Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
efab74a3
Commit
efab74a3
authored
Jan 24, 2025
by
Rostyslav Geyyer
Browse files
Merge branch 'gfx950' into lwpck-2619
parents
86950b3a
bcef33c1
Changes
362
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1129 additions
and
10 deletions
+1129
-10
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/CMakeLists.txt
...ion_instance/gpu/grouped_conv2d_bwd_weight/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_irregular_instance.cpp
..._xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_irregular_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_irregular_instance.cpp
..._xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_irregular_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_irregular_instance.cpp
...e_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_irregular_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_irregular_instance.cpp
...e_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_irregular_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_comp_instance.cpp
...d_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_comp_instance.cpp
+39
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_instance.cpp
...rouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_instance.cpp
+38
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_inter_instance.cpp
...v2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_inter_instance.cpp
+39
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_intra_instance.cpp
...v2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_intra_instance.cpp
+39
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_bf16_instance.cpp
...fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_bf16_instance.cpp
+48
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/CMakeLists.txt
...ion_instance/gpu/grouped_conv3d_bwd_weight/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_irregular_instance.cpp
...l_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_irregular_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_irregular_instance.cpp
...l_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_irregular_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_irregular_instance.cpp
...dl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_irregular_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_irregular_instance.cpp
...dl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_irregular_instance.cpp
+41
-0
profiler/include/profiler/profile_gemm_b_scale_impl.hpp
profiler/include/profiler/profile_gemm_b_scale_impl.hpp
+448
-0
profiler/include/profiler/profile_gemm_universal_impl.hpp
profiler/include/profiler/profile_gemm_universal_impl.hpp
+98
-7
profiler/include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
...include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
+37
-2
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-1
No files found.
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/CMakeLists.txt
View file @
efab74a3
...
...
@@ -19,6 +19,10 @@ set(GROUPED_CONV2D_BWD_WEIGHT
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev1_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev1_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_pipev1_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_irregular_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_irregular_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_irregular_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_irregular_instance.cpp
)
if
(
DL_KERNELS
)
...
...
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_irregular_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_irregular_instances
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v2
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_irregular_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_irregular_instances
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_irregular_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_irregular_instances
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v2
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_weight/xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_irregular_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_irregular_instances
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
View file @
efab74a3
...
...
@@ -11,6 +11,7 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_int8_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f16_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f32_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_int8_instance.cpp
...
...
@@ -27,6 +28,7 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_nhwgc_gkyxc_nhwgk_f32_instance.cpp
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_nhwgc_gkyxc_nhwgk_int8_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_bf16_instance.cpp
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_f16_instance.cpp
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_f32_instance.cpp
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_int8_instance.cpp
...
...
@@ -42,10 +44,12 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/mem/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_mem_inter_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_int8_mem_inter_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_intra_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f16_mem_intra_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f32_mem_intra_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_int8_mem_intra_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_inter_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f16_mem_inter_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f32_mem_inter_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_int8_mem_inter_instance.cpp
...
...
@@ -56,6 +60,7 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/comp/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_comp_instance.cpp
xdl/comp/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_int8_comp_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_comp_instance.cpp
xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f16_comp_instance.cpp
xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f32_comp_instance.cpp
xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_int8_comp_instance.cpp
...
...
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_comp_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_comp_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_comp_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_bf16_comp_instances
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
ConvFwdDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_bf16_instances
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
ConvFwdDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_inter_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_mem_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_inter_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_bf16_mem_instances
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
ConvFwdDefault
,
Interwave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_intra_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_mem_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_intra_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_bf16_mem_instances
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
ConvFwdDefault
,
Intrawave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_bf16_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_merged_groups_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_merged_groups_bf16_instances
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_merged_groups_bf16_instances
<
2
,
NGCHW
,
GKYXC
,
Empty_Tuple
,
NGKHW
,
ConvFwd3x3
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/CMakeLists.txt
View file @
efab74a3
...
...
@@ -19,6 +19,10 @@ set(GROUPED_CONV3D_BWD_WEIGHT
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev1_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_irregular_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_irregular_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_irregular_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_irregular_instance.cpp
)
if
(
DL_KERNELS
)
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_irregular_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_irregular_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v2
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_irregular_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_irregular_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_irregular_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_irregular_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v2
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_irregular_instance.cpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_irregular_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profiler/profile_gemm_b_scale_impl.hpp
0 → 100644
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3_b_scale.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_b_scale.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
BScaleDataType
,
typename
ComputeDataType
,
typename
AccDataType
,
typename
CDataType
,
index_t
ScaleBlockK
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_gemm_b_scale_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
KBatch
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
ck
::
index_t
Scale_Stride_BN
=
ck
::
is_same_v
<
BLayout
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
>
?
((
K
+
ScaleBlockK
-
1
)
/
ScaleBlockK
)
:
N
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n_permute
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BScaleDataType
>
b1_k_n
(
f_host_tensor_descriptor
(
(
K
+
ScaleBlockK
-
1
)
/
ScaleBlockK
,
// K direction group size is ScaleBlockK
N
,
// N direction group size is 1
Scale_Stride_BN
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_m_k
.
GetElementSpaceSizeInBytes
()
+
b_k_n
.
GetElementSpaceSizeInBytes
()
+
b1_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_k_n: "
<<
b1_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
1
,
2
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n_permute
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
BScaleDataType
)
*
b1_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_k_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmV2BScale
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
BScaleDataType
,
CDataType
,
1
,
ScaleBlockK
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
Tensor
<
float
>
b_k_n_dequant
({
K
,
N
});
float
v_b
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
ck
::
pk_i4_t
i4x2
=
b_k_n
(
k
,
n
).
data
;
int8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
.
data
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
.
data
>>
4
)
&
0xf
;
i4
=
i4
-
8
;
v_b
=
ck
::
type_convert
<
float
>
(
i4
);
b_k_n_dequant
(
k
,
n
)
=
ck
::
type_convert
<
float
>
(
v_b
)
*
ck
::
type_convert
<
float
>
(
b1_k_n
(
k
/
ScaleBlockK
,
n
));
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
ComputeDataType
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n_dequant
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_kbatch
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
const
int
KPerBlock
=
op_ptr
->
GetKPerBlock
();
if
(
op_ptr
->
GetPermuteB
())
{
int
K1
=
KPerBlock
;
int
K0
=
K
/
KPerBlock
;
// int K0, N, K1
for
(
int
j
=
0
;
j
<
K0
;
j
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
jj
=
0
;
jj
<
K1
;
jj
++
)
{
b_k_n_permute
(
j
*
N
*
K1
+
i
*
K1
+
jj
)
=
b_k_n
(
i
*
K
+
(
j
*
K1
+
jj
));
}
}
}
if
(
is_same_v
<
BDataType
,
pk_i4_t
>
&&
is_same_v
<
ADataType
,
half_t
>
)
{
// vector pk_i4x4 permute
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
+=
8
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b_k_n_permute
(
j
+
k
*
2
,
i
).
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
6
,
i
)
=
i4x2
;
}
}
}
}
}
else
{
b_k_n_permute
=
b_k_n
;
}
b_device_buf
.
ToDevice
(
b_k_n_permute
.
mData
.
data
());
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
16
,
19
,
32
,
38
};
if
(
KBatch
>
0
)
{
kbatch_list
=
{
KBatch
};
}
for
(
std
::
size_t
i
=
0
;
i
<
kbatch_list
.
size
();
i
++
)
{
auto
kbatch_curr
=
kbatch_list
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
Scale_Stride_BN
,
static_cast
<
BScaleDataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
kbatch_curr
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
CDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
int8_t
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
static
constexpr
index_t
BPackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
BDataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
/
BPackedSize
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
if
(
tflops
>
best_tflops
&&
ave_time
>
1e-10
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_kbatch
=
kbatch_curr
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" KBatch = "
<<
best_kbatch
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_gemm_universal_impl.hpp
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -65,11 +65,13 @@ bool profile_gemm_universal_impl(int do_verification,
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n_permute
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_m_k
.
GetElementSpaceSizeInBytes
()
+
b_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
std
::
size_t
total_gemm_needed
=
a_m_k
.
GetElementSpaceSizeInBytes
()
+
b_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
...
...
@@ -86,9 +88,13 @@ bool profile_gemm_universal_impl(int do_verification,
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
1
,
2
});
break
;
default
:
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -100,11 +106,10 @@ bool profile_gemm_universal_impl(int do_verification,
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
_permute
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmV2
<
ALayout
,
BLayout
,
...
...
@@ -153,6 +158,84 @@ bool profile_gemm_universal_impl(int do_verification,
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
const
int
KPerBlock
=
op_ptr
->
GetKPerBlock
();
if
(
op_ptr
->
GetPermuteB
())
{
int
K1
=
KPerBlock
;
int
K0
=
K
/
KPerBlock
;
// int K0, N, K1
for
(
int
j
=
0
;
j
<
K0
;
j
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
jj
=
0
;
jj
<
K1
;
jj
++
)
{
b_k_n_permute
(
j
*
N
*
K1
+
i
*
K1
+
jj
)
=
b_k_n
(
i
*
K
+
(
j
*
K1
+
jj
));
}
}
}
if
constexpr
(
is_same_v
<
BDataType
,
pk_i4_t
>
&&
is_same_v
<
ADataType
,
half_t
>
)
{
// vector pk_i4x4 permute
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
+=
8
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b_k_n_permute
(
j
+
k
*
2
,
i
).
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
6
,
i
)
=
i4x2
;
}
}
}
}
}
else
{
b_k_n_permute
=
b_k_n
;
}
b_device_buf
.
ToDevice
(
b_k_n_permute
.
mData
.
data
());
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
16
,
19
,
32
,
38
};
if
(
KBatch
>
0
)
...
...
@@ -240,7 +323,15 @@ bool profile_gemm_universal_impl(int do_verification,
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
static
constexpr
index_t
BPackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
BDataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
/
BPackedSize
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
...
profiler/include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -89,6 +89,7 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
out_device_buf
.
ToDevice
(
output
.
mData
.
data
());
float
max_accumulated_value
=
0
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
NDimSpatial
,
...
...
@@ -114,6 +115,8 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
{});
ref_invoker
.
Run
(
ref_argument
);
max_accumulated_value
=
*
std
::
max_element
(
weight_host_result
.
mData
.
begin
(),
weight_host_result
.
mData
.
end
());
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeight
<
NDimSpatial
,
...
...
@@ -237,7 +240,39 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
{
wei_device_buf
.
FromDevice
(
weight_device_result
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
weight_device_result
,
weight_host_result
);
using
ComputeType
=
std
::
conditional_t
<
sizeof
(
ComputeTypeA
)
<
sizeof
(
ComputeTypeB
),
ComputeTypeA
,
ComputeTypeB
>
;
using
AccDataType
=
std
::
conditional_t
<
std
::
is_same_v
<
ComputeType
,
int8_t
>
,
int32_t
,
float
>
;
const
index_t
num_accums
=
output
.
GetElementSize
()
/
conv_param
.
K_
;
const
index_t
num_accums_split_k
=
split_k_list
[
split_k_id
];
// Calculate thresholds
auto
rtol
=
ck
::
utils
::
get_relative_threshold
<
ComputeType
,
WeiDataType
,
AccDataType
>
(
num_accums
/
num_accums_split_k
);
auto
atol
=
ck
::
utils
::
get_absolute_threshold
<
ComputeType
,
WeiDataType
,
AccDataType
>
(
max_accumulated_value
/
num_accums_split_k
,
num_accums
/
num_accums_split_k
);
// Calculate error due to split_k accumulation
auto
rtol_split_k
=
ck
::
utils
::
get_relative_threshold
<
WeiDataType
,
WeiDataType
,
WeiDataType
>
(
num_accums_split_k
);
auto
atol_split_k
=
ck
::
utils
::
get_absolute_threshold
<
WeiDataType
,
WeiDataType
,
WeiDataType
>
(
max_accumulated_value
,
num_accums_split_k
);
// Use higher threshold
rtol
=
std
::
max
(
rtol
,
rtol_split_k
);
atol
=
std
::
max
(
atol
,
atol_split_k
);
bool
pass
=
ck
::
utils
::
check_err
(
weight_device_result
,
weight_host_result
,
"Error: Incorrect results!"
,
rtol
,
atol
);
std
::
cout
<<
"Relative error threshold: "
<<
rtol
<<
" Absolute error threshold: "
<<
atol
<<
std
::
endl
;
if
(
!
pass
)
{
...
...
profiler/src/CMakeLists.txt
View file @
efab74a3
...
...
@@ -58,6 +58,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_b_scale.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_batched.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp
)
...
...
@@ -141,6 +142,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
endif
()
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_b_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_batched_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_streamk_instance
)
...
...
@@ -177,5 +179,4 @@ if(DL_KERNELS)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_bwd_weight_instance
)
endif
()
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
Prev
1
…
13
14
15
16
17
18
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment