beta_
*
type_convert
<
float
>
(
x
);
y
=
type_convert
<
Y
>
(
x
/
(
1.
f
+
ck_tile
::
exp
(
bx
)));
};
const
float
beta_
;
};
struct
SoftRelu
{
SoftRelu
(
float
alpha
=
1.
f
)
:
alpha_
(
alpha
){};
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
,
"Data type is not supported by this operation!"
);
T
casted_alpha
=
type_convert
<
T
>
(
alpha_
);
constexpr
T
one
=
type_convert
<
T
>
(
1
);
y
=
ck_tile
::
log
(
one
+
ck_tile
::
exp
(
x
*
casted_alpha
))
/
casted_alpha
;
}
const
float
alpha_
;
};
struct
Power
{
Power
(
float
alpha
=
0.
f
,
float
beta
=
1.
f
,
float
gamma
=
2.
f
)
:
alpha_
(
alpha
),
beta_
(
beta
),
gamma_
(
gamma
){};
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
,
"Data type is not supported by this operation!"
);
T
casted_alpha
=
type_convert
<
T
>
(
alpha_
);
T
casted_beta
=
type_convert
<
T
>
(
beta_
);
T
casted_gamma
=
type_convert
<
T
>
(
gamma_
);
T
shifted_scaled_x
=
casted_alpha
+
casted_beta
*
x
;
y
=
ck_tile
::
pow
(
shifted_scaled_x
,
casted_gamma
);
}
const
float
alpha_
;
const
float
beta_
;
const
float
gamma_
;
};
struct
ClippedRelu
{
ClippedRelu
(
float
alpha
=
0.
f
,
float
beta
=
1.
f
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
,
"Data type is not supported by this operation!"
);
T
casted_alpha
=
type_convert
<
T
>
(
alpha_
);
T
casted_beta
=
type_convert
<
T
>
(
beta_
);
y
=
ck_tile
::
min
(
casted_beta
,
ck_tile
::
max
(
casted_alpha
,
x
));
}
const
float
alpha_
;
const
float
beta_
;
};
struct
LeakyRelu
{
LeakyRelu
(
float
alpha
=
0.01
f
)
:
alpha_
(
alpha
){};
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
,
"Data type is not supported by this operation!"
);
T
casted_alpha
=
type_convert
<
T
>
(
alpha_
);
y
=
x
>=
0
?
x
:
x
*
casted_alpha
;
}
const
float
alpha_
;
};
struct
Elu
{
Elu
(
float
alpha
=
1.
f
)
:
alpha_
(
alpha
){};
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
,
"Data type is not supported by this operation!"
);
T
casted_alpha
=
type_convert
<
T
>
(
alpha_
);
y
=
x
>
0
?
x
:
casted_alpha
*
ck_tile
::
expm1
(
x
);
}
const
float
alpha_
;
};
struct
Logistic
{
Logistic
(
float
alpha
=
1.
f
)
:
alpha_
(
alpha
){};
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
double
>
||
std
::
is_same_v
<
T
,
ck_tile
::
fp16_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
,
"Data type is not supported by this operation!"
);
T
casted_alpha
=
type_convert
<
T
>
(
alpha_
);
constexpr
T
one
=
type_convert
<
T
>
(
1
);
y
=
casted_alpha
/
(
one
+
ck_tile
::
exp
(
-
x
)
*
casted_alpha
);
}
const
float
alpha_
;
};
struct
ConvInvscale
{
CK_TILE_HOST_DEVICE
ConvInvscale
(
float
scale_in
=
1.
f
,
float
scale_wei
=
1.
f
,
float
scale_out
=
1.
f
)
:
scale_in_
(
scale_in
),
scale_wei_
(
scale_wei
),
scale_out_
(
scale_out
)
{
}
template
<
typename
E
,
typename
C
>
CK_TILE_HOST_DEVICE
void
operator
()(
E
&
e
,
const
C
&
c
)
const
;
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp8_t
,
float
>
(
ck_tile
::
fp8_t
&
e
,
const
float
&
c
)
const
{
e
=
type_convert
<
ck_tile
::
fp8_t
>
(
c
/
scale_in_
/
scale_wei_
/
scale_out_
);
};
float
scale_in_
;
float
scale_wei_
;
float
scale_out_
;
};
struct
ConvScale
{
CK_TILE_HOST_DEVICE
ConvScale
(
float
scale_in
=
1.
f
,
float
scale_wei
=
1.
f
,
float
scale_out
=
1.
f
)
:
scale_in_
(
scale_in
),
scale_wei_
(
scale_wei
),
scale_out_
(
scale_out
)
{
}
template
<
typename
E
,
typename
C
>
CK_TILE_HOST_DEVICE
void
operator
()(
E
&
e
,
const
C
&
c
)
const
;
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp8_t
,
float
>
(
ck_tile
::
fp8_t
&
e
,
const
float
&
c
)
const
{
e
=
type_convert
<
ck_tile
::
fp8_t
>
(
c
*
scale_in_
*
scale_wei_
*
scale_out_
);
};
float
scale_in_
;
float
scale_wei_
;
float
scale_out_
;
};
struct
ConvScaleRelu
{
CK_TILE_HOST_DEVICE
ConvScaleRelu
(
float
scale_in
=
1.
f
,
float
scale_wei
=
1.
f
,
float
scale_out
=
1.
f
)
:
scale_in_
(
scale_in
),
scale_wei_
(
scale_wei
),
scale_out_
(
scale_out
)
{
}
template
<
typename
E
,
typename
C
>
CK_TILE_HOST_DEVICE
void
operator
()(
E
&
e
,
const
C
&
c
)
const
;
template
<
>
CK_TILE_HOST_DEVICE
void
operator
()
<
ck_tile
::
fp8_t
,
float
>
(
ck_tile
::
fp8_t
&
e
,
const
float
&
c
)
const
{
float
x
;
Relu
{}.
template
operator
()
<
float
>(
x
,
c
*
scale_in_
*
scale_wei_
);
e
=
type_convert
<
ck_tile
::
fp8_t
>
(
x
*
scale_out_
);
};
float
scale_in_
;
float
scale_wei_
;
float
scale_out_
;
};
template
<
typename
DstType
,
typename
SrcType
>
struct
Cast
{
template
<
typename
T
>
CK_TILE_HOST_DEVICE
void
operator
()(
DstType
&
y
,
const
SrcType
&
x
)
const
{
y
=
ck_tile
::
type_convert
<
DstType
>
(
x
);
};
};
// support fastconvert of int8 to fp16
#if 0
template <typename InputDataType, typename OutputDataType, index_t RegPackNumber>
struct FastNumericArrayConverter
{
};
template <>
struct FastNumericArrayConverter<uint8_t, ck_tile::fp16_t, 4>
{
using InputArray = vector_type<uint8_t, 4>;
using OutputArray = vector_type<ck_tile::fp16_t, 4>;
CK_TILE_DEVICE static OutputArray convert(InputArray const& Input)
{
OutputArray Output;
uint32_t* half_2 = reinterpret_cast<uint32_t*>(&Output);
uint32_t const uint8_4 = reinterpret_cast<uint32_t const&>(Input);
static constexpr uint32_t byte_selector_01 = 0x05010500;
static constexpr uint32_t byte_selector_23 = 0x05030502;
static constexpr uint32_t fp16_adder = 0x64646464;
half_2[0] = __builtin_amdgcn_perm(fp16_adder, uint8_4, byte_selector_01);
half_2[1] = __builtin_amdgcn_perm(fp16_adder, uint8_4, byte_selector_23);
static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480;
asm volatile("v_pk_add_f16 %0, %1, %2 neg_lo:[0,1] neg_hi:[0,1]"
: "=v"(half_2[0])
: "v"(half_2[0]), "s"(I8s_TO_F16s_MAGIC_NUM));
asm volatile("v_pk_add_f16 %0, %1, %2 neg_lo:[0,1] neg_hi:[0,1]"
: "=v"(half_2[1])
: "v"(half_2[1]), "s"(I8s_TO_F16s_MAGIC_NUM));
return Output;
}
CK_TILE_DEVICE OutputArray operator()(InputArray const& Input) { return convert(Input); }
};
template <index_t N>
struct FastNumericArrayConverter<uint8_t, ck_tile::fp16_t, N>
{
static constexpr int VEC_WIDTH = 4;
static_assert(!(N % VEC_WIDTH), "N must be multiple of 4.");
using InputArray = vector_type<uint8_t, N>;
using OutputArray = vector_type<ck_tile::fp16_t, N>;
CK_TILE_DEVICE static OutputArray convert(InputArray const& Input)
{
FastNumericArrayConverter<uint8_t, ck_tile::fp16_t, 4> converter;
OutputArray Output;
using Vec_InputArray = vector_type<uint8_t, 4>;
using Vec_OutputArray = vector_type<ck_tile::fp16_t, 4>;
Vec_OutputArray* half_4_ptr = reinterpret_cast<Vec_OutputArray*>(&Output);
Vec_InputArray const* uint8_4_ptr = reinterpret_cast<Vec_InputArray const*>(&Input);
static_for<0, N / VEC_WIDTH, 1>{}(
[&](auto i) { half_4_ptr[i] = converter(uint8_4_ptr[i]); });
return Output;
}
CK_TILE_DEVICE OutputArray operator()(InputArray const& Input) { return convert(Input); }
};
#endif
}
// namespace element_wise
}
// namespace ck_tile
include/ck_tile/ops/epilogue.hpp
View file @
f20e48f1
...
...
@@ -5,4 +5,6 @@
#include "ck_tile/ops/epilogue/cshuffle_epilogue.hpp"
#include "ck_tile/ops/epilogue/default_2d_epilogue.hpp"
#include "ck_tile/ops/epilogue/dynamic_quant_epilogue.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/epilogue/default_2d_epilogue.hpp
View file @
f20e48f1
...
...
@@ -9,23 +9,29 @@ namespace ck_tile {
// this epilogue just store out a M*N matrix, row major
template
<
typename
AccDataType_
,
typename
ODataType_
,
bool
kPadM_
,
bool
kPadN_
>
template
<
typename
AccDataType_
,
typename
ODataType_
,
bool
kPadM_
,
bool
kPadN_
,
bool
UseRawStore_
=
true
>
struct
Default2DEpilogueProblem
{
using
AccDataType
=
remove_cvref_t
<
AccDataType_
>
;
using
ODataType
=
remove_cvref_t
<
ODataType_
>
;
static
constexpr
bool
kPadM
=
kPadM_
;
static
constexpr
bool
kPadN
=
kPadN_
;
using
AccDataType
=
remove_cvref_t
<
AccDataType_
>
;
using
ODataType
=
remove_cvref_t
<
ODataType_
>
;
static
constexpr
bool
kPadM
=
kPadM_
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
UseRawStore
=
UseRawStore_
;
};
template
<
typename
Problem_
,
typename
Policy_
=
void
>
struct
Default2DEpilogue
{
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
AccDataType
=
remove_cvref_t
<
typename
Problem
::
AccDataType
>
;
using
ODataType
=
remove_cvref_t
<
typename
Problem
::
ODataType
>
;
static
constexpr
bool
kPadM
=
Problem
::
kPadM
;
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
AccDataType
=
remove_cvref_t
<
typename
Problem
::
AccDataType
>
;
using
ODataType
=
remove_cvref_t
<
typename
Problem
::
ODataType
>
;
static
constexpr
bool
kPadM
=
Problem
::
kPadM
;
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
bool
UseRawStore
=
Problem
::
UseRawStore
;
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
0
;
}
...
...
@@ -36,7 +42,7 @@ struct Default2DEpilogue
{
// TODO: this is ugly
if
constexpr
(
kPadM
||
kPadN
)
if
constexpr
(
UseRawStore
&&
(
kPadM
||
kPadN
)
)
{
store_tile_raw
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
buffer_store_fence
();
...
...
include/ck_tile/ops/epilogue/dynamic_quant_epilogue.hpp
0 → 100644
View file @
f20e48f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce.hpp"
namespace
ck_tile
{
template
<
bool
kPadM_
,
bool
kPadN_
,
bool
UseSmoothInputScale_
,
bool
UseRawStore_
=
true
,
bool
UseMax3_
=
false
>
struct
DynamicQuantEpilogueTraits
{
static
constexpr
bool
kPadM
=
kPadM_
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
UseSmoothInputScale
=
UseSmoothInputScale_
;
static
constexpr
bool
UseRawStore
=
UseRawStore_
;
static
constexpr
bool
UseMax3
=
UseMax3_
;
};
// this epilogue just store out a M*N matrix, row major
template
<
typename
AccDataType_
,
typename
XScaleDataType_
,
typename
YScaleDataType_
,
typename
ODataType_
,
typename
BlockShape_
,
typename
Traits_
>
struct
DynamicQuantEpilogueProblem
{
using
AccDataType
=
remove_cvref_t
<
AccDataType_
>
;
using
XScaleDataType
=
remove_cvref_t
<
XScaleDataType_
>
;
using
YScaleDataType
=
remove_cvref_t
<
YScaleDataType_
>
;
using
ODataType
=
remove_cvref_t
<
ODataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
// can consum generic 2d shape
using
Traits
=
remove_cvref_t
<
Traits_
>
;
};
// TODO: we should put descriptor creation function into policy
template
<
typename
Problem_
,
typename
Policy_
=
void
>
struct
DynamicQuantEpilogue
{
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
AccDataType
=
remove_cvref_t
<
typename
Problem
::
AccDataType
>
;
using
XScaleDataType
=
remove_cvref_t
<
typename
Problem
::
XScaleDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
ODataType
=
remove_cvref_t
<
typename
Problem
::
ODataType
>
;
using
BlockShape
=
remove_cvref_t
<
typename
Problem
::
BlockShape
>
;
static
constexpr
bool
kPadM
=
Problem
::
Traits
::
kPadM
;
static
constexpr
bool
kPadN
=
Problem
::
Traits
::
kPadN
;
static
constexpr
bool
UseRawStore
=
Problem
::
Traits
::
UseRawStore
;
static
constexpr
bool
UseMax3
=
Problem
::
Traits
::
UseMax3
;
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2d
()
{
using
P_
=
BlockReduce2dProblem
<
AccDataType
,
AccDataType
,
BlockShape
>
;
return
BlockReduce2d
<
P_
>
{};
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dSync
()
{
using
P_
=
BlockReduce2dProblem
<
AccDataType
,
AccDataType
,
BlockShape
>
;
return
BlockReduce2dSync
<
P_
>
{};
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dCrossWarpSync
()
{
using
P_
=
BlockReduce2dProblem
<
AccDataType
,
AccDataType
,
BlockShape
>
;
return
BlockReduce2dCrossWarpSync
<
P_
>
{};
}
CK_TILE_DEVICE
static
constexpr
auto
MakeSmoothInputScaleTileDistribution
()
{
using
S
=
BlockShape
;
#if 0
// don't remove this
// Note that if we set encoding purposely like this, you will result in compile fail
// TODO: x_scale create local-scratch to accept arbitrary acc input (with same length)
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<S::Repeat_M, S::WarpPerBlock_M, S::ThreadPerWarp_M>,
tuple<sequence<S::Repeat_N, S::WarpPerBlock_N, S::ThreadPerWarp_N, S::Vector_N>>,
tuple<sequence<0, 1>, sequence<0, 1>>,
tuple<sequence<1, 1>, sequence<2, 2>>,
sequence<0, 1, 1>,
sequence<0, 0, 3>>{});
#else
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<
S
::
WarpPerBlock_M
,
S
::
ThreadPerWarp_M
>
,
tuple
<
sequence
<
S
::
Repeat_N
,
S
::
WarpPerBlock_N
,
S
::
ThreadPerWarp_N
,
S
::
Vector_N
>>
,
tuple
<
sequence
<
0
,
1
>
,
sequence
<
0
,
1
>>
,
tuple
<
sequence
<
0
,
1
>
,
sequence
<
1
,
2
>>
,
sequence
<
1
,
1
>
,
sequence
<
0
,
3
>>
{});
#endif
}
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
auto
reduce_crosswarp_sync
=
GetBlockReduce2dCrossWarpSync
();
return
reduce_crosswarp_sync
.
GetSmemSize
();
}
// TODO: this function assume store out vector size is the same as OAccTile last dimension size
// how do we fix this ?
template
<
typename
ODramWindowTmp
,
typename
XScaleWindow
,
typename
YScaleWindow
,
typename
OAccTile
>
CK_TILE_DEVICE
auto
operator
()(
ODramWindowTmp
&
o_dram_window_tmp
,
const
XScaleWindow
&
x_scale_window_
,
YScaleWindow
&
y_scale_window
,
const
OAccTile
&
o_acc_tile
,
void
*
smem
)
{
auto
reduce
=
GetBlockReduce2d
();
auto
reduce_sync
=
GetBlockReduce2dSync
();
auto
reduce_crosswarp_sync
=
GetBlockReduce2dCrossWarpSync
();
const
auto
x_scale_window
=
make_tile_window
(
x_scale_window_
,
MakeSmoothInputScaleTileDistribution
());
auto
x_scale
=
load_tile
(
x_scale_window
);
auto
o_acc_tmp
=
o_acc_tile
;
sweep_tile
(
o_acc_tmp
,
[
&
](
auto
idx
)
{
constexpr
auto
j_idx
=
make_tuple
(
idx
[
number
<
1
>
{}]);
const
auto
xs_
=
type_convert
<
AccDataType
>
(
x_scale
[
j_idx
]);
o_acc_tmp
(
idx
)
=
o_acc_tmp
(
idx
)
*
xs_
;
});
const
auto
f_absmax
=
[](
auto
acc_
,
auto
v_0_
)
{
return
max
(
acc_
,
abs
(
v_0_
));
};
auto
row_absmax
=
[
&
]()
{
constexpr
auto
y_size_per_row
=
OAccTile
{}.
get_tile_distribution
().
get_ys_to_d_descriptor
().
get_lengths
().
at
(
number
<
1
>
{});
if
constexpr
(
UseMax3
&&
std
::
is_same_v
<
AccDataType
,
float
>
&&
y_size_per_row
%
2
==
0
)
{
// fast max3+abs implementation
const
auto
f_max3
=
[](
auto
acc_
,
auto
v_0_
,
auto
v_1_
)
{
float
rtn
;
asm
volatile
(
"v_max3_f32 %0, %1, abs(%2), abs(%3)"
:
"=v"
(
rtn
)
:
"v"
(
acc_
),
"v"
(
v_0_
),
"v"
(
v_1_
));
return
rtn
;
};
return
reduce
(
o_acc_tmp
,
type_convert
<
AccDataType
>
(
0
),
f_max3
,
sequence
<
1
,
2
>
{});
}
else
{
return
reduce
(
o_acc_tmp
,
type_convert
<
AccDataType
>
(
0
),
f_absmax
);
}
}();
reduce_sync
(
row_absmax
,
f_absmax
);
reduce_crosswarp_sync
(
row_absmax
,
smem
,
f_absmax
);
// here y_scale is Acc TYpe, need convert to YScale type later
auto
y_scale
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
v_
/
type_convert
<
AccDataType
>
(
numeric
<
ODataType
>::
max
());
},
row_absmax
);
store_tile
(
y_scale_window
,
cast_tile
<
YScaleDataType
>
(
y_scale
));
sweep_tile
(
o_acc_tmp
,
[
&
](
auto
idx
)
{
constexpr
auto
row_id
=
make_tuple
(
idx
[
number
<
0
>
{}]);
o_acc_tmp
(
idx
)
=
o_acc_tmp
[
idx
]
/
y_scale
(
row_id
);
});
// TODO: this is ugly
if
constexpr
(
UseRawStore
&&
(
kPadM
||
kPadN
))
{
store_tile_raw
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tmp
));
buffer_store_fence
();
}
else
{
store_tile
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tmp
));
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/fmha.hpp
View file @
f20e48f1
...
...
@@ -43,4 +43,5 @@
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/tile_fmha_shape.hpp"
#include "ck_tile/ops/fmha/pipeline/tile_fmha_traits.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp
View file @
f20e48f1
...
...
@@ -69,7 +69,8 @@ struct FmhaFwdKernel
// sync with generate.py
// clang-format off
using
bfs
=
typename
FmhaPipeline
::
BlockFmhaShape
;
using
gbr
=
typename
bfs
::
Gemm0BlockWarps
;
using
g0br
=
typename
bfs
::
Gemm0BlockWarps
;
using
g1br
=
typename
bfs
::
Gemm1BlockWarps
;
using
gwt
=
typename
bfs
::
Gemm0WarpTile
;
#define _SS_ std::string
#define _TS_ std::to_string
...
...
@@ -81,11 +82,12 @@ struct FmhaFwdKernel
if
(
kPadHeadDimV
)
n
+=
"dv"
;
return
n
.
empty
()
?
n
:
std
::
string
(
"p"
)
+
n
;
}();
return
_SS_
(
"fmha_fwd_d"
)
+
_TS_
(
bfs
::
k
K0BlockLength
)
+
"_"
+
_SS_
(
t2s
<
QDataType
>::
name
)
+
_SS_
(
"fmha_fwd_d"
)
+
_TS_
(
bfs
::
k
QKHeaddim
)
+
"_"
+
_SS_
(
t2s
<
QDataType
>::
name
)
+
"_"
+
(
kIsGroupMode
?
"group"
:
"batch"
)
+
"_"
+
_SS_
(
TilePartitioner
::
name
)
+
"_"
"b"
+
_TS_
(
bfs
::
kM0
)
+
"x"
+
_TS_
(
bfs
::
kN0
)
+
"x"
+
_TS_
(
bfs
::
kK0
)
+
"x"
+
_TS_
(
bfs
::
kN1
)
+
"x"
+
_TS_
(
bfs
::
kK1
)
+
"x"
+
_TS_
(
bfs
::
kK0BlockLength
)
+
"_"
+
"r"
+
_TS_
(
gbr
::
at
(
ck_tile
::
number
<
0
>
{}))
+
"x"
+
_TS_
(
gbr
::
at
(
ck_tile
::
number
<
1
>
{}))
+
"x"
+
_TS_
(
gbr
::
at
(
ck_tile
::
number
<
2
>
{}))
+
"_"
+
_TS_
(
bfs
::
kN1
)
+
"x"
+
_TS_
(
bfs
::
kK1
)
+
"x"
+
_TS_
(
bfs
::
kQKHeaddim
)
+
"_"
+
"r"
+
_TS_
(
g0br
::
at
(
ck_tile
::
number
<
0
>
{}))
+
"x"
+
_TS_
(
g0br
::
at
(
ck_tile
::
number
<
1
>
{}))
+
"x"
+
_TS_
(
g0br
::
at
(
ck_tile
::
number
<
2
>
{}))
+
"_"
+
"r"
+
_TS_
(
g1br
::
at
(
ck_tile
::
number
<
0
>
{}))
+
"x"
+
_TS_
(
g1br
::
at
(
ck_tile
::
number
<
1
>
{}))
+
"x"
+
_TS_
(
g1br
::
at
(
ck_tile
::
number
<
2
>
{}))
+
"_"
+
"w"
+
_TS_
(
gwt
::
at
(
ck_tile
::
number
<
0
>
{}))
+
"x"
+
_TS_
(
gwt
::
at
(
ck_tile
::
number
<
1
>
{}))
+
"x"
+
_TS_
(
gwt
::
at
(
ck_tile
::
number
<
2
>
{}))
+
"_"
+
(
kBlockPerCuInput
==
-
1
?
""
:
(
"o"
+
_TS_
(
kBlockPerCu
)
+
"_"
))
+
_SS_
(
FmhaPipeline
::
name
)
+
"_"
+
"v"
+
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
?
"r"
:
"c"
)
+
(
pn
.
empty
()
?
""
:
"_"
+
pn
)
+
...
...
@@ -655,7 +657,7 @@ struct FmhaFwdKernel
{
return
pad_tensor_view
(
q_dram_naive
,
make_tuple
(
number
<
FmhaPipeline
::
kM0
>
{},
number
<
FmhaPipeline
::
k
K0BlockLength
>
{}),
make_tuple
(
number
<
FmhaPipeline
::
kM0
>
{},
number
<
FmhaPipeline
::
k
SubQKHeaddim
>
{}),
sequence
<
kPadSeqLenQ
,
kPadHeadDimQ
>
{});
}
else
...
...
@@ -722,7 +724,7 @@ struct FmhaFwdKernel
[
&
]()
{
if
constexpr
(
FmhaPipeline
::
kQLoadOnce
)
return
make_tuple
(
number
<
FmhaPipeline
::
kM0
>
{},
number
<
FmhaPipeline
::
k
K0BlockLength
>
{});
number
<
FmhaPipeline
::
k
SubQKHeaddim
>
{});
else
return
make_tuple
(
number
<
FmhaPipeline
::
kM0
>
{},
number
<
FmhaPipeline
::
kK0
>
{});
}(),
...
...
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp
View file @
f20e48f1
...
...
@@ -65,7 +65,8 @@ struct FmhaFwdSplitKVKernel
// sync with generate.py
// clang-format off
using
bfs
=
typename
FmhaPipeline
::
BlockFmhaShape
;
using
gbr
=
typename
bfs
::
Gemm0BlockWarps
;
using
g0br
=
typename
bfs
::
Gemm0BlockWarps
;
using
g1br
=
typename
bfs
::
Gemm1BlockWarps
;
using
gwt
=
typename
bfs
::
Gemm0WarpTile
;
#define _SS_ std::string
#define _TS_ std::to_string
...
...
@@ -77,11 +78,12 @@ struct FmhaFwdSplitKVKernel
if
(
kPadHeadDimV
)
n
+=
"dv"
;
return
n
.
empty
()
?
n
:
std
::
string
(
"p"
)
+
n
;
}();
return
_SS_
(
"fmha_fwd_splitkv_d"
)
+
_TS_
(
bfs
::
k
K0BlockLength
)
+
"_"
+
_SS_
(
t2s
<
QDataType
>::
name
)
+
_SS_
(
"fmha_fwd_splitkv_d"
)
+
_TS_
(
bfs
::
k
QKHeaddim
)
+
"_"
+
_SS_
(
t2s
<
QDataType
>::
name
)
+
"_"
+
(
kIsGroupMode
?
"group"
:
"batch"
)
+
"_"
"b"
+
_TS_
(
bfs
::
kM0
)
+
"x"
+
_TS_
(
bfs
::
kN0
)
+
"x"
+
_TS_
(
bfs
::
kK0
)
+
"x"
+
_TS_
(
bfs
::
kN1
)
+
"x"
+
_TS_
(
bfs
::
kK1
)
+
"x"
+
_TS_
(
bfs
::
kK0BlockLength
)
+
"_"
+
"r"
+
_TS_
(
gbr
::
at
(
ck_tile
::
number
<
0
>
{}))
+
"x"
+
_TS_
(
gbr
::
at
(
ck_tile
::
number
<
1
>
{}))
+
"x"
+
_TS_
(
gbr
::
at
(
ck_tile
::
number
<
2
>
{}))
+
"_"
+
_TS_
(
bfs
::
kN1
)
+
"x"
+
_TS_
(
bfs
::
kK1
)
+
"x"
+
_TS_
(
bfs
::
kQKHeaddim
)
+
"_"
+
"r"
+
_TS_
(
g0br
::
at
(
ck_tile
::
number
<
0
>
{}))
+
"x"
+
_TS_
(
g0br
::
at
(
ck_tile
::
number
<
1
>
{}))
+
"x"
+
_TS_
(
g0br
::
at
(
ck_tile
::
number
<
2
>
{}))
+
"_"
+
"r"
+
_TS_
(
g1br
::
at
(
ck_tile
::
number
<
0
>
{}))
+
"x"
+
_TS_
(
g1br
::
at
(
ck_tile
::
number
<
1
>
{}))
+
"x"
+
_TS_
(
g1br
::
at
(
ck_tile
::
number
<
2
>
{}))
+
"_"
+
"w"
+
_TS_
(
gwt
::
at
(
ck_tile
::
number
<
0
>
{}))
+
"x"
+
_TS_
(
gwt
::
at
(
ck_tile
::
number
<
1
>
{}))
+
"x"
+
_TS_
(
gwt
::
at
(
ck_tile
::
number
<
2
>
{}))
+
"_"
+
(
kBlockPerCuInput
==
-
1
?
""
:
(
"o"
+
_TS_
(
kBlockPerCu
)
+
"_"
))
+
_SS_
(
FmhaPipeline
::
name
)
+
"_"
+
"v"
+
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
?
"r"
:
"c"
)
+
(
pn
.
empty
()
?
""
:
"_"
+
pn
)
+
...
...
@@ -584,7 +586,7 @@ struct FmhaFwdSplitKVKernel
{
return
pad_tensor_view
(
q_dram_naive
,
make_tuple
(
number
<
FmhaPipeline
::
kM0
>
{},
number
<
FmhaPipeline
::
k
K0BlockLength
>
{}),
make_tuple
(
number
<
FmhaPipeline
::
kM0
>
{},
number
<
FmhaPipeline
::
k
SubQKHeaddim
>
{}),
sequence
<
kPadSeqLenQ
,
kPadHeadDimQ
>
{});
}
else
...
...
@@ -733,7 +735,7 @@ struct FmhaFwdSplitKVKernel
[
&
]()
{
if
constexpr
(
FmhaPipeline
::
kQLoadOnce
)
return
make_tuple
(
number
<
FmhaPipeline
::
kM0
>
{},
number
<
FmhaPipeline
::
k
K0BlockLength
>
{});
number
<
FmhaPipeline
::
k
SubQKHeaddim
>
{});
else
return
make_tuple
(
number
<
FmhaPipeline
::
kM0
>
{},
number
<
FmhaPipeline
::
kK0
>
{});
}(),
...
...
@@ -894,7 +896,7 @@ struct FmhaFwdSplitKVKernel
o_acc_ptr
,
make_tuple
(
kargs
.
seqlen_q
,
kargs
.
hdim_v
),
make_tuple
(
kargs
.
stride_o_acc
,
1
),
number
<
1
>
{},
number
<
FmhaPipeline
::
kAlignmentOacc
>
{},
number
<
1
>
{});
return
pad_tensor_view
(
...
...
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp
View file @
f20e48f1
...
...
@@ -26,8 +26,8 @@ struct FmhaFwdSplitKVTilePartitioner
{
// TODO: this may need tuning
return
dim3
(
ck_tile
::
integer_divide_ceil
(
max_seqlen_q
,
kM0
)
*
ck_tile
::
integer_divide_ceil
(
hdim_v
,
kN1
),
nhead
*
num_splits
,
ck_tile
::
integer_divide_ceil
(
hdim_v
,
kN1
)
*
num_splits
,
nhead
,
batch_size
);
}
...
...
@@ -42,8 +42,9 @@ struct FmhaFwdSplitKVTilePartitioner
return
ck_tile
::
make_tuple
(
quotient
,
modulus
);
};
const
auto
[
i_tile_m
,
i_tile_n
]
=
f
(
blockIdx
.
x
,
num_tile_n1
);
const
auto
[
i_nhead
,
i_split
]
=
f
(
blockIdx
.
y
,
num_splits
);
const
auto
[
mn
,
i_split
]
=
f
(
blockIdx
.
x
,
num_splits
);
const
auto
[
i_tile_m
,
i_tile_n
]
=
f
(
mn
,
num_tile_n1
);
const
index_t
i_nhead
=
blockIdx
.
y
;
const
index_t
i_batch
=
blockIdx
.
z
;
return
ck_tile
::
make_tuple
(
i_tile_m
,
i_tile_n
,
i_split
,
i_nhead
,
i_batch
);
...
...
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp
View file @
f20e48f1
...
...
@@ -34,12 +34,13 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
static
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
static
constexpr
index_t
kM0
=
BlockFmhaShape
::
kM0
;
static
constexpr
index_t
kN0
=
BlockFmhaShape
::
kN0
;
static
constexpr
index_t
kK0
=
BlockFmhaShape
::
kK0
;
static
constexpr
index_t
kN1
=
BlockFmhaShape
::
kN1
;
static
constexpr
index_t
kK1
=
BlockFmhaShape
::
kK1
;
static
constexpr
index_t
kK0BlockLength
=
BlockFmhaShape
::
kK0BlockLength
;
static
constexpr
index_t
kM0
=
BlockFmhaShape
::
kM0
;
static
constexpr
index_t
kN0
=
BlockFmhaShape
::
kN0
;
static
constexpr
index_t
kK0
=
BlockFmhaShape
::
kK0
;
static
constexpr
index_t
kN1
=
BlockFmhaShape
::
kN1
;
static
constexpr
index_t
kK1
=
BlockFmhaShape
::
kK1
;
static
constexpr
index_t
kQKHeaddim
=
BlockFmhaShape
::
kQKHeaddim
;
static
constexpr
index_t
kSubQKHeaddim
=
BlockFmhaShape
::
kSubQKHeaddim
;
static
constexpr
bool
kIsGroupMode
=
Problem
::
kIsGroupMode
;
static
constexpr
bool
kPadSeqLenQ
=
Problem
::
kPadSeqLenQ
;
...
...
@@ -64,6 +65,9 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
return
kPadSeqLenK
?
1
:
Policy
::
template
GetAlignmentV
<
Problem
>();
}();
static
constexpr
index_t
kAlignmentOacc
=
kPadHeadDimV
?
1
:
Policy
::
template
GetAlignmentOacc
<
Problem
>();
static
constexpr
index_t
kAlignmentBias
=
kPadSeqLenK
?
1
:
Policy
::
template
GetAlignmentBias
<
Problem
>();
...
...
@@ -72,22 +76,22 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
return
Problem
::
kBlockPerCu
;
else
{
if
constexpr
(
k
K0BlockLength
<=
32
)
if
constexpr
(
k
QKHeaddim
<=
32
)
{
return
2
;
}
else
if
constexpr
(
k
K0BlockLength
<=
64
)
else
if
constexpr
(
k
QKHeaddim
<=
64
)
{
return
3
;
}
else
if
constexpr
(
k
K0BlockLength
<=
128
)
else
if
constexpr
(
k
QKHeaddim
<=
128
)
{
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
return
1
;
else
return
2
;
}
else
if
constexpr
(
k
K0BlockLength
<=
256
)
else
if
constexpr
(
k
QKHeaddim
<=
256
)
{
return
1
;
}
...
...
@@ -252,11 +256,11 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
k_dram_block_window_lengths
,
{
adjusted_seqlen_k_start
,
0
});
const
auto
bias_origin
=
bias_dram_block_window_tmp
.
get_window_origin
();
auto
bias_dram_window
=
make_tile_window
(
bias_dram_block_window_tmp
.
get_bottom_tensor_view
(),
bias_dram_block_window_tmp
.
get_window_lengths
(),
{
bias_origin
.
at
(
number
<
0
>
{}),
adjusted_seqlen_k_start
},
// M/N
Policy
::
template
MakeBiasDramTileDistribution
<
Problem
,
decltype
(
gemm_0
)>());
auto
bias_dram_window
=
make_tile_window
(
bias_dram_block_window_tmp
.
get_bottom_tensor_view
(),
bias_dram_block_window_tmp
.
get_window_lengths
(),
{
bias_origin
.
at
(
number
<
0
>
{}),
adjusted_seqlen_k_start
},
// M/N
Policy
::
template
MakeBiasDramTileDistribution
<
decltype
(
gemm_0
)>());
auto
[
i_page_block_v
,
v_dram_window
]
=
v_page_block_navigator
.
make_tile_window
(
v_dram_block_window_lengths
,
...
...
@@ -267,7 +271,7 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
// prefetch K tile
index_t
i_total_loops
=
0
;
constexpr
index_t
k0_loops
=
k
K0BlockLength
/
kK0
;
constexpr
index_t
k0_loops
=
k
QKHeaddim
/
kK0
;
constexpr
index_t
k1_loops
=
kN0
/
kK1
;
static_assert
(
2
<=
k0_loops
);
...
...
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_default_policy.hpp
View file @
f20e48f1
...
...
@@ -9,11 +9,20 @@
namespace
ck_tile
{
// This pipeline is qkv all located in LDS
using
BlockFmhaFwdSplitKVPipelineQRKSVSDefaultPolicy
=
BlockFmhaPipelineQXKSVSCustomPolicy
<
/* QLoadOnce = */
true
,
/* AsyncCopyK = */
false
,
/* AsyncCopyV = */
false
,
/* NumPrefetchK = */
1
,
/* NumPrefetchV = */
1
>
;
struct
BlockFmhaFwdSplitKVPipelineQRKSVSDefaultPolicy
:
BlockFmhaPipelineQXKSVSCustomPolicy
<
/* QLoadOnce = */
true
,
/* AsyncCopyK = */
false
,
/* AsyncCopyV = */
false
,
/* NumPrefetchK = */
1
,
/* NumPrefetchV = */
1
>
{
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetAlignmentOacc
()
{
using
OaccDataType
=
remove_cvref_t
<
typename
Problem
::
OaccDataType
>
;
return
static_cast
<
index_t
>
(
16
/
sizeof
(
OaccDataType
));
}
};
}
// namespace ck_tile
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp
View file @
f20e48f1
...
...
@@ -39,8 +39,11 @@ struct BlockFmhaPipelineProblem
using
FmhaMask
=
remove_cvref_t
<
FmhaMask_
>
;
using
Traits
=
remove_cvref_t
<
Traits_
>
;
static
constexpr
index_t
kBlockSize
=
BlockFmhaShape
::
NumWarps
*
get_warp_size
();
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
index_t
kNumGemm0Warps
=
BlockFmhaShape
::
NumGemm0Warps
;
static
constexpr
index_t
kNumGemm1Warps
=
BlockFmhaShape
::
NumGemm1Warps
;
static
constexpr
index_t
kBlockSize
=
BlockFmhaShape
::
NumWarps
*
get_warp_size
();
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
// attributes from traits
static
constexpr
bool
kPadSeqLenQ
=
Traits
::
kPadSeqLenQ
;
...
...
@@ -84,8 +87,11 @@ struct BlockFmhaFwdSplitKVPipelineProblem
using
FmhaMask
=
remove_cvref_t
<
FmhaMask_
>
;
using
Traits
=
remove_cvref_t
<
Traits_
>
;
static
constexpr
index_t
kBlockSize
=
BlockFmhaShape
::
NumWarps
*
get_warp_size
();
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
index_t
kNumGemm0Warps
=
BlockFmhaShape
::
NumGemm0Warps
;
static
constexpr
index_t
kNumGemm1Warps
=
BlockFmhaShape
::
NumGemm1Warps
;
static
constexpr
index_t
kBlockSize
=
BlockFmhaShape
::
NumWarps
*
get_warp_size
();
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
// attributes from traits
static
constexpr
bool
kPadSeqLenQ
=
Traits
::
kPadSeqLenQ
;
...
...
Prev
1
…
7
8
9
10
11
12
13
14
15
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment