Commit efab74a3 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer
Browse files

Merge branch 'gfx950' into lwpck-2619

parents 86950b3a bcef33c1
......@@ -19,6 +19,10 @@ set(GROUPED_CONV2D_BWD_WEIGHT
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev1_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev1_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_pipev1_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_irregular_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_irregular_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_irregular_instance.cpp
xdl/device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_irregular_instance.cpp
)
if(DL_KERNELS)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_irregular_instances<
2,
NHWGC,
GKYXC,
NHWGK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_irregular_instances<
2,
NHWGC,
GKYXC,
NHWGK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_irregular_instances<
2,
NHWGC,
GKYXC,
NHWGK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_irregular_instances<
2,
NHWGC,
GKYXC,
NHWGK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -11,6 +11,7 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_int8_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f16_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f32_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_int8_instance.cpp
......@@ -27,6 +28,7 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_nhwgc_gkyxc_nhwgk_f32_instance.cpp
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_nhwgc_gkyxc_nhwgk_int8_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_bf16_instance.cpp
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_f16_instance.cpp
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_f32_instance.cpp
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_int8_instance.cpp
......@@ -42,10 +44,12 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/mem/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_mem_inter_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_int8_mem_inter_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_intra_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f16_mem_intra_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f32_mem_intra_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_int8_mem_intra_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_inter_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f16_mem_inter_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f32_mem_inter_instance.cpp
xdl/mem/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_int8_mem_inter_instance.cpp
......@@ -56,6 +60,7 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/comp/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_comp_instance.cpp
xdl/comp/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_int8_comp_instance.cpp
# NGCHW, GKYXC, NGKHW
xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_comp_instance.cpp
xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f16_comp_instance.cpp
xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_f32_comp_instance.cpp
xdl/comp/device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_int8_comp_instance.cpp
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_comp_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_comp_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_bf16_comp_instances<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
ConvFwdDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_fwd_xdl_bf16_instances<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
ConvFwdDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_mem_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_inter_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_fwd_xdl_bf16_mem_instances<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
ConvFwdDefault,
Interwave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_mem_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_fwd_xdl_ngchw_gkyxc_ngkhw_bf16_mem_intra_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_fwd_xdl_bf16_mem_instances<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
ConvFwdDefault,
Intrawave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_merged_groups_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv2d_fwd_xdl_merged_groups_ngchw_gkyxc_ngkhw_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_merged_groups_bf16_instances<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_merged_groups_bf16_instances<2,
NGCHW,
GKYXC,
Empty_Tuple,
NGKHW,
ConvFwd3x3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -19,6 +19,10 @@ set(GROUPED_CONV3D_BWD_WEIGHT
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev1_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_irregular_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_irregular_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_irregular_instance.cpp
xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_irregular_instance.cpp
)
if(DL_KERNELS)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_irregular_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_irregular_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_irregular_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_irregular_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3_b_scale.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_b_scale.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename BScaleDataType,
typename ComputeDataType,
typename AccDataType,
typename CDataType,
index_t ScaleBlockK,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_gemm_b_scale_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
int KBatch,
int n_warmup,
int n_iter,
uint64_t rotating = 0)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
ck::index_t Scale_Stride_BN = ck::is_same_v<BLayout, ck::tensor_layout::gemm::ColumnMajor>
? ((K + ScaleBlockK - 1) / ScaleBlockK)
: N;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_k_n_permute(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BScaleDataType> b1_k_n(f_host_tensor_descriptor(
(K + ScaleBlockK - 1) / ScaleBlockK, // K direction group size is ScaleBlockK
N, // N direction group size is 1
Scale_Stride_BN,
BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
int total_gemm_needed = a_m_k.GetElementSpaceSizeInBytes() +
b_k_n.GetElementSpaceSizeInBytes() +
b1_k_n.GetElementSpaceSizeInBytes();
int rotating_count = std::max(
1,
std::min(n_iter,
static_cast<int>(std::ceil(static_cast<double>(rotating) / total_gemm_needed))));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
std::cout << "rotating count: " << rotating_count << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-1, 2});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0});
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n_permute.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(BScaleDataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
using DeviceOp = ck::tensor_operation::device::DeviceGemmV2BScale<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
BScaleDataType,
CDataType,
1,
ScaleBlockK,
AElementOp,
BElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// Run reference GEMM
if(do_verification)
{
Tensor<float> b_k_n_dequant({K, N});
float v_b = 0;
for(int n = 0; n < N; n++)
{
for(int k = 0; k < K; k++)
{
ck::pk_i4_t i4x2 = b_k_n(k, n).data;
int8_t i4 = 0;
if(k % 2 == 1)
i4 = (i4x2.data >> 0) & 0xf;
else
i4 = (i4x2.data >> 4) & 0xf;
i4 = i4 - 8;
v_b = ck::type_convert<float>(i4);
b_k_n_dequant(k, n) = ck::type_convert<float>(v_b) *
ck::type_convert<float>(b1_k_n(k / ScaleBlockK, n));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp,
ComputeDataType>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n_dequant, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_kbatch = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
const int KPerBlock = op_ptr->GetKPerBlock();
if(op_ptr->GetPermuteB())
{
int K1 = KPerBlock;
int K0 = K / KPerBlock;
// int K0, N, K1
for(int j = 0; j < K0; j++)
{
for(int i = 0; i < N; i++)
{
for(int jj = 0; jj < K1; jj++)
{
b_k_n_permute(j * N * K1 + i * K1 + jj) = b_k_n(i * K + (j * K1 + jj));
}
}
}
if(is_same_v<BDataType, pk_i4_t> && is_same_v<ADataType, half_t>)
{
// vector pk_i4x4 permute
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j += 8)
{
int input[8];
for(int k = 0; k < 4; k++)
{
int i4x2 = b_k_n_permute(j + k * 2, i).data;
input[k * 2 + 0] = (i4x2 >> 4) & 0xf;
input[k * 2 + 1] = (i4x2 >> 0) & 0xf;
}
// permute 01234567->20643175
{
int hi = input[2];
int lo = input[0];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 0, i) = i4x2;
}
{
int hi = input[6];
int lo = input[4];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 2, i) = i4x2;
}
{
int hi = input[3];
int lo = input[1];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 4, i) = i4x2;
}
{
int hi = input[7];
int lo = input[5];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 6, i) = i4x2;
}
}
}
}
}
else
{
b_k_n_permute = b_k_n;
}
b_device_buf.ToDevice(b_k_n_permute.mData.data());
std::vector<int> kbatch_list = {1, 2, 4, 8, 16, 19, 32, 38};
if(KBatch > 0)
{
kbatch_list = {KBatch};
}
for(std::size_t i = 0; i < kbatch_list.size(); i++)
{
auto kbatch_curr = kbatch_list[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
Scale_Stride_BN,
static_cast<BScaleDataType*>(b1_device_buf.GetDeviceBuffer()),
kbatch_curr,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if constexpr(is_same_v<ADataType, f8_t> || is_same_v<BDataType, f8_t> ||
is_same_v<CDataType, f8_t>)
{
std::string msg = "Error: Incorrect results!";
double rtol = 1e-1;
double atol = 1e-1;
pass = pass & ck::utils::check_err(
c_m_n_device_result, c_m_n_host_result, msg, rtol, atol);
}
else
{
#endif
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
#if defined CK_ENABLE_FP8
}
#endif
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<int8_t>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
std::string op_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr,
time_kernel,
0,
n_warmup,
n_iter,
rotating_count > 1,
rotating_count});
std::size_t flop = std::size_t(2) * M * N * K;
static constexpr index_t BPackedSize = []() {
if constexpr(is_same_v<remove_cvref_t<BDataType>, pk_i4_t>)
return 2;
else
return 1;
}();
std::size_t num_btype = sizeof(ADataType) * M * K +
sizeof(BDataType) * K * N / BPackedSize +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << ", KBatch "
<< kbatch_curr << std::endl;
if(tflops > best_tflops && ave_time > 1e-10)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem"
<< std::endl;
}
}
}
if constexpr(is_same<CDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<CDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<CDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<CDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " KBatch = " << best_kbatch
<< " : " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec
<< " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -65,11 +65,13 @@ bool profile_gemm_universal_impl(int do_verification,
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_k_n_permute(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
int total_gemm_needed = a_m_k.GetElementSpaceSizeInBytes() + b_k_n.GetElementSpaceSizeInBytes();
int rotating_count = std::max(
std::size_t total_gemm_needed =
a_m_k.GetElementSpaceSizeInBytes() + b_k_n.GetElementSpaceSizeInBytes();
int rotating_count = std::max(
1,
std::min(n_iter,
static_cast<int>(std::ceil(static_cast<double>(rotating) / total_gemm_needed))));
......@@ -86,9 +88,13 @@ bool profile_gemm_universal_impl(int do_verification,
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-1, 2});
break;
default:
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
......@@ -100,11 +106,10 @@ bool profile_gemm_universal_impl(int do_verification,
const auto c_element_op = CElementOp{};
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n_permute.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
using DeviceOp = ck::tensor_operation::device::DeviceGemmV2<ALayout,
BLayout,
......@@ -153,6 +158,84 @@ bool profile_gemm_universal_impl(int do_verification,
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
const int KPerBlock = op_ptr->GetKPerBlock();
if(op_ptr->GetPermuteB())
{
int K1 = KPerBlock;
int K0 = K / KPerBlock;
// int K0, N, K1
for(int j = 0; j < K0; j++)
{
for(int i = 0; i < N; i++)
{
for(int jj = 0; jj < K1; jj++)
{
b_k_n_permute(j * N * K1 + i * K1 + jj) = b_k_n(i * K + (j * K1 + jj));
}
}
}
if constexpr(is_same_v<BDataType, pk_i4_t> && is_same_v<ADataType, half_t>)
{
// vector pk_i4x4 permute
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j += 8)
{
int input[8];
for(int k = 0; k < 4; k++)
{
int i4x2 = b_k_n_permute(j + k * 2, i).data;
input[k * 2 + 0] = (i4x2 >> 4) & 0xf;
input[k * 2 + 1] = (i4x2 >> 0) & 0xf;
}
// permute 01234567->20643175
{
int hi = input[2];
int lo = input[0];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 0, i) = i4x2;
}
{
int hi = input[6];
int lo = input[4];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 2, i) = i4x2;
}
{
int hi = input[3];
int lo = input[1];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 4, i) = i4x2;
}
{
int hi = input[7];
int lo = input[5];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 6, i) = i4x2;
}
}
}
}
}
else
{
b_k_n_permute = b_k_n;
}
b_device_buf.ToDevice(b_k_n_permute.mData.data());
std::vector<int> kbatch_list = {1, 2, 4, 8, 16, 19, 32, 38};
if(KBatch > 0)
......@@ -240,7 +323,15 @@ bool profile_gemm_universal_impl(int do_verification,
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
static constexpr index_t BPackedSize = []() {
if constexpr(is_same_v<remove_cvref_t<BDataType>, pk_i4_t>)
return 2;
else
return 1;
}();
std::size_t num_btype = sizeof(ADataType) * M * K +
sizeof(BDataType) * K * N / BPackedSize +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -89,6 +89,7 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
in_device_buf.ToDevice(input.mData.data());
out_device_buf.ToDevice(output.mData.data());
float max_accumulated_value = 0;
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
......@@ -114,6 +115,8 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
{});
ref_invoker.Run(ref_argument);
max_accumulated_value =
*std::max_element(weight_host_result.mData.begin(), weight_host_result.mData.end());
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdWeight<NDimSpatial,
......@@ -237,7 +240,39 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
{
wei_device_buf.FromDevice(weight_device_result.mData.data());
bool pass = ck::utils::check_err(weight_device_result, weight_host_result);
using ComputeType =
std::conditional_t<sizeof(ComputeTypeA) < sizeof(ComputeTypeB),
ComputeTypeA,
ComputeTypeB>;
using AccDataType =
std::conditional_t<std::is_same_v<ComputeType, int8_t>, int32_t, float>;
const index_t num_accums = output.GetElementSize() / conv_param.K_;
const index_t num_accums_split_k = split_k_list[split_k_id];
// Calculate thresholds
auto rtol =
ck::utils::get_relative_threshold<ComputeType, WeiDataType, AccDataType>(
num_accums / num_accums_split_k);
auto atol =
ck::utils::get_absolute_threshold<ComputeType, WeiDataType, AccDataType>(
max_accumulated_value / num_accums_split_k,
num_accums / num_accums_split_k);
// Calculate error due to split_k accumulation
auto rtol_split_k =
ck::utils::get_relative_threshold<WeiDataType, WeiDataType, WeiDataType>(
num_accums_split_k);
auto atol_split_k =
ck::utils::get_absolute_threshold<WeiDataType, WeiDataType, WeiDataType>(
max_accumulated_value, num_accums_split_k);
// Use higher threshold
rtol = std::max(rtol, rtol_split_k);
atol = std::max(atol, atol_split_k);
bool pass = ck::utils::check_err(weight_device_result,
weight_host_result,
"Error: Incorrect results!",
rtol,
atol);
std::cout << "Relative error threshold: " << rtol
<< " Absolute error threshold: " << atol << std::endl;
if(!pass)
{
......
......@@ -58,6 +58,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_b_scale.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal_batched.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp)
......@@ -141,6 +142,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_b_scale_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_batched_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_streamk_instance)
......@@ -177,5 +179,4 @@ if(DL_KERNELS)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment