Commit efab74a3 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer
Browse files

Merge branch 'gfx950' into lwpck-2619

parents 86950b3a bcef33c1
...@@ -9,11 +9,33 @@ ...@@ -9,11 +9,33 @@
namespace ck_tile { namespace ck_tile {
// This pipeline is qkv all located in LDS // This pipeline is qkv all located in LDS
using BlockFmhaPipelineQSKSVSDefaultPolicy = struct BlockFmhaPipelineQSKSVSDefaultPolicy
BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ false, : BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ false,
/* AsyncCopyK = */ false, /* AsyncCopyK = */ false,
/* AsyncCopyV = */ false, /* AsyncCopyV = */ false,
/* NumPrefetchK = */ 1, /* NumPrefetchK = */ 1,
/* NumPrefetchV = */ 1>; /* NumPrefetchV = */ 1>
{
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeK()
{
return MakeKLdsBlockDescriptor<Problem>().get_element_space_size() *
sizeof(typename Problem::KDataType);
} // namespace ck_tile
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeV()
{
return MakeVLdsBlockDescriptor<Problem>().get_element_space_size() *
sizeof(typename Problem::VDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return max(GetSmemSizeQ<Problem>() + GetSmemSizeK<Problem>(), GetSmemSizeV<Problem>()) +
GetSmemSizeDropout<Problem>();
}
};
} // namespace ck_tile } // namespace ck_tile
...@@ -41,52 +41,21 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true> ...@@ -41,52 +41,21 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ() CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{ {
constexpr index_t MaxVectorSize = 16 / sizeof(typename Problem::QDataType);
using BlockGemm = remove_cvref_t<decltype(GetQKBlockGemm<Problem>())>; using BlockGemm = remove_cvref_t<decltype(GetQKBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>(); constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>; using WG = remove_cvref_t<decltype(config.template at<0>())>;
return WG::kK / WG::WarpGemmAttribute::Impl::kABKLane;
return min(MaxVectorSize, WG::kK / WG::WarpGemmAttribute::Impl::kABKLane);
} }
template <typename Problem, typename BlockGemm> template <typename Problem, typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeQDramTileDistribution() CK_TILE_HOST_DEVICE static constexpr auto MakeQDramTileDistribution()
{ {
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>(); return BlockGemm::template MakeABlockTileDistribution<
using WG = remove_cvref_t<decltype(config.template at<0>())>; Problem::BlockFmhaShape::kM0,
constexpr index_t MWarp = config.template at<1>(); Problem::BlockFmhaShape::kSubQKHeaddim>();
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kSubQKHeaddim;
constexpr index_t K2 = WG::kK / WG::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t K1 = WG::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t K0 = kKPerBlock / (K1 * K2);
constexpr index_t M2 = WG::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t M1 = MWarp;
constexpr index_t M0 = kMPerBlock / (M2 * M1);
if constexpr(1 < Problem::kNumGemm0Warps)
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1, K2>>,
tuple<sequence<1>, sequence<2, 1>>,
tuple<sequence<1>, sequence<1, 2>>,
sequence<1, 2, 2>,
sequence<0, 0, 2>>{});
}
else
{
static_assert(MWarp == 1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1, K2>>,
tuple<sequence<2, 1>>,
tuple<sequence<1, 2>>,
sequence<1, 2, 2>,
sequence<0, 0, 2>>{});
}
} }
template <typename Problem> template <typename Problem>
...@@ -105,7 +74,7 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true> ...@@ -105,7 +74,7 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
constexpr auto warp_gemm = []() { constexpr auto warp_gemm = []() {
constexpr index_t WarpGemmM = Problem::BlockFmhaShape::Gemm0WarpTile::at(number<0>{}); constexpr index_t WarpGemmM = Problem::BlockFmhaShape::Gemm0WarpTile::at(number<0>{});
static_assert(WarpGemmM == 16 || WarpGemmM == 32); static_assert(WarpGemmM == 4 || WarpGemmM == 16 || WarpGemmM == 32);
if constexpr(std::is_same_v<typename Problem::QDataType, half_t> && if constexpr(std::is_same_v<typename Problem::QDataType, half_t> &&
std::is_same_v<typename Problem::KDataType, half_t> && std::is_same_v<typename Problem::KDataType, half_t> &&
...@@ -113,8 +82,10 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true> ...@@ -113,8 +82,10 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
{ {
if constexpr(WarpGemmM == 32) if constexpr(WarpGemmM == 32)
return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{}; return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{};
else // WarpGemmM == 16 else if constexpr(WarpGemmM == 16)
return WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution{}; return WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution{};
else // WarpGemmM == 4
return WarpGemmMfmaF16F16F32M4N64K16{};
} }
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> && else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> && std::is_same_v<typename Problem::KDataType, bf16_t> &&
...@@ -122,8 +93,10 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true> ...@@ -122,8 +93,10 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
{ {
if constexpr(WarpGemmM == 32) if constexpr(WarpGemmM == 32)
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{}; return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{};
else // WarpGemmM == 16 else if constexpr(WarpGemmM == 16)
return WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution{}; return WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution{};
else // WarpGemmM == 4
return WarpGemmMfmaBf16Bf16F32M4N64K16{};
} }
else if constexpr(std::is_same_v<typename Problem::QDataType, fp8_t> && else if constexpr(std::is_same_v<typename Problem::QDataType, fp8_t> &&
std::is_same_v<typename Problem::KDataType, fp8_t> && std::is_same_v<typename Problem::KDataType, fp8_t> &&
...@@ -152,9 +125,8 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true> ...@@ -152,9 +125,8 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
} }
}; };
/// NOTICE: we no-longer use this policy.
template <> template <>
struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false> struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
{ {
static constexpr bool QLoadOnce = false; static constexpr bool QLoadOnce = false;
...@@ -174,8 +146,16 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false> ...@@ -174,8 +146,16 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ() CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{ {
using QDataType = remove_cvref_t<typename Problem::QDataType>; constexpr index_t kBlockSize = Problem::kBlockSize;
return 16 / sizeof(QDataType); constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0;
constexpr index_t MaxVectorSize = 16 / sizeof(typename Problem::QDataType);
// this should align with MakeQDramTileDistribution()
constexpr index_t ElemPerThread = (kMPerBlock * kKPerBlock) / kBlockSize;
static_assert(0 < ElemPerThread);
return min(ElemPerThread, MaxVectorSize);
} }
template <typename Problem> template <typename Problem>
...@@ -184,19 +164,25 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false> ...@@ -184,19 +164,25 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
using QDataType = remove_cvref_t<typename Problem::QDataType>; using QDataType = remove_cvref_t<typename Problem::QDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize; constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0; constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0; constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0;
constexpr index_t K1 = 16 / sizeof(QDataType); // use dwordx4. TODO: change this constexpr index_t MaxVectorSize = 16 / sizeof(QDataType);
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0; constexpr index_t ElemPerThread = (kMPerBlock * kKPerBlock) / kBlockSize;
constexpr index_t M1 = kBlockSize / get_warp_size(); static_assert(0 < ElemPerThread);
constexpr index_t M0 = kMPerBlock / (M2 * M1); constexpr index_t kMaxVecLoad = min(ElemPerThread, MaxVectorSize);
constexpr index_t KPerThread = kMaxVecLoad;
constexpr index_t KThreads = kKPerBlock / KPerThread;
constexpr index_t MThreadPerWarp = get_warp_size() / KThreads;
constexpr index_t NumWarps = kBlockSize / get_warp_size();
constexpr index_t MPerThread = kMPerBlock / (MThreadPerWarp * NumWarps);
return make_static_tile_distribution( return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>, tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>, tuple<sequence<MPerThread, NumWarps, MThreadPerWarp>,
sequence<KThreads, KPerThread>>,
tuple<sequence<1>, sequence<1, 2>>, tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>, tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>, sequence<1, 2>,
...@@ -243,18 +229,31 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false> ...@@ -243,18 +229,31 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
typename Problem::BlockFmhaShape::Gemm0BlockWarps, typename Problem::BlockFmhaShape::Gemm0BlockWarps,
typename Problem::BlockFmhaShape::Gemm0WarpTile>>; typename Problem::BlockFmhaShape::Gemm0WarpTile>>;
constexpr index_t WarpGemmM = Problem::BlockFmhaShape::Gemm0WarpTile::at(number<0>{});
static_assert(WarpGemmM == 4 || WarpGemmM == 16 || WarpGemmM == 32);
constexpr auto warp_gemm = []() { constexpr auto warp_gemm = []() {
if constexpr(std::is_same_v<typename Problem::QDataType, half_t> && if constexpr(std::is_same_v<typename Problem::QDataType, half_t> &&
std::is_same_v<typename Problem::KDataType, half_t> && std::is_same_v<typename Problem::KDataType, half_t> &&
std::is_same_v<typename Problem::SaccDataType, float>) std::is_same_v<typename Problem::SaccDataType, float>)
{ {
return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{}; if constexpr(WarpGemmM == 32)
return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{};
else if constexpr(WarpGemmM == 16)
return WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution{};
else // WarpGemmM == 4
return WarpGemmMfmaF16F16F32M4N64K16{};
} }
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> && else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> && std::is_same_v<typename Problem::KDataType, bf16_t> &&
std::is_same_v<typename Problem::SaccDataType, float>) std::is_same_v<typename Problem::SaccDataType, float>)
{ {
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{}; if constexpr(WarpGemmM == 32)
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{};
else if constexpr(WarpGemmM == 16)
return WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution{};
else // WarpGemmM == 4
return WarpGemmMfmaBf16Bf16F32M4N64K16{};
} }
else if constexpr(std::is_same_v<typename Problem::QDataType, fp8_t> && else if constexpr(std::is_same_v<typename Problem::QDataType, fp8_t> &&
std::is_same_v<typename Problem::KDataType, fp8_t> && std::is_same_v<typename Problem::KDataType, fp8_t> &&
......
...@@ -43,8 +43,6 @@ struct TileFmhaShape ...@@ -43,8 +43,6 @@ struct TileFmhaShape
static constexpr index_t NumWarps = max(NumGemm0Warps, NumGemm1Warps); static constexpr index_t NumWarps = max(NumGemm0Warps, NumGemm1Warps);
static_assert(std::is_same_v<Gemm0WarpTile, Gemm1WarpTile>);
static constexpr index_t kM0 = BlockTile::at(number<0>{}); // tile size along q seqlen static constexpr index_t kM0 = BlockTile::at(number<0>{}); // tile size along q seqlen
static constexpr index_t kN0 = BlockTile::at(number<1>{}); // tile size along k seqlen static constexpr index_t kN0 = BlockTile::at(number<1>{}); // tile size along k seqlen
static constexpr index_t kK0 = BlockTile::at(number<2>{}); // tile size along qk gemm unroll static constexpr index_t kK0 = BlockTile::at(number<2>{}); // tile size along qk gemm unroll
......
...@@ -43,7 +43,8 @@ template <bool kPadSeqLenQ_ /* padding for seqlen_q */, ...@@ -43,7 +43,8 @@ template <bool kPadSeqLenQ_ /* padding for seqlen_q */,
bool kDoFp8StaticQuant_, bool kDoFp8StaticQuant_,
bool kIsPagedKV_, bool kIsPagedKV_,
bool kHasUnevenSplits_, bool kHasUnevenSplits_,
index_t kBlockPerCu_ = -1 /* overwrite occupancy if not -1 */> bool kMergeNumHeadGroupsSeqLenQ_ = false,
index_t kBlockPerCu_ = -1 /* overwrite occupancy if not -1 */>
struct TileFmhaFwdSplitKVTraits struct TileFmhaFwdSplitKVTraits
{ {
static constexpr bool kPadSeqLenQ = kPadSeqLenQ_; static constexpr bool kPadSeqLenQ = kPadSeqLenQ_;
...@@ -56,8 +57,9 @@ struct TileFmhaFwdSplitKVTraits ...@@ -56,8 +57,9 @@ struct TileFmhaFwdSplitKVTraits
static constexpr bool kDoFp8StaticQuant = kDoFp8StaticQuant_; static constexpr bool kDoFp8StaticQuant = kDoFp8StaticQuant_;
static constexpr bool kIsPagedKV = kIsPagedKV_; static constexpr bool kIsPagedKV = kIsPagedKV_;
// determine if some split (length) is not divisible by tile size // determine if some split (length) is not divisible by tile size
static constexpr bool kHasUnevenSplits = kHasUnevenSplits_; static constexpr bool kHasUnevenSplits = kHasUnevenSplits_;
static constexpr index_t kBlockPerCu = kBlockPerCu_; static constexpr bool kMergeNumHeadGroupsSeqLenQ = kMergeNumHeadGroupsSeqLenQ_;
static constexpr index_t kBlockPerCu = kBlockPerCu_;
}; };
template <bool kPadSeqLenQ_ /* padding for seqlen_q */, template <bool kPadSeqLenQ_ /* padding for seqlen_q */,
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
......
...@@ -111,7 +111,7 @@ struct FusedMoeGemmHostArgs ...@@ -111,7 +111,7 @@ struct FusedMoeGemmHostArgs
const void* num_sorted_tiles_ptr; // [1] const void* num_sorted_tiles_ptr; // [1]
index_t hidden_size; // k index_t hidden_size; // k
index_t intermediate_size; // n / TP, for Gate. if Gate+Up, Down need divide by 2 index_t intermediate_size; // n / TP, for Gate/UP/Down
index_t num_tokens; // input number of tokens for current iteration index_t num_tokens; // input number of tokens for current iteration
index_t num_experts; // number of groups index_t num_experts; // number of groups
index_t topk; // need this? index_t topk; // need this?
...@@ -178,7 +178,7 @@ struct FusedMoeGemmKernel ...@@ -178,7 +178,7 @@ struct FusedMoeGemmKernel
return base_str; return base_str;
}(); }();
return _SS_("fused_moe_") + _SS_(prec_str) + "_" + return _SS_("fused_moe_") + _SS_(prec_str) + "_" + (IsGateOnly ? "g1u0_":"g1u1_") +
_TS_(S_::Block_M0) + "x" + _TS_(S_::Block_N0) + "x" + _TS_(S_::Block_K0) + "x" + _TS_(S_::Block_N1) + "_" + _TS_(S_::Block_M0) + "x" + _TS_(S_::Block_N0) + "x" + _TS_(S_::Block_K0) + "x" + _TS_(S_::Block_N1) + "_" +
_TS_(S_::WarpPerBlock_M0) + "x" + _TS_(S_::WarpPerBlock_N0) + "x" + _TS_(S_::WarpPerBlock_K0) + "_" + _TS_(S_::WarpPerBlock_M0) + "x" + _TS_(S_::WarpPerBlock_N0) + "x" + _TS_(S_::WarpPerBlock_K0) + "_" +
_TS_(S_::Warp_M0) + "x" + _TS_(S_::Warp_N0) + "x" + _TS_(S_::Warp_K0) + "_" + _SS_(Pipeline::name); _TS_(S_::Warp_M0) + "x" + _TS_(S_::Warp_N0) + "x" + _TS_(S_::Warp_K0) + "_" + _SS_(Pipeline::name);
...@@ -204,7 +204,7 @@ struct FusedMoeGemmKernel ...@@ -204,7 +204,7 @@ struct FusedMoeGemmKernel
const void* num_sorted_tiles_ptr; const void* num_sorted_tiles_ptr;
index_t hidden_size; // k index_t hidden_size; // k
index_t intermediate_size; // n / TP, for Gate. if Gate+Up, Down need divide by 2 index_t intermediate_size; // n / TP, for Gate/Up/Down
index_t num_tokens; // input number of tokens for current iteration index_t num_tokens; // input number of tokens for current iteration
index_t num_experts; // number of groups index_t num_experts; // number of groups
index_t topk; // need this? index_t topk; // need this?
...@@ -239,7 +239,7 @@ struct FusedMoeGemmKernel ...@@ -239,7 +239,7 @@ struct FusedMoeGemmKernel
{ {
if constexpr(UseUK) if constexpr(UseUK)
{ {
__shared__ CK_TILE_LDS_ADDR ADataType smem[GetSmemSize()]; __shared__ CK_TILE_LDS_ADDR char smem[GetSmemSize()];
IndexDataType num_sorted_tiles = __builtin_amdgcn_readfirstlane( IndexDataType num_sorted_tiles = __builtin_amdgcn_readfirstlane(
*reinterpret_cast<const IndexDataType*>(kargs.num_sorted_tiles_ptr)); *reinterpret_cast<const IndexDataType*>(kargs.num_sorted_tiles_ptr));
...@@ -298,6 +298,9 @@ struct FusedMoeGemmKernel ...@@ -298,6 +298,9 @@ struct FusedMoeGemmKernel
index_t token_id = index_t token_id =
reinterpret_cast<const index_t*>(kargs.sorted_token_ids_ptr)[sorted_token_id]; reinterpret_cast<const index_t*>(kargs.sorted_token_ids_ptr)[sorted_token_id];
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
token_id &= 0xffffff;
#endif
auto topk_weight = reinterpret_cast<const TopkWeightDataType*>( auto topk_weight = reinterpret_cast<const TopkWeightDataType*>(
kargs.sorted_weight_ptr)[sorted_token_id]; kargs.sorted_weight_ptr)[sorted_token_id];
......
...@@ -130,7 +130,8 @@ struct MoeSortingKernel ...@@ -130,7 +130,8 @@ struct MoeSortingKernel
CK_TILE_HOST static constexpr auto GetSmemSize(const Hargs& h) CK_TILE_HOST static constexpr auto GetSmemSize(const Hargs& h)
{ {
const auto blocks = BlockSize(h); const auto blocks = BlockSize(h);
return ((blocks.x + 1) * h.num_experts + (h.num_experts + 1)) * sizeof(index_t); // usually num_experts is power of 2, we pad 1 dword here for the row-size
return ((blocks.x + 1) * (h.num_experts + 1) + (h.num_experts + 1)) * sizeof(index_t);
} }
CK_TILE_HOST static constexpr auto MakeKargs(const Hargs& h) CK_TILE_HOST static constexpr auto MakeKargs(const Hargs& h)
...@@ -154,6 +155,75 @@ struct MoeSortingKernel ...@@ -154,6 +155,75 @@ struct MoeSortingKernel
return k; return k;
} }
// [a, b, c, d....] -> [a, a+b, a+b+c, a+b+c+d, ....]
template <typename data_t, int wave_size>
__device__ inline void wave_cumsum(data_t& thread_data) const
{
// wave_size must be power of 2
constexpr int row_mask = 0xf;
constexpr int bank_mask = 0xf;
constexpr bool bound_ctrl = true; // ! out-of-bound is zero !
auto reduce_op = [&](auto x_, auto y_) { return x_ + y_; };
if constexpr(wave_size > 1)
{
thread_data = reduce_op(
thread_data,
__builtin_bit_cast(data_t, __builtin_amdgcn_mov_dpp(__builtin_bit_cast(int, thread_data),
0x111,
row_mask,
bank_mask,
bound_ctrl))); // row_shr:1
}
if constexpr(wave_size > 2)
{
thread_data = reduce_op(
thread_data,
__builtin_bit_cast(data_t, __builtin_amdgcn_mov_dpp(__builtin_bit_cast(int, thread_data),
0x112,
row_mask,
bank_mask,
bound_ctrl))); // row_shr:2
}
if constexpr(wave_size > 4)
{
thread_data =
reduce_op(thread_data,
__builtin_bit_cast(data_t, __builtin_amdgcn_mov_dpp(__builtin_bit_cast(int, thread_data),
0x114,
row_mask,
bank_mask,
bound_ctrl))); // row_shr:4
}
if constexpr(wave_size > 8)
{
thread_data =
reduce_op(thread_data,
__builtin_bit_cast(data_t, __builtin_amdgcn_mov_dpp(__builtin_bit_cast(int, thread_data),
0x118,
row_mask,
bank_mask,
bound_ctrl))); // row_shr:8
}
if constexpr(wave_size > 16)
{
// now row-0, row-0+row-1, row-1+row-2, row-2+row-3
int v_remote_tmp = __builtin_amdgcn_ds_bpermute(((__lane_id() & 0x30) - 1) << 2, __builtin_bit_cast(int, thread_data));
v_remote_tmp = __lane_id() >= 16 ? v_remote_tmp : 0;
thread_data = reduce_op(thread_data, __builtin_bit_cast(data_t, v_remote_tmp));
}
if constexpr(wave_size > 32)
{
// lane-id 48...63->31
int v_remote_tmp = __builtin_amdgcn_ds_bpermute(((__lane_id() & 0x30) - 17) << 2, __builtin_bit_cast(int, thread_data));
v_remote_tmp = __lane_id() >= 32 ? v_remote_tmp : 0;
thread_data = reduce_op(thread_data, __builtin_bit_cast(data_t, v_remote_tmp));
}
}
CK_TILE_DEVICE index_t calc_index(index_t total_col, index_t row, index_t col) const CK_TILE_DEVICE index_t calc_index(index_t total_col, index_t row, index_t col) const
{ {
return row * total_col + col; return row * total_col + col;
...@@ -187,48 +257,124 @@ struct MoeSortingKernel ...@@ -187,48 +257,124 @@ struct MoeSortingKernel
index_t* shared_mem = reinterpret_cast<index_t*>(smem); index_t* shared_mem = reinterpret_cast<index_t*>(smem);
index_t* tokens_cnts = shared_mem; // 2d: (blockDim.x + 1, num_experts) index_t* tokens_cnts = shared_mem; // 2d: (blockDim.x + 1, num_experts)
index_t* cumsum = shared_mem + (blockDim.x + 1) * num_experts; // 1: (num_experts + 1) index_t* cumsum = shared_mem + (blockDim.x + 1) * (num_experts+1); // 1: (num_experts + 1)
for(int i = 0; i < num_experts; ++i) for(int i = 0; i < num_experts; ++i)
{ {
tokens_cnts[calc_index(num_experts, tid + 1, i)] = 0; tokens_cnts[calc_index(num_experts+1, tid + 1, i)] = 0;
} }
#pragma unroll Problem_::InternalLoadUnroll #pragma unroll Problem_::InternalLoadUnroll
for(int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) for(int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i)
{ {
++tokens_cnts[calc_index(num_experts, tid + 1, topk_id[i])]; ++tokens_cnts[calc_index(num_experts+1, tid + 1, topk_id[i])];
} }
__syncthreads(); __syncthreads();
#if 1
if(tid < num_experts) if(tid < num_experts)
{ {
tokens_cnts[calc_index(num_experts, 0, tid)] = 0; tokens_cnts[calc_index(num_experts+1, 0, tid)] = 0;
for(int i = 1; i <= static_cast<index_t>(blockDim.x); ++i) index_t local_c[8];
index_t prev_c = 0;
// TODO: manually unroll. pragma unroll does not work well when we have dependency
for(int i = 1; i <= static_cast<index_t>(blockDim.x); i+= 8)
{ {
tokens_cnts[calc_index(num_experts, i, tid)] += local_c[0] = tokens_cnts[calc_index(num_experts+1, i + 0, tid)];
tokens_cnts[calc_index(num_experts, i - 1, tid)]; local_c[1] = tokens_cnts[calc_index(num_experts+1, i + 1, tid)];
local_c[2] = tokens_cnts[calc_index(num_experts+1, i + 2, tid)];
local_c[3] = tokens_cnts[calc_index(num_experts+1, i + 3, tid)];
local_c[4] = tokens_cnts[calc_index(num_experts+1, i + 4, tid)];
local_c[5] = tokens_cnts[calc_index(num_experts+1, i + 5, tid)];
local_c[6] = tokens_cnts[calc_index(num_experts+1, i + 6, tid)];
local_c[7] = tokens_cnts[calc_index(num_experts+1, i + 7, tid)];
local_c[0] += prev_c;
local_c[1] += local_c[0];
local_c[2] += local_c[1];
local_c[3] += local_c[2];
local_c[4] += local_c[3];
local_c[5] += local_c[4];
local_c[6] += local_c[5];
local_c[7] += local_c[6];
prev_c = local_c[7];
tokens_cnts[calc_index(num_experts+1, i + 0, tid)] = local_c[0];
tokens_cnts[calc_index(num_experts+1, i + 1, tid)] = local_c[1];
tokens_cnts[calc_index(num_experts+1, i + 2, tid)] = local_c[2];
tokens_cnts[calc_index(num_experts+1, i + 3, tid)] = local_c[3];
tokens_cnts[calc_index(num_experts+1, i + 4, tid)] = local_c[4];
tokens_cnts[calc_index(num_experts+1, i + 5, tid)] = local_c[5];
tokens_cnts[calc_index(num_experts+1, i + 6, tid)] = local_c[6];
tokens_cnts[calc_index(num_experts+1, i + 7, tid)] = local_c[7];
} }
} }
#else
// __syncthreads(); // TODO: below code still working, but slow in expert=32/topk=5 case. Put here for future heuristic
if(tid == 0)
{ {
cumsum[0] = 0; if(tid < num_experts)
for(int i = 1; i <= num_experts; ++i) tokens_cnts[calc_index(num_experts+1, 0, tid)] = 0;
for(int i = 0; i < num_experts; i+=8) {
index_t local_c[8];
#pragma unroll
for(int j = 0; j < 8; j++) {
local_c[j] = tokens_cnts[calc_index(num_experts+1, tid+1, i+j)];
}
#pragma unroll
for(int j = 0; j < 8; j++) {
wave_cumsum<int, 64>(local_c[j]);
}
#pragma unroll
for(int j = 0; j < 8; j++) {
tokens_cnts[calc_index(num_experts+1, tid+1, i+j)] = local_c[j];
}
}
}
#endif
__syncthreads();
if constexpr (Problem::ExpertTile == 0) {
if(tid == 0)
{ {
auto current_units = [&]() { cumsum[0] = 0;
index_t x_ = tokens_cnts[calc_index(num_experts, blockDim.x, i - 1)] + for(int i = 1; i <= num_experts; ++i)
unit_size_mdiv.divisor - 1; {
index_t y_ = unit_size_mdiv.div(x_); auto current_units = [&]() {
return max(y_, 1) * unit_size_mdiv.divisor; index_t x_ = tokens_cnts[calc_index(num_experts+1, blockDim.x, i - 1)] +
}(); unit_size_mdiv.divisor - 1;
cumsum[i] = cumsum[i - 1] + current_units; index_t y_ = unit_size_mdiv.div(x_);
return max(y_, 1) * unit_size_mdiv.divisor;
}();
cumsum[i] = cumsum[i - 1] + current_units;
}
*p_total_tokens_post_pad = cumsum[num_experts];
}
} else {
// TODO: we have out-of-bound read here. But result is still OK (will ignore tid >= expert)
// for simplicity, not check experts here.
int local_cnt = tokens_cnts[calc_index(num_experts+1, blockDim.x, tid)];
int blocks_pers_expert = unit_size_mdiv.div(local_cnt + unit_size_mdiv.divisor - 1);
int padded_tokens_per_expert = max(blocks_pers_expert, 1) * unit_size_mdiv.divisor;
int local_cumsum = padded_tokens_per_expert;
wave_cumsum<int, 64>(local_cumsum);
if(tid == (num_experts - 1)) {
cumsum[0] = 0;
*p_total_tokens_post_pad = local_cumsum;
}
if(tid < num_experts) {
cumsum[tid + 1] = local_cumsum;
} }
*p_total_tokens_post_pad = cumsum[num_experts];
} }
__syncthreads(); __syncthreads();
if(tid < num_experts) if(tid < num_experts)
{ {
for(int i = cumsum[tid]; i < cumsum[tid + 1]; i += unit_size_mdiv.divisor) int e_start = cumsum[tid];
int e_end = cumsum[tid + 1];
for(int i = e_start; i < e_end; i += unit_size_mdiv.divisor)
{ {
p_sorted_expert_ids[unit_size_mdiv.div(i)] = tid; p_sorted_expert_ids[unit_size_mdiv.div(i)] = tid;
} }
...@@ -238,8 +384,8 @@ struct MoeSortingKernel ...@@ -238,8 +384,8 @@ struct MoeSortingKernel
for(int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) for(int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i)
{ {
index_t expert_id = topk_id[i]; index_t expert_id = topk_id[i];
index_t rank_post_pad = index_t local_cnt = tokens_cnts[calc_index(num_experts+1, tid, expert_id)];
tokens_cnts[calc_index(num_experts, tid, expert_id)] + cumsum[expert_id]; index_t rank_post_pad = local_cnt + cumsum[expert_id];
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID #if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
uint32_t curr_token_id, curr_topk_id; uint32_t curr_token_id, curr_topk_id;
topk_mdiv.divmod(i, curr_token_id, curr_topk_id); topk_mdiv.divmod(i, curr_token_id, curr_topk_id);
...@@ -247,27 +393,54 @@ struct MoeSortingKernel ...@@ -247,27 +393,54 @@ struct MoeSortingKernel
#else #else
p_sorted_token_ids[rank_post_pad] = topk_mdiv.div(i); p_sorted_token_ids[rank_post_pad] = topk_mdiv.div(i);
#endif #endif
p_sorted_weights[rank_post_pad] = weights[i]; p_sorted_weights[rank_post_pad] = weights[i];
++tokens_cnts[calc_index(num_experts, tid, expert_id)]; tokens_cnts[calc_index(num_experts+1, tid, expert_id)] = local_cnt+1;
} }
const index_t prefill_token = topk_mdiv.div(numel); if constexpr (Problem::ExpertTile == 0) {
if(tid < num_experts) const index_t prefill_token = topk_mdiv.div(numel);
{ if(tid < num_experts)
index_t expert_offset =
cumsum[tid] + tokens_cnts[calc_index(num_experts, blockDim.x, tid)];
while(expert_offset < cumsum[tid + 1])
{ {
index_t expert_offset =
cumsum[tid] + tokens_cnts[calc_index(num_experts+1, blockDim.x, tid)];
index_t expert_end = cumsum[tid + 1];
while(expert_offset < expert_end)
{
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID #if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
p_sorted_token_ids[expert_offset] = p_sorted_token_ids[expert_offset] =
MOE_SORTING_MOCK_ID(prefill_token, topk_mdiv.divisor); MOE_SORTING_MOCK_ID(prefill_token, topk_mdiv.divisor);
#else #else
p_sorted_token_ids[expert_offset] = prefill_token; p_sorted_token_ids[expert_offset] = prefill_token;
#endif #endif
p_sorted_weights[expert_offset] = static_cast<WeightType>(0.0); p_sorted_weights[expert_offset] = static_cast<WeightType>(0.0);
expert_offset++; expert_offset++;
}
} }
} }
else {
const index_t prefill_token = topk_mdiv.div(numel);
// TODO: only support expert-tile like 8, 16, 32
static constexpr index_t experts_per_wave = warpSize / Problem::ExpertTile;
{
index_t eid = tid / experts_per_wave;
index_t expert_offset =
cumsum[eid] + tokens_cnts[calc_index(num_experts+1, blockDim.x, eid)] + tid % experts_per_wave;
index_t expert_end = cumsum[eid + 1];
if(eid < num_experts) {
while(expert_offset < expert_end)
{
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
p_sorted_token_ids[expert_offset] =
MOE_SORTING_MOCK_ID(prefill_token, topk_mdiv.divisor);
#else
p_sorted_token_ids[expert_offset] = prefill_token;
#endif
p_sorted_weights[expert_offset] = static_cast<WeightType>(0.0);
expert_offset+=experts_per_wave;
}
}
}
}
} }
CK_TILE_DEVICE void operator()(Kargs kargs) const CK_TILE_DEVICE void operator()(Kargs kargs) const
......
...@@ -70,11 +70,16 @@ struct FusedMoeGemmPipeline_FlatmmUk ...@@ -70,11 +70,16 @@ struct FusedMoeGemmPipeline_FlatmmUk
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize() CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{ {
#if 1
constexpr index_t smem_0 = Policy::template GetUK_0<Problem>().GetSmemSize(); constexpr index_t smem_0 = Policy::template GetUK_0<Problem>().GetSmemSize();
constexpr index_t smem_1 = Policy::template GetUK_1<Problem>().GetSmemSize(); constexpr index_t smem_1 = Policy::template GetUK_1<Problem>().GetSmemSize();
constexpr index_t smem_bridge = constexpr index_t smem_bridge =
BlockShape::Block_M0 * BlockShape::Block_N0 * sizeof(YDataType); BlockShape::Block_M0 * BlockShape::Block_N0 * sizeof(YDataType);
return max(smem_0, max(smem_1, smem_bridge)); return max(smem_0 + smem_1, smem_bridge);
#else
// keep it here purposely in case we have regression
return 65536;
#endif
} }
// this is the thread-offset along row/col // this is the thread-offset along row/col
...@@ -125,6 +130,9 @@ struct FusedMoeGemmPipeline_FlatmmUk ...@@ -125,6 +130,9 @@ struct FusedMoeGemmPipeline_FlatmmUk
array<index_t, n_size> row_ids; array<index_t, n_size> row_ids;
static_for<0, n_size, 1>{}([&](auto i) { static_for<0, n_size, 1>{}([&](auto i) {
row_ids.at(i) = sorted_token_ids_ptr[coords[i]]; // base_coord + i * MLans; row_ids.at(i) = sorted_token_ids_ptr[coords[i]]; // base_coord + i * MLans;
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
row_ids.at(i) &= 0xffffff;
#endif
}); });
return row_ids; return row_ids;
...@@ -164,9 +172,12 @@ struct FusedMoeGemmPipeline_FlatmmUk ...@@ -164,9 +172,12 @@ struct FusedMoeGemmPipeline_FlatmmUk
index_t sorted_tile_id, index_t sorted_tile_id,
index_t intermediate_tile_id) index_t intermediate_tile_id)
{ {
constexpr index_t hidden_radio_0 = IsGateOnly ? 1 : 2; constexpr index_t hidden_radio_0 = IsGateOnly ? 1 : 2;
ck_tile::index_t shared_intermediate_size_0 = kargs.intermediate_size; ck_tile::index_t shared_intermediate_size_0 =
ck_tile::index_t shared_intermediate_size_1 = kargs.intermediate_size / hidden_radio_0; kargs.intermediate_size * hidden_radio_0; // total gate+up
ck_tile::index_t shared_intermediate_size_1 = kargs.intermediate_size;
// after weight shuffling, gate-only: [nr0, kr0, w0], gate+up: [nr0_gate + nr0_up, kr0, w0]
index_t nr_0 = shared_intermediate_size_0 / BlockShape::Warp_N0; // divide N in W index_t nr_0 = shared_intermediate_size_0 / BlockShape::Warp_N0; // divide N in W
index_t kr_0 = kargs.hidden_size / BlockShape::Warp_K0; // divide K in W index_t kr_0 = kargs.hidden_size / BlockShape::Warp_K0; // divide K in W
...@@ -200,29 +211,35 @@ struct FusedMoeGemmPipeline_FlatmmUk ...@@ -200,29 +211,35 @@ struct FusedMoeGemmPipeline_FlatmmUk
make_wave_buffer_resource(reinterpret_cast<const ADataType*>(kargs.a_ptr), make_wave_buffer_resource(reinterpret_cast<const ADataType*>(kargs.a_ptr),
kargs.num_tokens * kargs.stride_token * sizeof(ADataType)); kargs.num_tokens * kargs.stride_token * sizeof(ADataType));
auto g_win = [&]() { auto make_gu_win = [&](const auto* ptr_) {
const GDataType* g_ptr = reinterpret_cast<const GDataType*>(kargs.g_ptr) + auto view_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<long_index_t>(expert_id) * expert_stride_0 + ptr_,
interm_idx_nr0 * kr_0 * BlockShape::Block_W0;
auto g_view_ = make_naive_tensor_view<address_space_enum::global>(
g_ptr,
make_tuple(nr_0, kr_0, number<BlockShape::Block_W0>{}), make_tuple(nr_0, kr_0, number<BlockShape::Block_W0>{}),
make_tuple(kr_0 * BlockShape::Block_W0, number<BlockShape::Block_W0>{}, 1), make_tuple(kr_0 * BlockShape::Block_W0, number<BlockShape::Block_W0>{}, 1),
number<kAlignmentG>{}, number<kAlignmentG>{},
number<1>{}); number<1>{});
auto g_window_ = make_tile_window_linear_raw( auto win_ = make_tile_window_linear_raw(
g_view_, view_,
make_tuple(number<BlockShape::Block_Nr0>{}, make_tuple(number<BlockShape::Block_Nr0>{},
number<BlockShape::Block_Kr0>{}, number<BlockShape::Block_Kr0>{},
number<BlockShape::Block_W0>{}), number<BlockShape::Block_W0>{}),
{0, 0, 0}, {0, 0, 0},
Policy::template MakeGlobalTileDistribution_G<Problem>(), Policy::template MakeGlobalTileDistribution_G<Problem>(),
sequence<0, 1, 1>{}); sequence<0, 1, 1>{});
return g_window_; return win_;
}(); };
const GDataType* gu_ptr = reinterpret_cast<const GDataType*>(kargs.g_ptr) +
static_cast<long_index_t>(expert_id) * expert_stride_0 +
interm_idx_nr0 * kr_0 * BlockShape::Block_W0;
auto g_win = make_gu_win(gu_ptr);
// Note: gu swizzled, [nr_u+nr_g, kr, w], hence base offset to up is just interm*hidden
auto u_win = make_gu_win(gu_ptr + kargs.intermediate_size * kargs.hidden_size);
auto g_res = g_win.get_bottom_tensor_view().get_buffer_view().cached_buf_res_; auto g_res = g_win.get_bottom_tensor_view().get_buffer_view().cached_buf_res_;
auto u_res = u_win.get_bottom_tensor_view().get_buffer_view().cached_buf_res_;
auto g_coords = generate_tuple([&](auto i) { return g_win.cached_coords_[i].get_offset(); }, auto g_coords = generate_tuple([&](auto i) { return g_win.cached_coords_[i].get_offset(); },
number<decltype(g_win)::NumAccess_NonLinear>{}); number<decltype(g_win)::NumAccess_NonLinear>{});
...@@ -309,28 +326,73 @@ struct FusedMoeGemmPipeline_FlatmmUk ...@@ -309,28 +326,73 @@ struct FusedMoeGemmPipeline_FlatmmUk
auto w_scale = GetWeightScale( auto w_scale = GetWeightScale(
row_coords_o, reinterpret_cast<const TopkWeightDataType*>(kargs.sorted_weight_ptr)); row_coords_o, reinterpret_cast<const TopkWeightDataType*>(kargs.sorted_weight_ptr));
auto uk_0 = Policy::template GetUK_0<Problem>(); auto uk_0 = Policy::template GetUK_0<Problem>();
auto acc_0 = uk_0(a_res,
a_coords, auto y_pre = [&]() {
g_res, if constexpr(IsGateOnly)
g_coords, {
smem, auto acc_0 = uk_0(a_res,
kargs.hidden_size, a_coords,
BlockShape::Block_K0, // tile offset for B matrix each unroll g_res,
BlockShape::Block_Kr0 * g_coords,
BlockShape::Block_W0); // tile offset for B matrix each unroll smem,
kargs.hidden_size,
sweep_tile( BlockShape::Block_K0, // tile offset for B matrix each unroll
acc_0, BlockShape::Block_Kr0 *
[&](auto idx0, auto idx1) { BlockShape::Block_W0); // tile offset for B matrix each unroll
fp32x2_t v_{acc_0(idx0), acc_0(idx1)};
typename Problem::GateActivation{}(v_, v_); sweep_tile(
acc_0(idx0) = v_.x; acc_0,
acc_0(idx1) = v_.y; [&](auto idx0, auto idx1) {
}, fp32x2_t v_{acc_0(idx0), acc_0(idx1)};
sequence<1, 2>{}); typename Problem::GateActivation{}(v_, v_);
acc_0(idx0) = v_.x;
auto y_pre = cast_tile<YDataType>(acc_0); acc_0(idx1) = v_.y;
},
sequence<1, 2>{});
return cast_tile<YDataType>(acc_0);
}
else
{
uint32x8_t gu_res;
gu_res[0] = g_res[0];
gu_res[1] = g_res[1];
gu_res[2] = g_res[2];
gu_res[3] = g_res[3];
gu_res[4] = u_res[0];
gu_res[5] = u_res[1];
gu_res[6] = u_res[2];
gu_res[7] = u_res[3];
auto acc_0 = uk_0(a_res,
a_coords,
gu_res,
g_coords,
smem,
kargs.hidden_size,
BlockShape::Block_K0, // tile offset for B matrix each unroll
BlockShape::Block_Kr0 * BlockShape::Block_W0,
bool_constant<true>{}); // tile offset for B matrix each unroll
sweep_tile(
acc_0.at(number<0>{}),
[&](auto idx0, auto idx1) {
fp32x2_t v_{acc_0.at(number<0>{})(idx0), acc_0.at(number<0>{})(idx1)};
typename Problem::GateActivation{}(v_, v_);
acc_0.at(number<0>{})(idx0) = v_.x;
acc_0.at(number<0>{})(idx1) = v_.y;
},
sequence<1, 2>{});
auto reduced_acc_0 =
tile_elementwise_in([&](const auto& a_, const auto& b_) { return a_ * b_; },
acc_0.at(number<0>{}),
acc_0.at(number<1>{}));
return cast_tile<YDataType>(reduced_acc_0);
}
}();
block_sync_lds(); block_sync_lds();
......
...@@ -9,15 +9,20 @@ ...@@ -9,15 +9,20 @@
namespace ck_tile { namespace ck_tile {
template <typename IndexType_, typename WeightType_, index_t InternalLoadUnroll_> template <typename IndexType_,
typename WeightType_,
index_t InternalLoadUnroll_,
index_t ExpertTile_ = 0>
struct MoeSortingProblem struct MoeSortingProblem
{ {
// TODO: this kernel only support warp per row // TODO: this kernel only support warp per row
using WeightType = remove_cvref_t<WeightType_>; using WeightType = remove_cvref_t<WeightType_>;
using IndexType = remove_cvref_t<IndexType_>; using IndexType = remove_cvref_t<IndexType_>;
static constexpr index_t WarpSize = get_warp_size(); static constexpr index_t WarpSize = get_warp_size();
static constexpr index_t WarpsPerBlock = 1; static constexpr index_t WarpsPerBlock = 1;
static constexpr index_t InternalLoadUnroll = InternalLoadUnroll_; static constexpr index_t InternalLoadUnroll =
InternalLoadUnroll_; // TODO: need better design(like tile size)
static constexpr index_t ExpertTile = ExpertTile_; // TODO: only used in store out
}; };
} // namespace ck_tile } // namespace ck_tile
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
......
...@@ -21,35 +21,20 @@ struct BlockGemmARegBRegCRegV1 ...@@ -21,35 +21,20 @@ struct BlockGemmARegBRegCRegV1
using CDataType = remove_cvref_t<typename Problem::CDataType>; using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>; using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t kBlockSize = Problem::kBlockSize; static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
// C += A * B static constexpr index_t NPerBlock = BlockGemmShape::kN;
template <typename CBlockTensor, typename ABlockTensor, typename BBlockTensor> static constexpr index_t KPerBlock = BlockGemmShape::kK;
CK_TILE_DEVICE void operator()(CBlockTensor& c_block_tensor, static constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
const ABlockTensor& a_block_tensor, using WG = remove_cvref_t<decltype(config.template at<0>())>;
const BBlockTensor& b_block_tensor) const static constexpr index_t MWarp = config.template at<1>();
static constexpr index_t NWarp = config.template at<2>();
static constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
static constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
static constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
CK_TILE_DEVICE static constexpr auto MakeABlockDistributionEncode()
{ {
static_assert(std::is_same_v<ADataType, remove_cv_t<typename ABlockTensor::DataType>> &&
std::is_same_v<BDataType, remove_cv_t<typename BBlockTensor::DataType>> &&
std::is_same_v<CDataType, remove_cv_t<typename CBlockTensor::DataType>>,
"wrong!");
constexpr index_t MPerBlock = BlockGemmShape::kM;
constexpr index_t NPerBlock = BlockGemmShape::kN;
constexpr index_t KPerBlock = BlockGemmShape::kK;
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
// M->N Warp
constexpr auto a_block_outer_dstr_encoding = constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>, tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>, tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
...@@ -57,7 +42,14 @@ struct BlockGemmARegBRegCRegV1 ...@@ -57,7 +42,14 @@ struct BlockGemmARegBRegCRegV1
tuple<sequence<1, 0>>, tuple<sequence<1, 0>>,
sequence<1, 2>, sequence<1, 2>,
sequence<0, 0>>{}; sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
return a_block_dstr_encode;
}
CK_TILE_DEVICE static constexpr auto MakeBBlockDistributionEncode()
{
constexpr auto b_block_outer_dstr_encoding = constexpr auto b_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<MWarp>, tile_distribution_encoding<sequence<MWarp>,
tuple<sequence<NIterPerWarp, NWarp>, sequence<KIterPerWarp>>, tuple<sequence<NIterPerWarp, NWarp>, sequence<KIterPerWarp>>,
...@@ -65,7 +57,14 @@ struct BlockGemmARegBRegCRegV1 ...@@ -65,7 +57,14 @@ struct BlockGemmARegBRegCRegV1
tuple<sequence<0, 1>>, tuple<sequence<0, 1>>,
sequence<1, 2>, sequence<1, 2>,
sequence<0, 0>>{}; sequence<0, 0>>{};
constexpr auto b_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
b_block_outer_dstr_encoding, typename WG::BWarpDstrEncoding{});
return b_block_dstr_encode;
}
CK_TILE_DEVICE static constexpr auto MakeCBlockDistributionEncode()
{
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding< constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>, sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>, tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
...@@ -73,15 +72,28 @@ struct BlockGemmARegBRegCRegV1 ...@@ -73,15 +72,28 @@ struct BlockGemmARegBRegCRegV1
tuple<sequence<1, 1>>, tuple<sequence<1, 1>>,
sequence<1, 2>, sequence<1, 2>,
sequence<0, 0>>{}; sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding( return c_block_dstr_encode;
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{}); }
constexpr auto b_block_dstr_encode = detail::make_embed_tile_distribution_encoding( // C += A * B
b_block_outer_dstr_encoding, typename WG::BWarpDstrEncoding{}); template <typename CBlockTensor, typename ABlockTensor, typename BBlockTensor>
CK_TILE_DEVICE void operator()(CBlockTensor& c_block_tensor,
const ABlockTensor& a_block_tensor,
const BBlockTensor& b_block_tensor) const
{
static_assert(std::is_same_v<ADataType, remove_cv_t<typename ABlockTensor::DataType>> &&
std::is_same_v<BDataType, remove_cv_t<typename BBlockTensor::DataType>> &&
std::is_same_v<CDataType, remove_cv_t<typename CBlockTensor::DataType>>,
"wrong!");
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding( constexpr auto a_block_dstr_encode = MakeABlockDistributionEncode();
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto b_block_dstr_encode = MakeBBlockDistributionEncode();
constexpr auto c_block_dstr_encode = MakeCBlockDistributionEncode();
// check ABC-block-distribution // check ABC-block-distribution
static_assert( static_assert(
...@@ -159,20 +171,6 @@ struct BlockGemmARegBRegCRegV1 ...@@ -159,20 +171,6 @@ struct BlockGemmARegBRegCRegV1
CK_TILE_DEVICE static constexpr auto MakeCBlockTile() CK_TILE_DEVICE static constexpr auto MakeCBlockTile()
{ {
constexpr index_t MPerBlock = BlockGemmShape::kM;
constexpr index_t NPerBlock = BlockGemmShape::kN;
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
// constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding< constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>, sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>, tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
......
...@@ -65,14 +65,6 @@ struct BlockGemmARegBSmemCRegOneWarpV1 ...@@ -65,14 +65,6 @@ struct BlockGemmARegBSmemCRegOneWarpV1
const index_t iNWarp = 0; const index_t iNWarp = 0;
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_outer_dstr_encoding = constexpr auto c_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<>, tile_distribution_encoding<sequence<>,
tuple<sequence<MIterPerWarp>, sequence<NIterPerWarp>>, tuple<sequence<MIterPerWarp>, sequence<NIterPerWarp>>,
...@@ -81,19 +73,14 @@ struct BlockGemmARegBSmemCRegOneWarpV1 ...@@ -81,19 +73,14 @@ struct BlockGemmARegBSmemCRegOneWarpV1
sequence<1, 2>, sequence<1, 2>,
sequence<0, 0>>{}; sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding( constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{}); c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto a_block_dstr = make_static_tile_distribution(a_block_dstr_encode);
// constrcut from A-block-tensor from A-Block-tensor-tmp // constrcut from A-block-tensor from A-Block-tensor-tmp
// FIXME: need method to check a_block_tensor and a_block_tensor_tmp have equivalent // FIXME: need method to check a_block_tensor and a_block_tensor_tmp have equivalent
// distribution // distribution
auto a_block_tensor = auto a_block_tensor = make_static_distributed_tensor<typename ABlockTensorTmp::DataType>(
make_static_distributed_tensor<typename ABlockTensorTmp::DataType>(a_block_dstr); MakeABlockTileDistribution());
a_block_tensor.get_thread_buffer() = a_block_tensor_tmp.get_thread_buffer(); a_block_tensor.get_thread_buffer() = a_block_tensor_tmp.get_thread_buffer();
...@@ -187,6 +174,33 @@ struct BlockGemmARegBSmemCRegOneWarpV1 ...@@ -187,6 +174,33 @@ struct BlockGemmARegBSmemCRegOneWarpV1
}); });
} }
template <index_t MPerBlock = BlockGemmShape::kM, index_t KPerBlock = BlockGemmShape::kK>
CK_TILE_DEVICE static constexpr auto MakeABlockTileDistribution()
{
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
return make_static_tile_distribution(a_block_dstr_encode);
}
CK_TILE_DEVICE static constexpr auto MakeCBlockTile() CK_TILE_DEVICE static constexpr auto MakeCBlockTile()
{ {
constexpr index_t MPerBlock = BlockGemmShape::kM; constexpr index_t MPerBlock = BlockGemmShape::kM;
......
...@@ -59,14 +59,6 @@ struct BlockGemmARegBSmemCRegV2 ...@@ -59,14 +59,6 @@ struct BlockGemmARegBSmemCRegV2
const index_t iNWarp = get_warp_id() % NWarp; const index_t iNWarp = get_warp_id() % NWarp;
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding< constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>, sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>, tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
...@@ -75,19 +67,14 @@ struct BlockGemmARegBSmemCRegV2 ...@@ -75,19 +67,14 @@ struct BlockGemmARegBSmemCRegV2
sequence<1, 2>, sequence<1, 2>,
sequence<0, 0>>{}; sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding( constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{}); c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto a_block_dstr = make_static_tile_distribution(a_block_dstr_encode);
// constrcut from A-block-tensor from A-Block-tensor-tmp // constrcut from A-block-tensor from A-Block-tensor-tmp
// FIXME: need method to check a_block_tensor and a_block_tensor_tmp have equivalent // FIXME: need method to check a_block_tensor and a_block_tensor_tmp have equivalent
// distribution // distribution
auto a_block_tensor = auto a_block_tensor = make_static_distributed_tensor<typename ABlockTensorTmp::DataType>(
make_static_distributed_tensor<typename ABlockTensorTmp::DataType>(a_block_dstr); MakeABlockTileDistribution());
a_block_tensor.get_thread_buffer() = a_block_tensor_tmp.get_thread_buffer(); a_block_tensor.get_thread_buffer() = a_block_tensor_tmp.get_thread_buffer();
...@@ -182,6 +169,33 @@ struct BlockGemmARegBSmemCRegV2 ...@@ -182,6 +169,33 @@ struct BlockGemmARegBSmemCRegV2
}); });
} }
template <index_t MPerBlock = BlockGemmShape::kM, index_t KPerBlock = BlockGemmShape::kK>
CK_TILE_DEVICE static constexpr auto MakeABlockTileDistribution()
{
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
return make_static_tile_distribution(a_block_dstr_encode);
}
CK_TILE_DEVICE static constexpr auto MakeCBlockTile() CK_TILE_DEVICE static constexpr auto MakeCBlockTile()
{ {
constexpr index_t MPerBlock = BlockGemmShape::kM; constexpr index_t MPerBlock = BlockGemmShape::kM;
......
...@@ -3,90 +3,95 @@ ...@@ -3,90 +3,95 @@
#pragma once #pragma once
#include <iostream> #include "ck_tile/ops/gemm/kernel/gemm_kernel.hpp"
#include <string>
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
namespace ck_tile { namespace ck_tile {
struct BatchedGemmHostArgs struct BatchedGemmHostArgs : public ck_tile::GemmHostArgs
{ {
const void* a_ptr; CK_TILE_HOST BatchedGemmHostArgs() = default;
const void* b_ptr; CK_TILE_HOST BatchedGemmHostArgs(const void* a_ptr_,
void* c_ptr; const void* b_ptr_,
index_t M; void* c_ptr_,
index_t N; ck_tile::index_t k_batch_,
index_t K; ck_tile::index_t M_,
index_t stride_A; ck_tile::index_t N_,
index_t stride_B; ck_tile::index_t K_,
index_t stride_C; ck_tile::index_t stride_A_,
index_t batch_stride_A; ck_tile::index_t stride_B_,
index_t batch_stride_B; ck_tile::index_t stride_C_,
index_t batch_stride_C; ck_tile::index_t batch_stride_A_,
index_t batch_count; ck_tile::index_t batch_stride_B_,
ck_tile::index_t batch_stride_C_,
ck_tile::index_t batch_count_)
: GemmHostArgs(
a_ptr_, b_ptr_, c_ptr_, k_batch_, M_, N_, K_, stride_A_, stride_B_, stride_C_),
batch_stride_A(batch_stride_A_),
batch_stride_B(batch_stride_B_),
batch_stride_C(batch_stride_C_),
batch_count(batch_count_)
{
}
ck_tile::index_t batch_stride_A;
ck_tile::index_t batch_stride_B;
ck_tile::index_t batch_stride_C;
ck_tile::index_t batch_count;
}; };
template <typename TilePartitioner_, typename GemmPipeline_, typename EpiloguePipeline_> template <typename TilePartitioner_, typename GemmPipeline_, typename EpiloguePipeline_>
struct BatchedGemmKernel struct BatchedGemmKernel : public GemmKernel<TilePartitioner_, GemmPipeline_, EpiloguePipeline_>
{ {
using TilePartitioner = remove_cvref_t<TilePartitioner_>; using Base = GemmKernel<TilePartitioner_, GemmPipeline_, EpiloguePipeline_>;
using GemmPipeline = remove_cvref_t<GemmPipeline_>;
using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>; using GemmKernelArgs = typename Base::GemmKernelArgs;
using ALayout = remove_cvref_t<typename GemmPipeline::ALayout>;
using BLayout = remove_cvref_t<typename GemmPipeline::BLayout>;
using CLayout = remove_cvref_t<typename GemmPipeline::CLayout>;
static constexpr index_t KernelBlockSize = GemmPipeline::BlockSize;
using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>; using ADataType = typename Base::ADataType;
using BDataType = remove_cvref_t<typename GemmPipeline::BDataType>; using BDataType = typename Base::BDataType;
using CDataType = remove_cvref_t<typename EpiloguePipeline::ODataType>; using CDataType = typename Base::CDataType;
struct BatchedGemmKargs using TilePartitioner = typename Base::TilePartitioner;
using GemmPipeline = typename Base::GemmPipeline;
using EpiloguePipeline = typename Base::EpiloguePipeline;
using ALayout = typename Base::ALayout;
using BLayout = typename Base::BLayout;
using CLayout = typename Base::CLayout;
struct BatchedGemmKernelArgs : GemmKernelArgs
{ {
const void* a_ptr;
const void* b_ptr;
void* c_ptr;
index_t M;
index_t N;
index_t K;
index_t stride_A;
index_t stride_B;
index_t stride_C;
index_t batch_stride_A; index_t batch_stride_A;
index_t batch_stride_B; index_t batch_stride_B;
index_t batch_stride_C; index_t batch_stride_C;
index_t batch_count; index_t batch_count;
}; };
using Kargs = BatchedGemmKargs; using KernelArgs = BatchedGemmKernelArgs;
using Hargs = BatchedGemmHostArgs;
__host__ static constexpr auto GridSize(const Hargs& h) __host__ static constexpr auto
GridSize(index_t M, index_t N, index_t KBatch, index_t batch_count)
{ {
return TilePartitioner::GridSize(h.M, h.N, h.batch_count); return TilePartitioner::GridSize(M, N, KBatch * batch_count);
} }
__host__ static constexpr auto BlockSize() { return dim3(KernelBlockSize); } __host__ static constexpr auto BlockSize() { return dim3(Base::KernelBlockSize); }
CK_TILE_HOST static constexpr BatchedGemmKargs MakeKargs(const Hargs& h) CK_TILE_HOST static constexpr BatchedGemmKernelArgs
MakeKernelArgs(const BatchedGemmHostArgs& hostArgs)
{ {
Kargs k; return BatchedGemmKernelArgs{{hostArgs.a_ptr,
k.a_ptr = h.a_ptr; hostArgs.b_ptr,
k.b_ptr = h.b_ptr; hostArgs.c_ptr,
k.c_ptr = h.c_ptr; hostArgs.M,
k.M = h.M; hostArgs.N,
k.N = h.N; hostArgs.K,
k.K = h.K; hostArgs.stride_A,
k.stride_A = h.stride_A; hostArgs.stride_B,
k.stride_B = h.stride_B; hostArgs.stride_C,
k.stride_C = h.stride_C; hostArgs.k_batch},
k.batch_stride_A = h.batch_stride_A; hostArgs.batch_stride_A,
k.batch_stride_B = h.batch_stride_B; hostArgs.batch_stride_B,
k.batch_stride_C = h.batch_stride_C; hostArgs.batch_stride_C,
k.batch_count = h.batch_count; hostArgs.batch_count};
return k;
} }
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize() CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
...@@ -94,164 +99,41 @@ struct BatchedGemmKernel ...@@ -94,164 +99,41 @@ struct BatchedGemmKernel
return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize()); return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
} }
CK_TILE_DEVICE void operator()(Kargs kargs) const CK_TILE_DEVICE void operator()(BatchedGemmKernelArgs kargs) const
{ {
const auto [i_m, i_n] = TilePartitioner{}(); const auto [i_m, i_n] = TilePartitioner{}();
const auto i_batch = __builtin_amdgcn_readfirstlane(blockIdx.z); const auto i_batch = __builtin_amdgcn_readfirstlane(blockIdx.z / kargs.KBatch);
const auto i_k = __builtin_amdgcn_readfirstlane(blockIdx.z - i_batch * kargs.KBatch);
const typename Base::SplitKBatchOffset splitk_batch_offset(kargs, i_k);
// options // options
const auto batch_stride_A = __builtin_amdgcn_readfirstlane(kargs.batch_stride_A); const auto batch_stride_A = __builtin_amdgcn_readfirstlane(kargs.batch_stride_A);
const auto batch_offset_A = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_A); const auto batch_offset_A = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_A);
const ADataType* a_start = static_cast<const ADataType*>(kargs.a_ptr); const ADataType* a_ptr = static_cast<const ADataType*>(kargs.a_ptr) + batch_offset_A +
splitk_batch_offset.a_k_split_offset;
const auto batch_stride_B = __builtin_amdgcn_readfirstlane(kargs.batch_stride_B); const auto batch_stride_B = __builtin_amdgcn_readfirstlane(kargs.batch_stride_B);
const auto batch_offset_B = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_B); const auto batch_offset_B = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_B);
const BDataType* b_start = static_cast<const BDataType*>(kargs.b_ptr); const BDataType* b_ptr = static_cast<const BDataType*>(kargs.b_ptr) + batch_offset_B +
splitk_batch_offset.b_k_split_offset;
// Convert pointers to tensor views
auto a_tensor_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
a_start + batch_offset_A,
make_tuple(kargs.M, kargs.K),
make_tuple(kargs.stride_A, 1),
number<GemmPipeline::VectorSizeA>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
a_start + batch_offset_A,
make_tuple(kargs.M, kargs.K),
make_tuple(1, kargs.stride_A),
number<1>{},
number<1>{});
}
}();
auto b_tensor_view = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
b_start + batch_offset_B,
make_tuple(kargs.N, kargs.K),
make_tuple(1, kargs.stride_B),
number<1>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
b_start + batch_offset_B,
make_tuple(kargs.N, kargs.K),
make_tuple(kargs.stride_B, 1),
number<GemmPipeline::VectorSizeB>{},
number<1>{});
}
}();
auto a_pad_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(
a_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(
a_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
// clang-format on
auto a_block_window = make_tile_window(
a_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
{i_m, 0});
auto b_pad_view = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{
return pad_tensor_view(
b_tensor_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(
b_tensor_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
sequence<GemmPipeline::kPadN, false>{});
}
}();
// clang-format on
auto b_block_window = make_tile_window(
b_pad_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
{i_n, 0});
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
const index_t num_loop = TilePartitioner::GetLoopNum(kargs.K);
// Run GEMM cooperatively by whole wokrgroup.
auto c_block_tile =
GemmPipeline{}.template operator()(a_block_window, b_block_window, num_loop, smem_ptr);
const auto batch_stride_C = __builtin_amdgcn_readfirstlane(kargs.batch_stride_C); const auto batch_stride_C = __builtin_amdgcn_readfirstlane(kargs.batch_stride_C);
const auto batch_offset_C = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_C); const auto batch_offset_C = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_C);
CDataType* c_start = static_cast<CDataType*>(kargs.c_ptr); CDataType* c_ptr = static_cast<CDataType*>(kargs.c_ptr) + batch_offset_C;
auto c_tensor_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
c_start + batch_offset_C,
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.stride_C, 1),
number<GemmPipeline::VectorSizeC>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
c_start + batch_offset_C,
make_tuple(kargs.M, kargs.N),
make_tuple(1, kargs.stride_C),
number<1>{},
number<1>{});
}
}();
auto c_pad_view = [&]() { // allocate LDS
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>) __shared__ char smem_ptr[GetSmemSize()];
{
return pad_tensor_view(
c_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
sequence<false, GemmPipeline::kPadN>{});
}
else
{
return pad_tensor_view(
c_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
auto c_block_window = make_tile_window(
c_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
{i_m, i_n});
EpiloguePipeline{}(c_block_window, c_block_tile); if(kargs.KBatch == 1)
{
this->RunGemm(a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
}
else
{
this->template RunGemm<memory_operation_enum::atomic_add>(
a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
}
} }
}; };
......
...@@ -12,6 +12,50 @@ ...@@ -12,6 +12,50 @@
namespace ck_tile { namespace ck_tile {
struct GemmProblem
{
CK_TILE_HOST GemmProblem() = default;
CK_TILE_HOST GemmProblem(
index_t M_, index_t N_, index_t K_, index_t stride_A_, index_t stride_B_, index_t stride_C_)
: M(M_), N(N_), K(K_), stride_A(stride_A_), stride_B(stride_B_), stride_C(stride_C_)
{
}
index_t M;
index_t N;
index_t K;
index_t stride_A;
index_t stride_B;
index_t stride_C;
};
struct GemmHostArgs : public GemmProblem
{
CK_TILE_HOST GemmHostArgs() = default;
CK_TILE_HOST GemmHostArgs(const void* a_ptr_,
const void* b_ptr_,
void* c_ptr_,
index_t k_batch_,
index_t M_,
index_t N_,
index_t K_,
index_t stride_A_,
index_t stride_B_,
index_t stride_C_)
: GemmProblem(M_, N_, K_, stride_A_, stride_B_, stride_C_),
a_ptr(a_ptr_),
b_ptr(b_ptr_),
c_ptr(c_ptr_),
k_batch(k_batch_)
{
}
const void* a_ptr;
const void* b_ptr;
void* c_ptr;
index_t k_batch;
};
template <typename TilePartitioner_, typename GemmPipeline_, typename EpiloguePipeline_> template <typename TilePartitioner_, typename GemmPipeline_, typename EpiloguePipeline_>
struct GemmKernel struct GemmKernel
{ {
...@@ -25,9 +69,12 @@ struct GemmKernel ...@@ -25,9 +69,12 @@ struct GemmKernel
using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>; using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>;
using BDataType = remove_cvref_t<typename GemmPipeline::BDataType>; using BDataType = remove_cvref_t<typename GemmPipeline::BDataType>;
// using CAccDataType = remove_cvref_t<typename GemmPipeline::CDataType>;
using CDataType = remove_cvref_t<typename EpiloguePipeline::ODataType>; using CDataType = remove_cvref_t<typename EpiloguePipeline::ODataType>;
static constexpr auto I0 = number<0>();
static constexpr auto I1 = number<1>();
static constexpr auto I2 = number<2>();
__host__ static constexpr auto GridSize(index_t M, index_t N, index_t KBatch) __host__ static constexpr auto GridSize(index_t M, index_t N, index_t KBatch)
{ {
return TilePartitioner::GridSize(M, N, KBatch); return TilePartitioner::GridSize(M, N, KBatch);
...@@ -35,7 +82,7 @@ struct GemmKernel ...@@ -35,7 +82,7 @@ struct GemmKernel
__host__ static constexpr auto BlockSize() { return dim3(KernelBlockSize); } __host__ static constexpr auto BlockSize() { return dim3(KernelBlockSize); }
struct GemmCommonKargs struct GemmKernelArgs
{ {
const void* a_ptr; const void* a_ptr;
const void* b_ptr; const void* b_ptr;
...@@ -46,19 +93,21 @@ struct GemmKernel ...@@ -46,19 +93,21 @@ struct GemmKernel
index_t stride_A; index_t stride_A;
index_t stride_B; index_t stride_B;
index_t stride_C; index_t stride_C;
index_t KBatch;
}; };
CK_TILE_HOST static constexpr GemmCommonKargs MakeKargs(const void* a_ptr, CK_TILE_HOST static constexpr GemmKernelArgs MakeKernelArgs(const GemmHostArgs& hostArgs)
const void* b_ptr,
void* c_ptr,
index_t M,
index_t N,
index_t K,
index_t stride_A,
index_t stride_B,
index_t stride_C)
{ {
return GemmCommonKargs{a_ptr, b_ptr, c_ptr, M, N, K, stride_A, stride_B, stride_C}; return GemmKernelArgs{hostArgs.a_ptr,
hostArgs.b_ptr,
hostArgs.c_ptr,
hostArgs.M,
hostArgs.N,
hostArgs.K,
hostArgs.stride_A,
hostArgs.stride_B,
hostArgs.stride_C,
hostArgs.k_batch};
} }
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize() CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
...@@ -66,8 +115,63 @@ struct GemmKernel ...@@ -66,8 +115,63 @@ struct GemmKernel
return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize()); return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
} }
CK_TILE_HOST static bool IsSupportedArgument(const GemmCommonKargs& kargs) struct SplitKBatchOffset
{ {
__device__ SplitKBatchOffset(const GemmKernelArgs& kargs,
const std::size_t k_id = blockIdx.z)
{
constexpr auto K1 = TilePartitioner::BlockGemmShape::WarpTile::at(number<2>{});
const index_t K_t = kargs.KBatch * K1;
const index_t KRead = (kargs.K + K_t - 1) / K_t * K1;
if constexpr(std::is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
a_k_split_offset = k_id * KRead;
}
else if constexpr(std::is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
a_k_split_offset = k_id * KRead * kargs.stride_A;
}
if constexpr(std::is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
b_k_split_offset = k_id * KRead * kargs.stride_B;
}
else if constexpr(std::is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
b_k_split_offset = k_id * KRead;
}
if(k_id < static_cast<uint32_t>(kargs.KBatch - 1))
{
splitted_k = KRead;
}
else
{
splitted_k = kargs.K - KRead * (kargs.KBatch - 1);
}
}
index_t a_k_split_offset;
index_t b_k_split_offset;
index_t splitted_k;
};
CK_TILE_HOST static bool IsSupportedArgument(const GemmKernelArgs& kargs)
{
constexpr bool is_output_c_reg_transposed =
EpiloguePipeline::IsOutputTransposed() != GemmPipeline::IsTransposeC();
if constexpr(!((GemmPipeline::VectorSizeC % 2 == 0 &&
std::is_same_v<CLayout, tensor_layout::gemm::RowMajor> &&
is_output_c_reg_transposed) ||
!(std::is_same_v<CDataType, fp16_t> || std::is_same_v<CDataType, bf16_t>)))
{
if(kargs.KBatch != 1)
{
return false;
}
}
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>) if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{ {
if(kargs.K % TilePartitioner::kK != 0 && GemmPipeline::kPadK == false) if(kargs.K % TilePartitioner::kK != 0 && GemmPipeline::kPadK == false)
...@@ -139,19 +243,19 @@ struct GemmKernel ...@@ -139,19 +243,19 @@ struct GemmKernel
return true; return true;
} }
CK_TILE_DEVICE void operator()(GemmCommonKargs kargs) const template <memory_operation_enum DstInMemOp = memory_operation_enum::set>
CK_TILE_DEVICE static auto MakeGemmTensorViews(const ADataType* a_ptr,
const BDataType* b_ptr,
CDataType* c_ptr,
const GemmKernelArgs& kargs,
const SplitKBatchOffset& splitk_batch_offset)
{ {
const auto [i_m, i_n] = TilePartitioner{}(); const auto& a_tensor_view = [&]() {
// options
const ADataType* a_start = static_cast<const ADataType*>(kargs.a_ptr);
const BDataType* b_start = static_cast<const BDataType*>(kargs.b_ptr);
// Convert pointers to tensor views
auto a_tensor_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>) if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{ {
return make_naive_tensor_view<address_space_enum::global>( return make_naive_tensor_view<address_space_enum::global>(
a_start, a_ptr,
make_tuple(kargs.M, kargs.K), make_tuple(kargs.M, splitk_batch_offset.splitted_k),
make_tuple(kargs.stride_A, 1), make_tuple(kargs.stride_A, 1),
number<GemmPipeline::VectorSizeA>{}, number<GemmPipeline::VectorSizeA>{},
number<1>{}); number<1>{});
...@@ -159,20 +263,20 @@ struct GemmKernel ...@@ -159,20 +263,20 @@ struct GemmKernel
else else
{ {
return make_naive_tensor_view<address_space_enum::global>( return make_naive_tensor_view<address_space_enum::global>(
a_start, a_ptr,
make_tuple(kargs.M, kargs.K), make_tuple(kargs.M, splitk_batch_offset.splitted_k),
make_tuple(1, kargs.stride_A), make_tuple(1, kargs.stride_A),
number<1>{}, number<1>{},
number<1>{}); number<1>{});
} }
}(); }();
auto b_tensor_view = [&]() { const auto& b_tensor_view = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>) if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{ {
return make_naive_tensor_view<address_space_enum::global>( return make_naive_tensor_view<address_space_enum::global>(
b_start, b_ptr,
make_tuple(kargs.N, kargs.K), make_tuple(kargs.N, splitk_batch_offset.splitted_k),
make_tuple(1, kargs.stride_B), make_tuple(1, kargs.stride_B),
number<1>{}, number<1>{},
number<1>{}); number<1>{});
...@@ -180,15 +284,43 @@ struct GemmKernel ...@@ -180,15 +284,43 @@ struct GemmKernel
else else
{ {
return make_naive_tensor_view<address_space_enum::global>( return make_naive_tensor_view<address_space_enum::global>(
b_start, b_ptr,
make_tuple(kargs.N, kargs.K), make_tuple(kargs.N, splitk_batch_offset.splitted_k),
make_tuple(kargs.stride_B, 1), make_tuple(kargs.stride_B, 1),
number<GemmPipeline::VectorSizeB>{}, number<GemmPipeline::VectorSizeB>{},
number<1>{}); number<1>{});
} }
}(); }();
auto a_pad_view = [&]() { const auto& c_tensor_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global, DstInMemOp>(
c_ptr,
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.stride_C, 1),
number<GemmPipeline::VectorSizeC>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global, DstInMemOp>(
c_ptr,
make_tuple(kargs.M, kargs.N),
make_tuple(1, kargs.stride_C),
number<1>{},
number<1>{});
}
}();
return make_tuple(a_tensor_view, b_tensor_view, c_tensor_view);
}
template <typename TensorView>
CK_TILE_DEVICE static auto MakeGemmPadViews(const TensorView& views)
{
const auto& a_pad_view = [&]() {
const auto& a_tensor_view = views.at(I0);
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>) if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{ {
return pad_tensor_view( return pad_tensor_view(
...@@ -204,14 +336,9 @@ struct GemmKernel ...@@ -204,14 +336,9 @@ struct GemmKernel
sequence<GemmPipeline::kPadM, false>{}); sequence<GemmPipeline::kPadM, false>{});
} }
}(); }();
// clang-format on
auto a_block_window = make_tile_window(
a_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
{i_m, 0});
auto b_pad_view = [&]() { const auto& b_pad_view = [&]() {
const auto& b_tensor_view = views.at(I1);
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>) if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{ {
return pad_tensor_view( return pad_tensor_view(
...@@ -228,43 +355,8 @@ struct GemmKernel ...@@ -228,43 +355,8 @@ struct GemmKernel
} }
}(); }();
auto b_block_window = make_tile_window( const auto& c_pad_view = [&]() {
b_pad_view, const auto& c_tensor_view = views.at(I2);
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
{i_n, 0});
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
const index_t num_loop = TilePartitioner::GetLoopNum(kargs.K);
// Run GEMM cooperatively by whole wokrgroup.
auto c_block_tile =
GemmPipeline{}.template operator()(a_block_window, b_block_window, num_loop, smem_ptr);
CDataType* c_start = static_cast<CDataType*>(kargs.c_ptr);
auto c_tensor_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
c_start,
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.stride_C, 1),
number<GemmPipeline::VectorSizeC>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
c_start,
make_tuple(kargs.M, kargs.N),
make_tuple(1, kargs.stride_C),
number<1>{},
number<1>{});
}
}();
auto c_pad_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>) if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{ {
return pad_tensor_view( return pad_tensor_view(
...@@ -280,12 +372,111 @@ struct GemmKernel ...@@ -280,12 +372,111 @@ struct GemmKernel
sequence<GemmPipeline::kPadM, false>{}); sequence<GemmPipeline::kPadM, false>{});
} }
}(); }();
auto CBlockWindow_pad = make_tile_window(
return make_tuple(a_pad_view, b_pad_view, c_pad_view);
}
template <typename PadView>
CK_TILE_DEVICE static auto
MakeGemmTileWindows(const PadView& views, const index_t i_m, const index_t i_n)
{
const auto& a_pad_view = views.at(I0);
const auto& a_block_window = make_tile_window(
a_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
{i_m, 0});
const auto& b_pad_view = views.at(I1);
const auto& b_block_window = make_tile_window(
b_pad_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
{i_n, 0});
const auto& c_pad_view = views.at(I2);
auto c_block_window = make_tile_window(
c_pad_view, c_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}), make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
{i_m, i_n}); {i_m, i_n});
EpiloguePipeline{}(CBlockWindow_pad, c_block_tile); return make_tuple(a_block_window, b_block_window, c_block_window);
}
/**
* @brief Runs single GEMM problem cooperatively by whole workgroup.
*
* @param a_ptr input A pointer
* @param b_ptr input B pointer
* @param c_ptr output C pointer
* @param kargs GEMM kernel arguments
* @param block_idx_m The GEMM's output M dimension tile index processed by this workgroup.
* @param block_idx_n The GEMM's output N dimension tile index processed by this workgroup.
*
* @tparam DstInMemOp Destination memory operation (default: set).
*/
template <memory_operation_enum DstInMemOp = memory_operation_enum::set>
CK_TILE_DEVICE static void RunGemm(const ADataType* a_ptr,
const BDataType* b_ptr,
CDataType* c_ptr,
void* smem_ptr,
const GemmKernelArgs& kargs,
const SplitKBatchOffset& splitk_batch_offset,
const index_t block_idx_m,
const index_t block_idx_n)
{
// Create Gemm tensor views, pad views and tile windows
const auto& gemm_tensor_views_tuple =
MakeGemmTensorViews<DstInMemOp>(a_ptr, b_ptr, c_ptr, kargs, splitk_batch_offset);
;
const auto& gemm_pad_views = MakeGemmPadViews(gemm_tensor_views_tuple);
auto gemm_tile_windows = MakeGemmTileWindows(gemm_pad_views, block_idx_m, block_idx_n);
const index_t num_loop = TilePartitioner::GetLoopNum(splitk_batch_offset.splitted_k);
// Run GEMM cooperatively by whole workgroup.
const auto& a_block_window = gemm_tile_windows.at(I0);
const auto& b_block_window = gemm_tile_windows.at(I1);
const auto& c_block_tile =
GemmPipeline{}.template operator()(a_block_window, b_block_window, num_loop, smem_ptr);
// Run Epilogue Pipeline
auto& c_block_window = gemm_tile_windows.at(I2);
constexpr bool is_output_c_reg_transposed =
EpiloguePipeline::IsOutputTransposed() != GemmPipeline::IsTransposeC();
if constexpr((DstInMemOp == memory_operation_enum::set) || (sizeof(CDataType) > 2) ||
(GemmPipeline::VectorSizeC % 2 == 0 &&
std::is_same_v<CLayout, tensor_layout::gemm::RowMajor> &&
is_output_c_reg_transposed))
{
EpiloguePipeline{}
.template operator()<decltype(c_block_window), decltype(c_block_tile), DstInMemOp>(
c_block_window, c_block_tile);
}
}
CK_TILE_DEVICE void operator()(GemmKernelArgs kargs) const
{
const auto [i_m, i_n] = TilePartitioner{}();
const SplitKBatchOffset splitk_batch_offset(kargs);
// options
const ADataType* a_ptr =
static_cast<const ADataType*>(kargs.a_ptr) + splitk_batch_offset.a_k_split_offset;
const BDataType* b_ptr =
static_cast<const BDataType*>(kargs.b_ptr) + splitk_batch_offset.b_k_split_offset;
CDataType* c_ptr = static_cast<CDataType*>(kargs.c_ptr);
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
if(kargs.KBatch == 1)
{
RunGemm(a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
}
else
{
RunGemm<memory_operation_enum::atomic_add>(
a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
}
} }
}; };
......
...@@ -82,6 +82,8 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem> ...@@ -82,6 +82,8 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
return Policy::template GetSmemSize<Problem>(); return Policy::template GetSmemSize<Problem>();
} }
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC() { return Policy::IsTransposeC(); }
template <GemmPipelineScheduler Scheduler> template <GemmPipelineScheduler Scheduler>
struct PipelineImpl : public PipelineImplBase struct PipelineImpl : public PipelineImplBase
{ {
......
...@@ -104,9 +104,10 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem> ...@@ -104,9 +104,10 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
using CLayout = remove_cvref_t<typename Problem::CLayout>; using CLayout = remove_cvref_t<typename Problem::CLayout>;
using BlockGemm = remove_cvref_t<decltype(Policy::template GetBlockGemm<Problem>())>; using BlockGemm = remove_cvref_t<decltype(Policy::template GetBlockGemm<Problem>())>;
using I0 = number<0>;
using I1 = number<1>; using I0 = number<0>;
using I2 = number<2>; using I1 = number<1>;
using I2 = number<2>;
static constexpr index_t MPerBlock = BlockGemmShape::kM; static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN; static constexpr index_t NPerBlock = BlockGemmShape::kN;
...@@ -132,6 +133,8 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem> ...@@ -132,6 +133,8 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
return Policy::template GetSmemSize<Problem>(); return Policy::template GetSmemSize<Problem>();
} }
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC() { return Policy::IsTransposeC(); }
template <GemmPipelineScheduler Scheduler> template <GemmPipelineScheduler Scheduler>
struct PipelineImpl : public PipelineImplBase struct PipelineImpl : public PipelineImplBase
{ {
......
...@@ -23,6 +23,8 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -23,6 +23,8 @@ struct GemmPipelineAGmemBGmemCRegV1
using BLayout = remove_cvref_t<typename Problem::BLayout>; using BLayout = remove_cvref_t<typename Problem::BLayout>;
using CLayout = remove_cvref_t<typename Problem::CLayout>; using CLayout = remove_cvref_t<typename Problem::CLayout>;
using BlockGemm = remove_cvref_t<decltype(Policy::template GetBlockGemm<Problem>())>;
static constexpr index_t BlockSize = Problem::kBlockSize; static constexpr index_t BlockSize = Problem::kBlockSize;
static constexpr index_t kMPerBlock = BlockGemmShape::kM; static constexpr index_t kMPerBlock = BlockGemmShape::kM;
...@@ -53,6 +55,8 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -53,6 +55,8 @@ struct GemmPipelineAGmemBGmemCRegV1
return Policy::template GetSmemSize<Problem>(); return Policy::template GetSmemSize<Problem>();
} }
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC() { return Policy::IsTransposeC(); }
template <typename ADramBlockWindowTmp, template <typename ADramBlockWindowTmp,
typename BDramBlockWindowTmp, typename BDramBlockWindowTmp,
typename AElementFunction, typename AElementFunction,
...@@ -124,7 +128,7 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -124,7 +128,7 @@ struct GemmPipelineAGmemBGmemCRegV1
b_lds_block, make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}), {0, 0}); b_lds_block, make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}), {0, 0});
// Block GEMM // Block GEMM
auto block_gemm = Policy::template GetBlockGemm<Problem>(); auto block_gemm = BlockGemm();
// Acc register tile // Acc register tile
auto c_block_tile = decltype(block_gemm(a_lds_gemm_window, b_lds_gemm_window)){}; auto c_block_tile = decltype(block_gemm(a_lds_gemm_window, b_lds_gemm_window)){};
......
...@@ -12,6 +12,11 @@ namespace ck_tile { ...@@ -12,6 +12,11 @@ namespace ck_tile {
// Default policy class should not be templated, put template on member functions instead // Default policy class should not be templated, put template on member functions instead
struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{ {
static constexpr auto I0 = number<0>{};
static constexpr auto I1 = number<1>{};
static constexpr auto I2 = number<2>{};
static constexpr bool TransposeC = true;
#if 0 #if 0
// 2d // 2d
...@@ -114,8 +119,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy ...@@ -114,8 +119,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{ {
constexpr index_t smem_size_a = GetSmemSizeA<Problem>(); constexpr index_t smem_size_a = GetSmemSizeA<Problem>();
constexpr index_t smem_size_b = GetSmemSizeB<Problem>(); constexpr index_t smem_size_b = GetSmemSizeB<Problem>();
index_t smem_size = 0; constexpr index_t smem_size = smem_size_a + smem_size_b;
smem_size += smem_size_a + smem_size_b;
return smem_size; return smem_size;
} }
...@@ -485,14 +489,11 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy ...@@ -485,14 +489,11 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
} }
} }
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC() { return TransposeC; }
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockGemm() CK_TILE_HOST_DEVICE static constexpr auto GetBlockGemm()
{ {
constexpr bool TransposeC = false;
constexpr auto I0 = number<0>{};
constexpr auto I1 = number<1>{};
constexpr auto I2 = number<2>{};
using AccDataType = float; using AccDataType = float;
using BlockWarps = typename Problem::BlockGemmShape::BlockWarps; using BlockWarps = typename Problem::BlockGemmShape::BlockWarps;
using WarpTile = typename Problem::BlockGemmShape::WarpTile; using WarpTile = typename Problem::BlockGemmShape::WarpTile;
......
...@@ -36,6 +36,8 @@ struct GemmPipelineAGmemBGmemCRegV2 ...@@ -36,6 +36,8 @@ struct GemmPipelineAGmemBGmemCRegV2
Policy::template MakeBLdsBlockDescriptor<Problem>().get_element_space_size(); Policy::template MakeBLdsBlockDescriptor<Problem>().get_element_space_size();
} }
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC() { return Policy::IsTransposeC(); }
template <typename ADramBlockWindowTmp, template <typename ADramBlockWindowTmp,
typename BDramBlockWindowTmp, typename BDramBlockWindowTmp,
typename AElementFunction, typename AElementFunction,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment