Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
efab74a3
Commit
efab74a3
authored
Jan 24, 2025
by
Rostyslav Geyyer
Browse files
Merge branch 'gfx950' into lwpck-2619
parents
86950b3a
bcef33c1
Changes
362
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
893 additions
and
518 deletions
+893
-518
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qs_ks_vs_default_policy.hpp
.../pipeline/block_fmha_pipeline_qs_ks_vs_default_policy.hpp
+28
-6
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp
...a/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp
+53
-54
include/ck_tile/ops/fmha/pipeline/tile_fmha_shape.hpp
include/ck_tile/ops/fmha/pipeline/tile_fmha_shape.hpp
+0
-2
include/ck_tile/ops/fmha/pipeline/tile_fmha_traits.hpp
include/ck_tile/ops/fmha/pipeline/tile_fmha_traits.hpp
+5
-3
include/ck_tile/ops/fused_moe.hpp
include/ck_tile/ops/fused_moe.hpp
+1
-1
include/ck_tile/ops/fused_moe/kernel/fused_moegemm_kernel.hpp
...ude/ck_tile/ops/fused_moe/kernel/fused_moegemm_kernel.hpp
+7
-4
include/ck_tile/ops/fused_moe/kernel/moe_sorting_kernel.hpp
include/ck_tile/ops/fused_moe/kernel/moe_sorting_kernel.hpp
+210
-37
include/ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_uk.hpp
...s/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_uk.hpp
+98
-36
include/ck_tile/ops/fused_moe/pipeline/moe_sorting_problem.hpp
...de/ck_tile/ops/fused_moe/pipeline/moe_sorting_problem.hpp
+9
-4
include/ck_tile/ops/gemm.hpp
include/ck_tile/ops/gemm.hpp
+1
-1
include/ck_tile/ops/gemm/block/block_gemm_areg_breg_creg_v1.hpp
...e/ck_tile/ops/gemm/block/block_gemm_areg_breg_creg_v1.hpp
+46
-48
include/ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_one_warp_v1.hpp
...ops/gemm/block/block_gemm_areg_bsmem_creg_one_warp_v1.hpp
+29
-15
include/ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_v2.hpp
.../ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_v2.hpp
+29
-15
include/ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp
include/ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp
+87
-205
include/ck_tile/ops/gemm/kernel/gemm_kernel.hpp
include/ck_tile/ops/gemm/kernel/gemm_kernel.hpp
+267
-76
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_comp_v3.hpp
...tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_comp_v3.hpp
+2
-0
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_mem.hpp
.../ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_mem.hpp
+6
-3
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1.hpp
...e/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1.hpp
+5
-1
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1_default_policy.hpp
...line/gemm_pipeline_agmem_bgmem_creg_v1_default_policy.hpp
+8
-7
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v2.hpp
...e/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v2.hpp
+2
-0
No files found.
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qs_ks_vs_default_policy.hpp
View file @
efab74a3
...
...
@@ -9,11 +9,33 @@
namespace
ck_tile
{
// This pipeline is qkv all located in LDS
using
BlockFmhaPipelineQSKSVSDefaultPolicy
=
BlockFmhaPipelineQXKSVSCustomPolicy
<
/* QLoadOnce = */
false
,
/* AsyncCopyK = */
false
,
/* AsyncCopyV = */
false
,
/* NumPrefetchK = */
1
,
/* NumPrefetchV = */
1
>
;
struct
BlockFmhaPipelineQSKSVSDefaultPolicy
:
BlockFmhaPipelineQXKSVSCustomPolicy
<
/* QLoadOnce = */
false
,
/* AsyncCopyK = */
false
,
/* AsyncCopyV = */
false
,
/* NumPrefetchK = */
1
,
/* NumPrefetchV = */
1
>
{
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
ck_tile
::
index_t
GetSmemSizeK
()
{
return
MakeKLdsBlockDescriptor
<
Problem
>
().
get_element_space_size
()
*
sizeof
(
typename
Problem
::
KDataType
);
}
// namespace ck_tile
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
ck_tile
::
index_t
GetSmemSizeV
()
{
return
MakeVLdsBlockDescriptor
<
Problem
>
().
get_element_space_size
()
*
sizeof
(
typename
Problem
::
VDataType
);
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
ck_tile
::
index_t
GetSmemSize
()
{
return
max
(
GetSmemSizeQ
<
Problem
>
()
+
GetSmemSizeK
<
Problem
>
(),
GetSmemSizeV
<
Problem
>
())
+
GetSmemSizeDropout
<
Problem
>
();
}
};
}
// namespace ck_tile
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp
View file @
efab74a3
...
...
@@ -41,52 +41,21 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetAlignmentQ
()
{
constexpr
index_t
MaxVectorSize
=
16
/
sizeof
(
typename
Problem
::
QDataType
);
using
BlockGemm
=
remove_cvref_t
<
decltype
(
GetQKBlockGemm
<
Problem
>
())
>
;
constexpr
auto
config
=
BlockGemm
::
Policy
::
template
GetWarpGemmMWarpNWarp
<
Problem
>();
using
WG
=
remove_cvref_t
<
decltype
(
config
.
template
at
<
0
>())
>
;
return
WG
::
kK
/
WG
::
WarpGemmAttribute
::
Impl
::
kABKLane
;
return
min
(
MaxVectorSize
,
WG
::
kK
/
WG
::
WarpGemmAttribute
::
Impl
::
kABKLane
);
}
template
<
typename
Problem
,
typename
BlockGemm
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
MakeQDramTileDistribution
()
{
constexpr
auto
config
=
BlockGemm
::
Policy
::
template
GetWarpGemmMWarpNWarp
<
Problem
>();
using
WG
=
remove_cvref_t
<
decltype
(
config
.
template
at
<
0
>())
>
;
constexpr
index_t
MWarp
=
config
.
template
at
<
1
>();
constexpr
index_t
kMPerBlock
=
Problem
::
BlockFmhaShape
::
kM0
;
constexpr
index_t
kKPerBlock
=
Problem
::
BlockFmhaShape
::
kSubQKHeaddim
;
constexpr
index_t
K2
=
WG
::
kK
/
WG
::
WarpGemmAttribute
::
Impl
::
kABKLane
;
constexpr
index_t
K1
=
WG
::
WarpGemmAttribute
::
Impl
::
kABKLane
;
constexpr
index_t
K0
=
kKPerBlock
/
(
K1
*
K2
);
constexpr
index_t
M2
=
WG
::
WarpGemmAttribute
::
Impl
::
kAMLane
;
constexpr
index_t
M1
=
MWarp
;
constexpr
index_t
M0
=
kMPerBlock
/
(
M2
*
M1
);
if
constexpr
(
1
<
Problem
::
kNumGemm0Warps
)
{
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<
1
>
,
tuple
<
sequence
<
M0
,
M1
,
M2
>
,
sequence
<
K0
,
K1
,
K2
>>
,
tuple
<
sequence
<
1
>
,
sequence
<
2
,
1
>>
,
tuple
<
sequence
<
1
>
,
sequence
<
1
,
2
>>
,
sequence
<
1
,
2
,
2
>
,
sequence
<
0
,
0
,
2
>>
{});
}
else
{
static_assert
(
MWarp
==
1
);
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<
1
>
,
tuple
<
sequence
<
M0
,
M1
,
M2
>
,
sequence
<
K0
,
K1
,
K2
>>
,
tuple
<
sequence
<
2
,
1
>>
,
tuple
<
sequence
<
1
,
2
>>
,
sequence
<
1
,
2
,
2
>
,
sequence
<
0
,
0
,
2
>>
{});
}
return
BlockGemm
::
template
MakeABlockTileDistribution
<
Problem
::
BlockFmhaShape
::
kM0
,
Problem
::
BlockFmhaShape
::
kSubQKHeaddim
>();
}
template
<
typename
Problem
>
...
...
@@ -105,7 +74,7 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
constexpr
auto
warp_gemm
=
[]()
{
constexpr
index_t
WarpGemmM
=
Problem
::
BlockFmhaShape
::
Gemm0WarpTile
::
at
(
number
<
0
>
{});
static_assert
(
WarpGemmM
==
16
||
WarpGemmM
==
32
);
static_assert
(
WarpGemmM
==
4
||
WarpGemmM
==
16
||
WarpGemmM
==
32
);
if
constexpr
(
std
::
is_same_v
<
typename
Problem
::
QDataType
,
half_t
>
&&
std
::
is_same_v
<
typename
Problem
::
KDataType
,
half_t
>
&&
...
...
@@ -113,8 +82,10 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
{
if
constexpr
(
WarpGemmM
==
32
)
return
WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution
{};
else
//
WarpGemmM == 16
else
if
constexpr
(
WarpGemmM
==
16
)
return
WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution
{};
else
// WarpGemmM == 4
return
WarpGemmMfmaF16F16F32M4N64K16
{};
}
else
if
constexpr
(
std
::
is_same_v
<
typename
Problem
::
QDataType
,
bf16_t
>
&&
std
::
is_same_v
<
typename
Problem
::
KDataType
,
bf16_t
>
&&
...
...
@@ -122,8 +93,10 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
{
if
constexpr
(
WarpGemmM
==
32
)
return
WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution
{};
else
//
WarpGemmM == 16
else
if
constexpr
(
WarpGemmM
==
16
)
return
WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution
{};
else
// WarpGemmM == 4
return
WarpGemmMfmaBf16Bf16F32M4N64K16
{};
}
else
if
constexpr
(
std
::
is_same_v
<
typename
Problem
::
QDataType
,
fp8_t
>
&&
std
::
is_same_v
<
typename
Problem
::
KDataType
,
fp8_t
>
&&
...
...
@@ -152,9 +125,8 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
}
};
/// NOTICE: we no-longer use this policy.
template
<
>
struct
[[
deprecated
]]
BlockFmhaPipelineQXCustomPolicy
<
/* QLoadOnce = */
false
>
struct
BlockFmhaPipelineQXCustomPolicy
<
/* QLoadOnce = */
false
>
{
static
constexpr
bool
QLoadOnce
=
false
;
...
...
@@ -174,8 +146,16 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetAlignmentQ
()
{
using
QDataType
=
remove_cvref_t
<
typename
Problem
::
QDataType
>
;
return
16
/
sizeof
(
QDataType
);
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
constexpr
index_t
kMPerBlock
=
Problem
::
BlockFmhaShape
::
kM0
;
constexpr
index_t
kKPerBlock
=
Problem
::
BlockFmhaShape
::
kK0
;
constexpr
index_t
MaxVectorSize
=
16
/
sizeof
(
typename
Problem
::
QDataType
);
// this should align with MakeQDramTileDistribution()
constexpr
index_t
ElemPerThread
=
(
kMPerBlock
*
kKPerBlock
)
/
kBlockSize
;
static_assert
(
0
<
ElemPerThread
);
return
min
(
ElemPerThread
,
MaxVectorSize
);
}
template
<
typename
Problem
>
...
...
@@ -184,19 +164,25 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
using
QDataType
=
remove_cvref_t
<
typename
Problem
::
QDataType
>
;
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
constexpr
index_t
kMPerBlock
=
Problem
::
BlockFmhaShape
::
kM0
;
constexpr
index_t
kKPerBlock
=
Problem
::
BlockFmhaShape
::
kK0
;
constexpr
index_t
K1
=
16
/
sizeof
(
QDataType
);
// use dwordx4. TODO: change this
constexpr
index_t
K0
=
kKPerBlock
/
K1
;
constexpr
index_t
M2
=
get_warp_size
()
/
K0
;
constexpr
index_t
M1
=
kBlockSize
/
get_warp_size
();
constexpr
index_t
M0
=
kMPerBlock
/
(
M2
*
M1
);
constexpr
index_t
MaxVectorSize
=
16
/
sizeof
(
QDataType
);
constexpr
index_t
ElemPerThread
=
(
kMPerBlock
*
kKPerBlock
)
/
kBlockSize
;
static_assert
(
0
<
ElemPerThread
);
constexpr
index_t
kMaxVecLoad
=
min
(
ElemPerThread
,
MaxVectorSize
);
constexpr
index_t
KPerThread
=
kMaxVecLoad
;
constexpr
index_t
KThreads
=
kKPerBlock
/
KPerThread
;
constexpr
index_t
MThreadPerWarp
=
get_warp_size
()
/
KThreads
;
constexpr
index_t
NumWarps
=
kBlockSize
/
get_warp_size
();
constexpr
index_t
MPerThread
=
kMPerBlock
/
(
MThreadPerWarp
*
NumWarps
);
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<
1
>
,
tuple
<
sequence
<
M0
,
M1
,
M2
>
,
sequence
<
K0
,
K1
>>
,
tuple
<
sequence
<
MPerThread
,
NumWarps
,
MThreadPerWarp
>
,
sequence
<
KThreads
,
KPerThread
>>
,
tuple
<
sequence
<
1
>
,
sequence
<
1
,
2
>>
,
tuple
<
sequence
<
1
>
,
sequence
<
2
,
0
>>
,
sequence
<
1
,
2
>
,
...
...
@@ -243,18 +229,31 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
typename
Problem
::
BlockFmhaShape
::
Gemm0BlockWarps
,
typename
Problem
::
BlockFmhaShape
::
Gemm0WarpTile
>>
;
constexpr
index_t
WarpGemmM
=
Problem
::
BlockFmhaShape
::
Gemm0WarpTile
::
at
(
number
<
0
>
{});
static_assert
(
WarpGemmM
==
4
||
WarpGemmM
==
16
||
WarpGemmM
==
32
);
constexpr
auto
warp_gemm
=
[]()
{
if
constexpr
(
std
::
is_same_v
<
typename
Problem
::
QDataType
,
half_t
>
&&
std
::
is_same_v
<
typename
Problem
::
KDataType
,
half_t
>
&&
std
::
is_same_v
<
typename
Problem
::
SaccDataType
,
float
>
)
{
return
WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution
{};
if
constexpr
(
WarpGemmM
==
32
)
return
WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution
{};
else
if
constexpr
(
WarpGemmM
==
16
)
return
WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution
{};
else
// WarpGemmM == 4
return
WarpGemmMfmaF16F16F32M4N64K16
{};
}
else
if
constexpr
(
std
::
is_same_v
<
typename
Problem
::
QDataType
,
bf16_t
>
&&
std
::
is_same_v
<
typename
Problem
::
KDataType
,
bf16_t
>
&&
std
::
is_same_v
<
typename
Problem
::
SaccDataType
,
float
>
)
{
return
WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution
{};
if
constexpr
(
WarpGemmM
==
32
)
return
WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution
{};
else
if
constexpr
(
WarpGemmM
==
16
)
return
WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution
{};
else
// WarpGemmM == 4
return
WarpGemmMfmaBf16Bf16F32M4N64K16
{};
}
else
if
constexpr
(
std
::
is_same_v
<
typename
Problem
::
QDataType
,
fp8_t
>
&&
std
::
is_same_v
<
typename
Problem
::
KDataType
,
fp8_t
>
&&
...
...
include/ck_tile/ops/fmha/pipeline/tile_fmha_shape.hpp
View file @
efab74a3
...
...
@@ -43,8 +43,6 @@ struct TileFmhaShape
static
constexpr
index_t
NumWarps
=
max
(
NumGemm0Warps
,
NumGemm1Warps
);
static_assert
(
std
::
is_same_v
<
Gemm0WarpTile
,
Gemm1WarpTile
>
);
static
constexpr
index_t
kM0
=
BlockTile
::
at
(
number
<
0
>
{});
// tile size along q seqlen
static
constexpr
index_t
kN0
=
BlockTile
::
at
(
number
<
1
>
{});
// tile size along k seqlen
static
constexpr
index_t
kK0
=
BlockTile
::
at
(
number
<
2
>
{});
// tile size along qk gemm unroll
...
...
include/ck_tile/ops/fmha/pipeline/tile_fmha_traits.hpp
View file @
efab74a3
...
...
@@ -43,7 +43,8 @@ template <bool kPadSeqLenQ_ /* padding for seqlen_q */,
bool
kDoFp8StaticQuant_
,
bool
kIsPagedKV_
,
bool
kHasUnevenSplits_
,
index_t
kBlockPerCu_
=
-
1
/* overwrite occupancy if not -1 */
>
bool
kMergeNumHeadGroupsSeqLenQ_
=
false
,
index_t
kBlockPerCu_
=
-
1
/* overwrite occupancy if not -1 */
>
struct
TileFmhaFwdSplitKVTraits
{
static
constexpr
bool
kPadSeqLenQ
=
kPadSeqLenQ_
;
...
...
@@ -56,8 +57,9 @@ struct TileFmhaFwdSplitKVTraits
static
constexpr
bool
kDoFp8StaticQuant
=
kDoFp8StaticQuant_
;
static
constexpr
bool
kIsPagedKV
=
kIsPagedKV_
;
// determine if some split (length) is not divisible by tile size
static
constexpr
bool
kHasUnevenSplits
=
kHasUnevenSplits_
;
static
constexpr
index_t
kBlockPerCu
=
kBlockPerCu_
;
static
constexpr
bool
kHasUnevenSplits
=
kHasUnevenSplits_
;
static
constexpr
bool
kMergeNumHeadGroupsSeqLenQ
=
kMergeNumHeadGroupsSeqLenQ_
;
static
constexpr
index_t
kBlockPerCu
=
kBlockPerCu_
;
};
template
<
bool
kPadSeqLenQ_
/* padding for seqlen_q */
,
...
...
include/ck_tile/ops/fused_moe.hpp
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
include/ck_tile/ops/fused_moe/kernel/fused_moegemm_kernel.hpp
View file @
efab74a3
...
...
@@ -111,7 +111,7 @@ struct FusedMoeGemmHostArgs
const
void
*
num_sorted_tiles_ptr
;
// [1]
index_t
hidden_size
;
// k
index_t
intermediate_size
;
// n / TP, for Gate
. if Gate+Up, Down need divide by 2
index_t
intermediate_size
;
// n / TP, for Gate
/UP/Down
index_t
num_tokens
;
// input number of tokens for current iteration
index_t
num_experts
;
// number of groups
index_t
topk
;
// need this?
...
...
@@ -178,7 +178,7 @@ struct FusedMoeGemmKernel
return
base_str
;
}();
return
_SS_
(
"fused_moe_"
)
+
_SS_
(
prec_str
)
+
"_"
+
return
_SS_
(
"fused_moe_"
)
+
_SS_
(
prec_str
)
+
"_"
+
(
IsGateOnly
?
"g1u0_"
:
"g1u1_"
)
+
_TS_
(
S_
::
Block_M0
)
+
"x"
+
_TS_
(
S_
::
Block_N0
)
+
"x"
+
_TS_
(
S_
::
Block_K0
)
+
"x"
+
_TS_
(
S_
::
Block_N1
)
+
"_"
+
_TS_
(
S_
::
WarpPerBlock_M0
)
+
"x"
+
_TS_
(
S_
::
WarpPerBlock_N0
)
+
"x"
+
_TS_
(
S_
::
WarpPerBlock_K0
)
+
"_"
+
_TS_
(
S_
::
Warp_M0
)
+
"x"
+
_TS_
(
S_
::
Warp_N0
)
+
"x"
+
_TS_
(
S_
::
Warp_K0
)
+
"_"
+
_SS_
(
Pipeline
::
name
);
...
...
@@ -204,7 +204,7 @@ struct FusedMoeGemmKernel
const
void
*
num_sorted_tiles_ptr
;
index_t
hidden_size
;
// k
index_t
intermediate_size
;
// n / TP, for Gate
. if Gate+Up, Down need divide by 2
index_t
intermediate_size
;
// n / TP, for Gate
/Up/Down
index_t
num_tokens
;
// input number of tokens for current iteration
index_t
num_experts
;
// number of groups
index_t
topk
;
// need this?
...
...
@@ -239,7 +239,7 @@ struct FusedMoeGemmKernel
{
if
constexpr
(
UseUK
)
{
__shared__
CK_TILE_LDS_ADDR
ADataType
smem
[
GetSmemSize
()];
__shared__
CK_TILE_LDS_ADDR
char
smem
[
GetSmemSize
()];
IndexDataType
num_sorted_tiles
=
__builtin_amdgcn_readfirstlane
(
*
reinterpret_cast
<
const
IndexDataType
*>
(
kargs
.
num_sorted_tiles_ptr
));
...
...
@@ -298,6 +298,9 @@ struct FusedMoeGemmKernel
index_t
token_id
=
reinterpret_cast
<
const
index_t
*>
(
kargs
.
sorted_token_ids_ptr
)[
sorted_token_id
];
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
token_id
&=
0xffffff
;
#endif
auto
topk_weight
=
reinterpret_cast
<
const
TopkWeightDataType
*>
(
kargs
.
sorted_weight_ptr
)[
sorted_token_id
];
...
...
include/ck_tile/ops/fused_moe/kernel/moe_sorting_kernel.hpp
View file @
efab74a3
...
...
@@ -130,7 +130,8 @@ struct MoeSortingKernel
CK_TILE_HOST
static
constexpr
auto
GetSmemSize
(
const
Hargs
&
h
)
{
const
auto
blocks
=
BlockSize
(
h
);
return
((
blocks
.
x
+
1
)
*
h
.
num_experts
+
(
h
.
num_experts
+
1
))
*
sizeof
(
index_t
);
// usually num_experts is power of 2, we pad 1 dword here for the row-size
return
((
blocks
.
x
+
1
)
*
(
h
.
num_experts
+
1
)
+
(
h
.
num_experts
+
1
))
*
sizeof
(
index_t
);
}
CK_TILE_HOST
static
constexpr
auto
MakeKargs
(
const
Hargs
&
h
)
...
...
@@ -154,6 +155,75 @@ struct MoeSortingKernel
return
k
;
}
// [a, b, c, d....] -> [a, a+b, a+b+c, a+b+c+d, ....]
template
<
typename
data_t
,
int
wave_size
>
__device__
inline
void
wave_cumsum
(
data_t
&
thread_data
)
const
{
// wave_size must be power of 2
constexpr
int
row_mask
=
0xf
;
constexpr
int
bank_mask
=
0xf
;
constexpr
bool
bound_ctrl
=
true
;
// ! out-of-bound is zero !
auto
reduce_op
=
[
&
](
auto
x_
,
auto
y_
)
{
return
x_
+
y_
;
};
if
constexpr
(
wave_size
>
1
)
{
thread_data
=
reduce_op
(
thread_data
,
__builtin_bit_cast
(
data_t
,
__builtin_amdgcn_mov_dpp
(
__builtin_bit_cast
(
int
,
thread_data
),
0x111
,
row_mask
,
bank_mask
,
bound_ctrl
)));
// row_shr:1
}
if
constexpr
(
wave_size
>
2
)
{
thread_data
=
reduce_op
(
thread_data
,
__builtin_bit_cast
(
data_t
,
__builtin_amdgcn_mov_dpp
(
__builtin_bit_cast
(
int
,
thread_data
),
0x112
,
row_mask
,
bank_mask
,
bound_ctrl
)));
// row_shr:2
}
if
constexpr
(
wave_size
>
4
)
{
thread_data
=
reduce_op
(
thread_data
,
__builtin_bit_cast
(
data_t
,
__builtin_amdgcn_mov_dpp
(
__builtin_bit_cast
(
int
,
thread_data
),
0x114
,
row_mask
,
bank_mask
,
bound_ctrl
)));
// row_shr:4
}
if
constexpr
(
wave_size
>
8
)
{
thread_data
=
reduce_op
(
thread_data
,
__builtin_bit_cast
(
data_t
,
__builtin_amdgcn_mov_dpp
(
__builtin_bit_cast
(
int
,
thread_data
),
0x118
,
row_mask
,
bank_mask
,
bound_ctrl
)));
// row_shr:8
}
if
constexpr
(
wave_size
>
16
)
{
// now row-0, row-0+row-1, row-1+row-2, row-2+row-3
int
v_remote_tmp
=
__builtin_amdgcn_ds_bpermute
(((
__lane_id
()
&
0x30
)
-
1
)
<<
2
,
__builtin_bit_cast
(
int
,
thread_data
));
v_remote_tmp
=
__lane_id
()
>=
16
?
v_remote_tmp
:
0
;
thread_data
=
reduce_op
(
thread_data
,
__builtin_bit_cast
(
data_t
,
v_remote_tmp
));
}
if
constexpr
(
wave_size
>
32
)
{
// lane-id 48...63->31
int
v_remote_tmp
=
__builtin_amdgcn_ds_bpermute
(((
__lane_id
()
&
0x30
)
-
17
)
<<
2
,
__builtin_bit_cast
(
int
,
thread_data
));
v_remote_tmp
=
__lane_id
()
>=
32
?
v_remote_tmp
:
0
;
thread_data
=
reduce_op
(
thread_data
,
__builtin_bit_cast
(
data_t
,
v_remote_tmp
));
}
}
CK_TILE_DEVICE
index_t
calc_index
(
index_t
total_col
,
index_t
row
,
index_t
col
)
const
{
return
row
*
total_col
+
col
;
...
...
@@ -187,48 +257,124 @@ struct MoeSortingKernel
index_t
*
shared_mem
=
reinterpret_cast
<
index_t
*>
(
smem
);
index_t
*
tokens_cnts
=
shared_mem
;
// 2d: (blockDim.x + 1, num_experts)
index_t
*
cumsum
=
shared_mem
+
(
blockDim
.
x
+
1
)
*
num_experts
;
// 1: (num_experts + 1)
index_t
*
cumsum
=
shared_mem
+
(
blockDim
.
x
+
1
)
*
(
num_experts
+
1
);
// 1: (num_experts + 1)
for
(
int
i
=
0
;
i
<
num_experts
;
++
i
)
{
tokens_cnts
[
calc_index
(
num_experts
,
tid
+
1
,
i
)]
=
0
;
tokens_cnts
[
calc_index
(
num_experts
+
1
,
tid
+
1
,
i
)]
=
0
;
}
#pragma unroll Problem_::InternalLoadUnroll
for
(
int
i
=
start_idx
;
i
<
numel
&&
i
<
start_idx
+
tokens_per_thread
;
++
i
)
{
++
tokens_cnts
[
calc_index
(
num_experts
,
tid
+
1
,
topk_id
[
i
])];
++
tokens_cnts
[
calc_index
(
num_experts
+
1
,
tid
+
1
,
topk_id
[
i
])];
}
__syncthreads
();
#if 1
if
(
tid
<
num_experts
)
{
tokens_cnts
[
calc_index
(
num_experts
,
0
,
tid
)]
=
0
;
for
(
int
i
=
1
;
i
<=
static_cast
<
index_t
>
(
blockDim
.
x
);
++
i
)
tokens_cnts
[
calc_index
(
num_experts
+
1
,
0
,
tid
)]
=
0
;
index_t
local_c
[
8
];
index_t
prev_c
=
0
;
// TODO: manually unroll. pragma unroll does not work well when we have dependency
for
(
int
i
=
1
;
i
<=
static_cast
<
index_t
>
(
blockDim
.
x
);
i
+=
8
)
{
tokens_cnts
[
calc_index
(
num_experts
,
i
,
tid
)]
+=
tokens_cnts
[
calc_index
(
num_experts
,
i
-
1
,
tid
)];
local_c
[
0
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
0
,
tid
)];
local_c
[
1
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
1
,
tid
)];
local_c
[
2
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
2
,
tid
)];
local_c
[
3
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
3
,
tid
)];
local_c
[
4
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
4
,
tid
)];
local_c
[
5
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
5
,
tid
)];
local_c
[
6
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
6
,
tid
)];
local_c
[
7
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
7
,
tid
)];
local_c
[
0
]
+=
prev_c
;
local_c
[
1
]
+=
local_c
[
0
];
local_c
[
2
]
+=
local_c
[
1
];
local_c
[
3
]
+=
local_c
[
2
];
local_c
[
4
]
+=
local_c
[
3
];
local_c
[
5
]
+=
local_c
[
4
];
local_c
[
6
]
+=
local_c
[
5
];
local_c
[
7
]
+=
local_c
[
6
];
prev_c
=
local_c
[
7
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
0
,
tid
)]
=
local_c
[
0
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
1
,
tid
)]
=
local_c
[
1
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
2
,
tid
)]
=
local_c
[
2
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
3
,
tid
)]
=
local_c
[
3
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
4
,
tid
)]
=
local_c
[
4
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
5
,
tid
)]
=
local_c
[
5
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
6
,
tid
)]
=
local_c
[
6
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
i
+
7
,
tid
)]
=
local_c
[
7
];
}
}
// __syncthreads();
if
(
tid
==
0
)
#else
// TODO: below code still working, but slow in expert=32/topk=5 case. Put here for future heuristic
{
cumsum
[
0
]
=
0
;
for
(
int
i
=
1
;
i
<=
num_experts
;
++
i
)
if
(
tid
<
num_experts
)
tokens_cnts
[
calc_index
(
num_experts
+
1
,
0
,
tid
)]
=
0
;
for
(
int
i
=
0
;
i
<
num_experts
;
i
+=
8
)
{
index_t
local_c
[
8
];
#pragma unroll
for
(
int
j
=
0
;
j
<
8
;
j
++
)
{
local_c
[
j
]
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
tid
+
1
,
i
+
j
)];
}
#pragma unroll
for
(
int
j
=
0
;
j
<
8
;
j
++
)
{
wave_cumsum
<
int
,
64
>
(
local_c
[
j
]);
}
#pragma unroll
for
(
int
j
=
0
;
j
<
8
;
j
++
)
{
tokens_cnts
[
calc_index
(
num_experts
+
1
,
tid
+
1
,
i
+
j
)]
=
local_c
[
j
];
}
}
}
#endif
__syncthreads
();
if
constexpr
(
Problem
::
ExpertTile
==
0
)
{
if
(
tid
==
0
)
{
auto
current_units
=
[
&
]()
{
index_t
x_
=
tokens_cnts
[
calc_index
(
num_experts
,
blockDim
.
x
,
i
-
1
)]
+
unit_size_mdiv
.
divisor
-
1
;
index_t
y_
=
unit_size_mdiv
.
div
(
x_
);
return
max
(
y_
,
1
)
*
unit_size_mdiv
.
divisor
;
}();
cumsum
[
i
]
=
cumsum
[
i
-
1
]
+
current_units
;
cumsum
[
0
]
=
0
;
for
(
int
i
=
1
;
i
<=
num_experts
;
++
i
)
{
auto
current_units
=
[
&
]()
{
index_t
x_
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
blockDim
.
x
,
i
-
1
)]
+
unit_size_mdiv
.
divisor
-
1
;
index_t
y_
=
unit_size_mdiv
.
div
(
x_
);
return
max
(
y_
,
1
)
*
unit_size_mdiv
.
divisor
;
}();
cumsum
[
i
]
=
cumsum
[
i
-
1
]
+
current_units
;
}
*
p_total_tokens_post_pad
=
cumsum
[
num_experts
];
}
}
else
{
// TODO: we have out-of-bound read here. But result is still OK (will ignore tid >= expert)
// for simplicity, not check experts here.
int
local_cnt
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
blockDim
.
x
,
tid
)];
int
blocks_pers_expert
=
unit_size_mdiv
.
div
(
local_cnt
+
unit_size_mdiv
.
divisor
-
1
);
int
padded_tokens_per_expert
=
max
(
blocks_pers_expert
,
1
)
*
unit_size_mdiv
.
divisor
;
int
local_cumsum
=
padded_tokens_per_expert
;
wave_cumsum
<
int
,
64
>
(
local_cumsum
);
if
(
tid
==
(
num_experts
-
1
))
{
cumsum
[
0
]
=
0
;
*
p_total_tokens_post_pad
=
local_cumsum
;
}
if
(
tid
<
num_experts
)
{
cumsum
[
tid
+
1
]
=
local_cumsum
;
}
*
p_total_tokens_post_pad
=
cumsum
[
num_experts
];
}
__syncthreads
();
if
(
tid
<
num_experts
)
{
for
(
int
i
=
cumsum
[
tid
];
i
<
cumsum
[
tid
+
1
];
i
+=
unit_size_mdiv
.
divisor
)
int
e_start
=
cumsum
[
tid
];
int
e_end
=
cumsum
[
tid
+
1
];
for
(
int
i
=
e_start
;
i
<
e_end
;
i
+=
unit_size_mdiv
.
divisor
)
{
p_sorted_expert_ids
[
unit_size_mdiv
.
div
(
i
)]
=
tid
;
}
...
...
@@ -238,8 +384,8 @@ struct MoeSortingKernel
for
(
int
i
=
start_idx
;
i
<
numel
&&
i
<
start_idx
+
tokens_per_thread
;
++
i
)
{
index_t
expert_id
=
topk_id
[
i
];
index_t
rank_post_pad
=
tokens_cnts
[
calc_index
(
num_experts
,
tid
,
expert_id
)]
+
cumsum
[
expert_id
];
index_t
local_cnt
=
tokens_cnts
[
calc_index
(
num_experts
+
1
,
tid
,
expert_id
)];
index_t
rank_post_pad
=
local_cnt
+
cumsum
[
expert_id
];
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
uint32_t
curr_token_id
,
curr_topk_id
;
topk_mdiv
.
divmod
(
i
,
curr_token_id
,
curr_topk_id
);
...
...
@@ -247,27 +393,54 @@ struct MoeSortingKernel
#else
p_sorted_token_ids
[
rank_post_pad
]
=
topk_mdiv
.
div
(
i
);
#endif
p_sorted_weights
[
rank_post_pad
]
=
weights
[
i
];
++
tokens_cnts
[
calc_index
(
num_experts
,
tid
,
expert_id
)];
p_sorted_weights
[
rank_post_pad
]
=
weights
[
i
];
tokens_cnts
[
calc_index
(
num_experts
+
1
,
tid
,
expert_id
)]
=
local_cnt
+
1
;
}
const
index_t
prefill_token
=
topk_mdiv
.
div
(
numel
);
if
(
tid
<
num_experts
)
{
index_t
expert_offset
=
cumsum
[
tid
]
+
tokens_cnts
[
calc_index
(
num_experts
,
blockDim
.
x
,
tid
)];
while
(
expert_offset
<
cumsum
[
tid
+
1
])
if
constexpr
(
Problem
::
ExpertTile
==
0
)
{
const
index_t
prefill_token
=
topk_mdiv
.
div
(
numel
);
if
(
tid
<
num_experts
)
{
index_t
expert_offset
=
cumsum
[
tid
]
+
tokens_cnts
[
calc_index
(
num_experts
+
1
,
blockDim
.
x
,
tid
)];
index_t
expert_end
=
cumsum
[
tid
+
1
];
while
(
expert_offset
<
expert_end
)
{
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
p_sorted_token_ids
[
expert_offset
]
=
MOE_SORTING_MOCK_ID
(
prefill_token
,
topk_mdiv
.
divisor
);
p_sorted_token_ids
[
expert_offset
]
=
MOE_SORTING_MOCK_ID
(
prefill_token
,
topk_mdiv
.
divisor
);
#else
p_sorted_token_ids
[
expert_offset
]
=
prefill_token
;
p_sorted_token_ids
[
expert_offset
]
=
prefill_token
;
#endif
p_sorted_weights
[
expert_offset
]
=
static_cast
<
WeightType
>
(
0.0
);
expert_offset
++
;
p_sorted_weights
[
expert_offset
]
=
static_cast
<
WeightType
>
(
0.0
);
expert_offset
++
;
}
}
}
else
{
const
index_t
prefill_token
=
topk_mdiv
.
div
(
numel
);
// TODO: only support expert-tile like 8, 16, 32
static
constexpr
index_t
experts_per_wave
=
warpSize
/
Problem
::
ExpertTile
;
{
index_t
eid
=
tid
/
experts_per_wave
;
index_t
expert_offset
=
cumsum
[
eid
]
+
tokens_cnts
[
calc_index
(
num_experts
+
1
,
blockDim
.
x
,
eid
)]
+
tid
%
experts_per_wave
;
index_t
expert_end
=
cumsum
[
eid
+
1
];
if
(
eid
<
num_experts
)
{
while
(
expert_offset
<
expert_end
)
{
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
p_sorted_token_ids
[
expert_offset
]
=
MOE_SORTING_MOCK_ID
(
prefill_token
,
topk_mdiv
.
divisor
);
#else
p_sorted_token_ids
[
expert_offset
]
=
prefill_token
;
#endif
p_sorted_weights
[
expert_offset
]
=
static_cast
<
WeightType
>
(
0.0
);
expert_offset
+=
experts_per_wave
;
}
}
}
}
}
CK_TILE_DEVICE
void
operator
()(
Kargs
kargs
)
const
...
...
include/ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_uk.hpp
View file @
efab74a3
...
...
@@ -70,11 +70,16 @@ struct FusedMoeGemmPipeline_FlatmmUk
CK_TILE_HOST_DEVICE
static
constexpr
ck_tile
::
index_t
GetSmemSize
()
{
#if 1
constexpr
index_t
smem_0
=
Policy
::
template
GetUK_0
<
Problem
>().
GetSmemSize
();
constexpr
index_t
smem_1
=
Policy
::
template
GetUK_1
<
Problem
>().
GetSmemSize
();
constexpr
index_t
smem_bridge
=
BlockShape
::
Block_M0
*
BlockShape
::
Block_N0
*
sizeof
(
YDataType
);
return
max
(
smem_0
,
max
(
smem_1
,
smem_bridge
));
return
max
(
smem_0
+
smem_1
,
smem_bridge
);
#else
// keep it here purposely in case we have regression
return
65536
;
#endif
}
// this is the thread-offset along row/col
...
...
@@ -125,6 +130,9 @@ struct FusedMoeGemmPipeline_FlatmmUk
array
<
index_t
,
n_size
>
row_ids
;
static_for
<
0
,
n_size
,
1
>
{}([
&
](
auto
i
)
{
row_ids
.
at
(
i
)
=
sorted_token_ids_ptr
[
coords
[
i
]];
// base_coord + i * MLans;
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
row_ids
.
at
(
i
)
&=
0xffffff
;
#endif
});
return
row_ids
;
...
...
@@ -164,9 +172,12 @@ struct FusedMoeGemmPipeline_FlatmmUk
index_t
sorted_tile_id
,
index_t
intermediate_tile_id
)
{
constexpr
index_t
hidden_radio_0
=
IsGateOnly
?
1
:
2
;
ck_tile
::
index_t
shared_intermediate_size_0
=
kargs
.
intermediate_size
;
ck_tile
::
index_t
shared_intermediate_size_1
=
kargs
.
intermediate_size
/
hidden_radio_0
;
constexpr
index_t
hidden_radio_0
=
IsGateOnly
?
1
:
2
;
ck_tile
::
index_t
shared_intermediate_size_0
=
kargs
.
intermediate_size
*
hidden_radio_0
;
// total gate+up
ck_tile
::
index_t
shared_intermediate_size_1
=
kargs
.
intermediate_size
;
// after weight shuffling, gate-only: [nr0, kr0, w0], gate+up: [nr0_gate + nr0_up, kr0, w0]
index_t
nr_0
=
shared_intermediate_size_0
/
BlockShape
::
Warp_N0
;
// divide N in W
index_t
kr_0
=
kargs
.
hidden_size
/
BlockShape
::
Warp_K0
;
// divide K in W
...
...
@@ -200,29 +211,35 @@ struct FusedMoeGemmPipeline_FlatmmUk
make_wave_buffer_resource
(
reinterpret_cast
<
const
ADataType
*>
(
kargs
.
a_ptr
),
kargs
.
num_tokens
*
kargs
.
stride_token
*
sizeof
(
ADataType
));
auto
g_win
=
[
&
]()
{
const
GDataType
*
g_ptr
=
reinterpret_cast
<
const
GDataType
*>
(
kargs
.
g_ptr
)
+
static_cast
<
long_index_t
>
(
expert_id
)
*
expert_stride_0
+
interm_idx_nr0
*
kr_0
*
BlockShape
::
Block_W0
;
auto
g_view_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
g_ptr
,
auto
make_gu_win
=
[
&
](
const
auto
*
ptr_
)
{
auto
view_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
ptr_
,
make_tuple
(
nr_0
,
kr_0
,
number
<
BlockShape
::
Block_W0
>
{}),
make_tuple
(
kr_0
*
BlockShape
::
Block_W0
,
number
<
BlockShape
::
Block_W0
>
{},
1
),
number
<
kAlignmentG
>
{},
number
<
1
>
{});
auto
g_
win
dow
_
=
make_tile_window_linear_raw
(
g_
view_
,
auto
win_
=
make_tile_window_linear_raw
(
view_
,
make_tuple
(
number
<
BlockShape
::
Block_Nr0
>
{},
number
<
BlockShape
::
Block_Kr0
>
{},
number
<
BlockShape
::
Block_W0
>
{}),
{
0
,
0
,
0
},
Policy
::
template
MakeGlobalTileDistribution_G
<
Problem
>(),
sequence
<
0
,
1
,
1
>
{});
return
g_window_
;
}();
return
win_
;
};
const
GDataType
*
gu_ptr
=
reinterpret_cast
<
const
GDataType
*>
(
kargs
.
g_ptr
)
+
static_cast
<
long_index_t
>
(
expert_id
)
*
expert_stride_0
+
interm_idx_nr0
*
kr_0
*
BlockShape
::
Block_W0
;
auto
g_win
=
make_gu_win
(
gu_ptr
);
// Note: gu swizzled, [nr_u+nr_g, kr, w], hence base offset to up is just interm*hidden
auto
u_win
=
make_gu_win
(
gu_ptr
+
kargs
.
intermediate_size
*
kargs
.
hidden_size
);
auto
g_res
=
g_win
.
get_bottom_tensor_view
().
get_buffer_view
().
cached_buf_res_
;
auto
u_res
=
u_win
.
get_bottom_tensor_view
().
get_buffer_view
().
cached_buf_res_
;
auto
g_coords
=
generate_tuple
([
&
](
auto
i
)
{
return
g_win
.
cached_coords_
[
i
].
get_offset
();
},
number
<
decltype
(
g_win
)
::
NumAccess_NonLinear
>
{});
...
...
@@ -309,28 +326,73 @@ struct FusedMoeGemmPipeline_FlatmmUk
auto
w_scale
=
GetWeightScale
(
row_coords_o
,
reinterpret_cast
<
const
TopkWeightDataType
*>
(
kargs
.
sorted_weight_ptr
));
auto
uk_0
=
Policy
::
template
GetUK_0
<
Problem
>();
auto
acc_0
=
uk_0
(
a_res
,
a_coords
,
g_res
,
g_coords
,
smem
,
kargs
.
hidden_size
,
BlockShape
::
Block_K0
,
// tile offset for B matrix each unroll
BlockShape
::
Block_Kr0
*
BlockShape
::
Block_W0
);
// tile offset for B matrix each unroll
sweep_tile
(
acc_0
,
[
&
](
auto
idx0
,
auto
idx1
)
{
fp32x2_t
v_
{
acc_0
(
idx0
),
acc_0
(
idx1
)};
typename
Problem
::
GateActivation
{}(
v_
,
v_
);
acc_0
(
idx0
)
=
v_
.
x
;
acc_0
(
idx1
)
=
v_
.
y
;
},
sequence
<
1
,
2
>
{});
auto
y_pre
=
cast_tile
<
YDataType
>
(
acc_0
);
auto
uk_0
=
Policy
::
template
GetUK_0
<
Problem
>();
auto
y_pre
=
[
&
]()
{
if
constexpr
(
IsGateOnly
)
{
auto
acc_0
=
uk_0
(
a_res
,
a_coords
,
g_res
,
g_coords
,
smem
,
kargs
.
hidden_size
,
BlockShape
::
Block_K0
,
// tile offset for B matrix each unroll
BlockShape
::
Block_Kr0
*
BlockShape
::
Block_W0
);
// tile offset for B matrix each unroll
sweep_tile
(
acc_0
,
[
&
](
auto
idx0
,
auto
idx1
)
{
fp32x2_t
v_
{
acc_0
(
idx0
),
acc_0
(
idx1
)};
typename
Problem
::
GateActivation
{}(
v_
,
v_
);
acc_0
(
idx0
)
=
v_
.
x
;
acc_0
(
idx1
)
=
v_
.
y
;
},
sequence
<
1
,
2
>
{});
return
cast_tile
<
YDataType
>
(
acc_0
);
}
else
{
uint32x8_t
gu_res
;
gu_res
[
0
]
=
g_res
[
0
];
gu_res
[
1
]
=
g_res
[
1
];
gu_res
[
2
]
=
g_res
[
2
];
gu_res
[
3
]
=
g_res
[
3
];
gu_res
[
4
]
=
u_res
[
0
];
gu_res
[
5
]
=
u_res
[
1
];
gu_res
[
6
]
=
u_res
[
2
];
gu_res
[
7
]
=
u_res
[
3
];
auto
acc_0
=
uk_0
(
a_res
,
a_coords
,
gu_res
,
g_coords
,
smem
,
kargs
.
hidden_size
,
BlockShape
::
Block_K0
,
// tile offset for B matrix each unroll
BlockShape
::
Block_Kr0
*
BlockShape
::
Block_W0
,
bool_constant
<
true
>
{});
// tile offset for B matrix each unroll
sweep_tile
(
acc_0
.
at
(
number
<
0
>
{}),
[
&
](
auto
idx0
,
auto
idx1
)
{
fp32x2_t
v_
{
acc_0
.
at
(
number
<
0
>
{})(
idx0
),
acc_0
.
at
(
number
<
0
>
{})(
idx1
)};
typename
Problem
::
GateActivation
{}(
v_
,
v_
);
acc_0
.
at
(
number
<
0
>
{})(
idx0
)
=
v_
.
x
;
acc_0
.
at
(
number
<
0
>
{})(
idx1
)
=
v_
.
y
;
},
sequence
<
1
,
2
>
{});
auto
reduced_acc_0
=
tile_elementwise_in
([
&
](
const
auto
&
a_
,
const
auto
&
b_
)
{
return
a_
*
b_
;
},
acc_0
.
at
(
number
<
0
>
{}),
acc_0
.
at
(
number
<
1
>
{}));
return
cast_tile
<
YDataType
>
(
reduced_acc_0
);
}
}();
block_sync_lds
();
...
...
include/ck_tile/ops/fused_moe/pipeline/moe_sorting_problem.hpp
View file @
efab74a3
...
...
@@ -9,15 +9,20 @@
namespace
ck_tile
{
template
<
typename
IndexType_
,
typename
WeightType_
,
index_t
InternalLoadUnroll_
>
template
<
typename
IndexType_
,
typename
WeightType_
,
index_t
InternalLoadUnroll_
,
index_t
ExpertTile_
=
0
>
struct
MoeSortingProblem
{
// TODO: this kernel only support warp per row
using
WeightType
=
remove_cvref_t
<
WeightType_
>
;
using
IndexType
=
remove_cvref_t
<
IndexType_
>
;
static
constexpr
index_t
WarpSize
=
get_warp_size
();
static
constexpr
index_t
WarpsPerBlock
=
1
;
static
constexpr
index_t
InternalLoadUnroll
=
InternalLoadUnroll_
;
static
constexpr
index_t
WarpSize
=
get_warp_size
();
static
constexpr
index_t
WarpsPerBlock
=
1
;
static
constexpr
index_t
InternalLoadUnroll
=
InternalLoadUnroll_
;
// TODO: need better design(like tile size)
static
constexpr
index_t
ExpertTile
=
ExpertTile_
;
// TODO: only used in store out
};
}
// namespace ck_tile
include/ck_tile/ops/gemm.hpp
View file @
efab74a3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
include/ck_tile/ops/gemm/block/block_gemm_areg_breg_creg_v1.hpp
View file @
efab74a3
...
...
@@ -21,35 +21,20 @@ struct BlockGemmARegBRegCRegV1
using
CDataType
=
remove_cvref_t
<
typename
Problem
::
CDataType
>
;
using
BlockGemmShape
=
remove_cvref_t
<
typename
Problem
::
BlockGemmShape
>
;
static
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
// C += A * B
template
<
typename
CBlockTensor
,
typename
ABlockTensor
,
typename
BBlockTensor
>
CK_TILE_DEVICE
void
operator
()(
CBlockTensor
&
c_block_tensor
,
const
ABlockTensor
&
a_block_tensor
,
const
BBlockTensor
&
b_block_tensor
)
const
static
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
static
constexpr
index_t
MPerBlock
=
BlockGemmShape
::
kM
;
static
constexpr
index_t
NPerBlock
=
BlockGemmShape
::
kN
;
static
constexpr
index_t
KPerBlock
=
BlockGemmShape
::
kK
;
static
constexpr
auto
config
=
Policy
::
template
GetWarpGemmMWarpNWarp
<
Problem
>();
using
WG
=
remove_cvref_t
<
decltype
(
config
.
template
at
<
0
>())
>
;
static
constexpr
index_t
MWarp
=
config
.
template
at
<
1
>();
static
constexpr
index_t
NWarp
=
config
.
template
at
<
2
>();
static
constexpr
index_t
MIterPerWarp
=
MPerBlock
/
(
MWarp
*
WG
::
kM
);
static
constexpr
index_t
NIterPerWarp
=
NPerBlock
/
(
NWarp
*
WG
::
kN
);
static
constexpr
index_t
KIterPerWarp
=
KPerBlock
/
WG
::
kK
;
CK_TILE_DEVICE
static
constexpr
auto
MakeABlockDistributionEncode
()
{
static_assert
(
std
::
is_same_v
<
ADataType
,
remove_cv_t
<
typename
ABlockTensor
::
DataType
>>
&&
std
::
is_same_v
<
BDataType
,
remove_cv_t
<
typename
BBlockTensor
::
DataType
>>
&&
std
::
is_same_v
<
CDataType
,
remove_cv_t
<
typename
CBlockTensor
::
DataType
>>
,
"wrong!"
);
constexpr
index_t
MPerBlock
=
BlockGemmShape
::
kM
;
constexpr
index_t
NPerBlock
=
BlockGemmShape
::
kN
;
constexpr
index_t
KPerBlock
=
BlockGemmShape
::
kK
;
constexpr
auto
config
=
Policy
::
template
GetWarpGemmMWarpNWarp
<
Problem
>();
using
WG
=
remove_cvref_t
<
decltype
(
config
.
template
at
<
0
>())
>
;
constexpr
index_t
MWarp
=
config
.
template
at
<
1
>();
constexpr
index_t
NWarp
=
config
.
template
at
<
2
>();
constexpr
index_t
MIterPerWarp
=
MPerBlock
/
(
MWarp
*
WG
::
kM
);
constexpr
index_t
NIterPerWarp
=
NPerBlock
/
(
NWarp
*
WG
::
kN
);
constexpr
index_t
KIterPerWarp
=
KPerBlock
/
WG
::
kK
;
// M->N Warp
constexpr
auto
a_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<
NWarp
>
,
tuple
<
sequence
<
MIterPerWarp
,
MWarp
>
,
sequence
<
KIterPerWarp
>>
,
...
...
@@ -57,7 +42,14 @@ struct BlockGemmARegBRegCRegV1
tuple
<
sequence
<
1
,
0
>>
,
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
a_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
a_block_outer_dstr_encoding
,
typename
WG
::
AWarpDstrEncoding
{});
return
a_block_dstr_encode
;
}
CK_TILE_DEVICE
static
constexpr
auto
MakeBBlockDistributionEncode
()
{
constexpr
auto
b_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<
MWarp
>
,
tuple
<
sequence
<
NIterPerWarp
,
NWarp
>
,
sequence
<
KIterPerWarp
>>
,
...
...
@@ -65,7 +57,14 @@ struct BlockGemmARegBRegCRegV1
tuple
<
sequence
<
0
,
1
>>
,
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
b_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
b_block_outer_dstr_encoding
,
typename
WG
::
BWarpDstrEncoding
{});
return
b_block_dstr_encode
;
}
CK_TILE_DEVICE
static
constexpr
auto
MakeCBlockDistributionEncode
()
{
constexpr
auto
c_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
MIterPerWarp
,
MWarp
>
,
sequence
<
NIterPerWarp
,
NWarp
>>
,
...
...
@@ -73,15 +72,28 @@ struct BlockGemmARegBRegCRegV1
tuple
<
sequence
<
1
,
1
>>
,
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
c_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
c_block_outer_dstr_encoding
,
typename
WG
::
CWarpDstrEncoding
{});
constexpr
auto
a
_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
a_block_outer_dstr_encoding
,
typename
WG
::
AWarpDstrEncoding
{});
return
c
_block_dstr_encode
;
}
constexpr
auto
b_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
b_block_outer_dstr_encoding
,
typename
WG
::
BWarpDstrEncoding
{});
// C += A * B
template
<
typename
CBlockTensor
,
typename
ABlockTensor
,
typename
BBlockTensor
>
CK_TILE_DEVICE
void
operator
()(
CBlockTensor
&
c_block_tensor
,
const
ABlockTensor
&
a_block_tensor
,
const
BBlockTensor
&
b_block_tensor
)
const
{
static_assert
(
std
::
is_same_v
<
ADataType
,
remove_cv_t
<
typename
ABlockTensor
::
DataType
>>
&&
std
::
is_same_v
<
BDataType
,
remove_cv_t
<
typename
BBlockTensor
::
DataType
>>
&&
std
::
is_same_v
<
CDataType
,
remove_cv_t
<
typename
CBlockTensor
::
DataType
>>
,
"wrong!"
);
constexpr
auto
c_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
c_block_outer_dstr_encoding
,
typename
WG
::
CWarpDstrEncoding
{});
constexpr
auto
a_block_dstr_encode
=
MakeABlockDistributionEncode
();
constexpr
auto
b_block_dstr_encode
=
MakeBBlockDistributionEncode
();
constexpr
auto
c_block_dstr_encode
=
MakeCBlockDistributionEncode
();
// check ABC-block-distribution
static_assert
(
...
...
@@ -159,20 +171,6 @@ struct BlockGemmARegBRegCRegV1
CK_TILE_DEVICE
static
constexpr
auto
MakeCBlockTile
()
{
constexpr
index_t
MPerBlock
=
BlockGemmShape
::
kM
;
constexpr
index_t
NPerBlock
=
BlockGemmShape
::
kN
;
constexpr
auto
config
=
Policy
::
template
GetWarpGemmMWarpNWarp
<
Problem
>();
using
WG
=
remove_cvref_t
<
decltype
(
config
.
template
at
<
0
>())
>
;
constexpr
index_t
MWarp
=
config
.
template
at
<
1
>();
constexpr
index_t
NWarp
=
config
.
template
at
<
2
>();
constexpr
index_t
MIterPerWarp
=
MPerBlock
/
(
MWarp
*
WG
::
kM
);
constexpr
index_t
NIterPerWarp
=
NPerBlock
/
(
NWarp
*
WG
::
kN
);
// constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
constexpr
auto
c_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
MIterPerWarp
,
MWarp
>
,
sequence
<
NIterPerWarp
,
NWarp
>>
,
...
...
include/ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_one_warp_v1.hpp
View file @
efab74a3
...
...
@@ -65,14 +65,6 @@ struct BlockGemmARegBSmemCRegOneWarpV1
const
index_t
iNWarp
=
0
;
constexpr
auto
a_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<
NWarp
>
,
tuple
<
sequence
<
MIterPerWarp
,
MWarp
>
,
sequence
<
KIterPerWarp
>>
,
tuple
<
sequence
<
1
,
0
>>
,
tuple
<
sequence
<
1
,
0
>>
,
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
c_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
MIterPerWarp
>
,
sequence
<
NIterPerWarp
>>
,
...
...
@@ -81,19 +73,14 @@ struct BlockGemmARegBSmemCRegOneWarpV1
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
a_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
a_block_outer_dstr_encoding
,
typename
WG
::
AWarpDstrEncoding
{});
constexpr
auto
c_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
c_block_outer_dstr_encoding
,
typename
WG
::
CWarpDstrEncoding
{});
constexpr
auto
a_block_dstr
=
make_static_tile_distribution
(
a_block_dstr_encode
);
// constrcut from A-block-tensor from A-Block-tensor-tmp
// FIXME: need method to check a_block_tensor and a_block_tensor_tmp have equivalent
// distribution
auto
a_block_tensor
=
m
ake
_static_distributed_tensor
<
typename
ABlockTensorTmp
::
DataType
>
(
a_block_dstr
);
auto
a_block_tensor
=
make_static_distributed_tensor
<
typename
ABlockTensorTmp
::
DataType
>
(
M
ake
ABlockTileDistribution
()
);
a_block_tensor
.
get_thread_buffer
()
=
a_block_tensor_tmp
.
get_thread_buffer
();
...
...
@@ -187,6 +174,33 @@ struct BlockGemmARegBSmemCRegOneWarpV1
});
}
template
<
index_t
MPerBlock
=
BlockGemmShape
::
kM
,
index_t
KPerBlock
=
BlockGemmShape
::
kK
>
CK_TILE_DEVICE
static
constexpr
auto
MakeABlockTileDistribution
()
{
constexpr
auto
config
=
Policy
::
template
GetWarpGemmMWarpNWarp
<
Problem
>();
using
WG
=
remove_cvref_t
<
decltype
(
config
.
template
at
<
0
>())
>
;
constexpr
index_t
MWarp
=
config
.
template
at
<
1
>();
constexpr
index_t
NWarp
=
config
.
template
at
<
2
>();
constexpr
index_t
MIterPerWarp
=
MPerBlock
/
(
MWarp
*
WG
::
kM
);
constexpr
index_t
KIterPerWarp
=
KPerBlock
/
WG
::
kK
;
constexpr
auto
a_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<
NWarp
>
,
tuple
<
sequence
<
MIterPerWarp
,
MWarp
>
,
sequence
<
KIterPerWarp
>>
,
tuple
<
sequence
<
1
,
0
>>
,
tuple
<
sequence
<
1
,
0
>>
,
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
a_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
a_block_outer_dstr_encoding
,
typename
WG
::
AWarpDstrEncoding
{});
return
make_static_tile_distribution
(
a_block_dstr_encode
);
}
CK_TILE_DEVICE
static
constexpr
auto
MakeCBlockTile
()
{
constexpr
index_t
MPerBlock
=
BlockGemmShape
::
kM
;
...
...
include/ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_v2.hpp
View file @
efab74a3
...
...
@@ -59,14 +59,6 @@ struct BlockGemmARegBSmemCRegV2
const
index_t
iNWarp
=
get_warp_id
()
%
NWarp
;
constexpr
auto
a_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<
NWarp
>
,
tuple
<
sequence
<
MIterPerWarp
,
MWarp
>
,
sequence
<
KIterPerWarp
>>
,
tuple
<
sequence
<
1
,
0
>>
,
tuple
<
sequence
<
1
,
0
>>
,
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
c_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
MIterPerWarp
,
MWarp
>
,
sequence
<
NIterPerWarp
,
NWarp
>>
,
...
...
@@ -75,19 +67,14 @@ struct BlockGemmARegBSmemCRegV2
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
a_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
a_block_outer_dstr_encoding
,
typename
WG
::
AWarpDstrEncoding
{});
constexpr
auto
c_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
c_block_outer_dstr_encoding
,
typename
WG
::
CWarpDstrEncoding
{});
constexpr
auto
a_block_dstr
=
make_static_tile_distribution
(
a_block_dstr_encode
);
// constrcut from A-block-tensor from A-Block-tensor-tmp
// FIXME: need method to check a_block_tensor and a_block_tensor_tmp have equivalent
// distribution
auto
a_block_tensor
=
m
ake
_static_distributed_tensor
<
typename
ABlockTensorTmp
::
DataType
>
(
a_block_dstr
);
auto
a_block_tensor
=
make_static_distributed_tensor
<
typename
ABlockTensorTmp
::
DataType
>
(
M
ake
ABlockTileDistribution
()
);
a_block_tensor
.
get_thread_buffer
()
=
a_block_tensor_tmp
.
get_thread_buffer
();
...
...
@@ -182,6 +169,33 @@ struct BlockGemmARegBSmemCRegV2
});
}
template
<
index_t
MPerBlock
=
BlockGemmShape
::
kM
,
index_t
KPerBlock
=
BlockGemmShape
::
kK
>
CK_TILE_DEVICE
static
constexpr
auto
MakeABlockTileDistribution
()
{
constexpr
auto
config
=
Policy
::
template
GetWarpGemmMWarpNWarp
<
Problem
>();
using
WG
=
remove_cvref_t
<
decltype
(
config
.
template
at
<
0
>())
>
;
constexpr
index_t
MWarp
=
config
.
template
at
<
1
>();
constexpr
index_t
NWarp
=
config
.
template
at
<
2
>();
constexpr
index_t
MIterPerWarp
=
MPerBlock
/
(
MWarp
*
WG
::
kM
);
constexpr
index_t
KIterPerWarp
=
KPerBlock
/
WG
::
kK
;
constexpr
auto
a_block_outer_dstr_encoding
=
tile_distribution_encoding
<
sequence
<
NWarp
>
,
tuple
<
sequence
<
MIterPerWarp
,
MWarp
>
,
sequence
<
KIterPerWarp
>>
,
tuple
<
sequence
<
1
,
0
>>
,
tuple
<
sequence
<
1
,
0
>>
,
sequence
<
1
,
2
>
,
sequence
<
0
,
0
>>
{};
constexpr
auto
a_block_dstr_encode
=
detail
::
make_embed_tile_distribution_encoding
(
a_block_outer_dstr_encoding
,
typename
WG
::
AWarpDstrEncoding
{});
return
make_static_tile_distribution
(
a_block_dstr_encode
);
}
CK_TILE_DEVICE
static
constexpr
auto
MakeCBlockTile
()
{
constexpr
index_t
MPerBlock
=
BlockGemmShape
::
kM
;
...
...
include/ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp
View file @
efab74a3
...
...
@@ -3,90 +3,95 @@
#pragma once
#include <iostream>
#include <string>
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/gemm/kernel/gemm_kernel.hpp"
namespace
ck_tile
{
struct
BatchedGemmHostArgs
struct
BatchedGemmHostArgs
:
public
ck_tile
::
GemmHostArgs
{
const
void
*
a_ptr
;
const
void
*
b_ptr
;
void
*
c_ptr
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
stride_A
;
index_t
stride_B
;
index_t
stride_C
;
index_t
batch_stride_A
;
index_t
batch_stride_B
;
index_t
batch_stride_C
;
index_t
batch_count
;
CK_TILE_HOST
BatchedGemmHostArgs
()
=
default
;
CK_TILE_HOST
BatchedGemmHostArgs
(
const
void
*
a_ptr_
,
const
void
*
b_ptr_
,
void
*
c_ptr_
,
ck_tile
::
index_t
k_batch_
,
ck_tile
::
index_t
M_
,
ck_tile
::
index_t
N_
,
ck_tile
::
index_t
K_
,
ck_tile
::
index_t
stride_A_
,
ck_tile
::
index_t
stride_B_
,
ck_tile
::
index_t
stride_C_
,
ck_tile
::
index_t
batch_stride_A_
,
ck_tile
::
index_t
batch_stride_B_
,
ck_tile
::
index_t
batch_stride_C_
,
ck_tile
::
index_t
batch_count_
)
:
GemmHostArgs
(
a_ptr_
,
b_ptr_
,
c_ptr_
,
k_batch_
,
M_
,
N_
,
K_
,
stride_A_
,
stride_B_
,
stride_C_
),
batch_stride_A
(
batch_stride_A_
),
batch_stride_B
(
batch_stride_B_
),
batch_stride_C
(
batch_stride_C_
),
batch_count
(
batch_count_
)
{
}
ck_tile
::
index_t
batch_stride_A
;
ck_tile
::
index_t
batch_stride_B
;
ck_tile
::
index_t
batch_stride_C
;
ck_tile
::
index_t
batch_count
;
};
template
<
typename
TilePartitioner_
,
typename
GemmPipeline_
,
typename
EpiloguePipeline_
>
struct
BatchedGemmKernel
struct
BatchedGemmKernel
:
public
GemmKernel
<
TilePartitioner_
,
GemmPipeline_
,
EpiloguePipeline_
>
{
using
TilePartitioner
=
remove_cvref_t
<
TilePartitioner_
>
;
using
GemmPipeline
=
remove_cvref_t
<
GemmPipeline_
>
;
using
EpiloguePipeline
=
remove_cvref_t
<
EpiloguePipeline_
>
;
using
ALayout
=
remove_cvref_t
<
typename
GemmPipeline
::
ALayout
>
;
using
BLayout
=
remove_cvref_t
<
typename
GemmPipeline
::
BLayout
>
;
using
CLayout
=
remove_cvref_t
<
typename
GemmPipeline
::
CLayout
>
;
static
constexpr
index_t
KernelBlockSize
=
GemmPipeline
::
BlockSize
;
using
Base
=
GemmKernel
<
TilePartitioner_
,
GemmPipeline_
,
EpiloguePipeline_
>
;
using
GemmKernelArgs
=
typename
Base
::
GemmKernelArgs
;
using
ADataType
=
remove_cvref_t
<
typename
GemmPipelin
e
::
ADataType
>
;
using
BDataType
=
remove_cvref_t
<
typename
GemmPipelin
e
::
BDataType
>
;
using
CDataType
=
remove_cvref_t
<
typename
EpiloguePipelin
e
::
O
DataType
>
;
using
ADataType
=
typename
Bas
e
::
ADataType
;
using
BDataType
=
typename
Bas
e
::
BDataType
;
using
CDataType
=
typename
Bas
e
::
C
DataType
;
struct
BatchedGemmKargs
using
TilePartitioner
=
typename
Base
::
TilePartitioner
;
using
GemmPipeline
=
typename
Base
::
GemmPipeline
;
using
EpiloguePipeline
=
typename
Base
::
EpiloguePipeline
;
using
ALayout
=
typename
Base
::
ALayout
;
using
BLayout
=
typename
Base
::
BLayout
;
using
CLayout
=
typename
Base
::
CLayout
;
struct
BatchedGemmKernelArgs
:
GemmKernelArgs
{
const
void
*
a_ptr
;
const
void
*
b_ptr
;
void
*
c_ptr
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
stride_A
;
index_t
stride_B
;
index_t
stride_C
;
index_t
batch_stride_A
;
index_t
batch_stride_B
;
index_t
batch_stride_C
;
index_t
batch_count
;
};
using
Kargs
=
BatchedGemmKargs
;
using
Hargs
=
BatchedGemmHostArgs
;
using
KernelArgs
=
BatchedGemmKernelArgs
;
__host__
static
constexpr
auto
GridSize
(
const
Hargs
&
h
)
__host__
static
constexpr
auto
GridSize
(
index_t
M
,
index_t
N
,
index_t
KBatch
,
index_t
batch_count
)
{
return
TilePartitioner
::
GridSize
(
h
.
M
,
h
.
N
,
h
.
batch_count
);
return
TilePartitioner
::
GridSize
(
M
,
N
,
KBatch
*
batch_count
);
}
__host__
static
constexpr
auto
BlockSize
()
{
return
dim3
(
KernelBlockSize
);
}
__host__
static
constexpr
auto
BlockSize
()
{
return
dim3
(
Base
::
KernelBlockSize
);
}
CK_TILE_HOST
static
constexpr
BatchedGemmKargs
MakeKargs
(
const
Hargs
&
h
)
CK_TILE_HOST
static
constexpr
BatchedGemmKernelArgs
MakeKernelArgs
(
const
BatchedGemmHostArgs
&
hostArgs
)
{
Kargs
k
;
k
.
a_ptr
=
h
.
a_ptr
;
k
.
b_ptr
=
h
.
b_ptr
;
k
.
c_ptr
=
h
.
c_ptr
;
k
.
M
=
h
.
M
;
k
.
N
=
h
.
N
;
k
.
K
=
h
.
K
;
k
.
stride_A
=
h
.
stride_A
;
k
.
stride_B
=
h
.
stride_B
;
k
.
stride_C
=
h
.
stride_C
;
k
.
batch_stride_A
=
h
.
batch_stride_A
;
k
.
batch_stride_B
=
h
.
batch_stride_B
;
k
.
batch_stride_C
=
h
.
batch_stride_C
;
k
.
batch_count
=
h
.
batch_count
;
return
k
;
return
BatchedGemmKernelArgs
{{
hostArgs
.
a_ptr
,
hostArgs
.
b_ptr
,
hostArgs
.
c_ptr
,
hostArgs
.
M
,
hostArgs
.
N
,
hostArgs
.
K
,
hostArgs
.
stride_A
,
hostArgs
.
stride_B
,
hostArgs
.
stride_C
,
hostArgs
.
k_batch
},
hostArgs
.
batch_stride_A
,
hostArgs
.
batch_stride_B
,
hostArgs
.
batch_stride_C
,
hostArgs
.
batch_count
};
}
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
...
...
@@ -94,164 +99,41 @@ struct BatchedGemmKernel
return
max
(
GemmPipeline
::
GetSmemSize
(),
EpiloguePipeline
::
GetSmemSize
());
}
CK_TILE_DEVICE
void
operator
()(
Ka
rgs
kargs
)
const
CK_TILE_DEVICE
void
operator
()(
BatchedGemmKernelA
rgs
kargs
)
const
{
const
auto
[
i_m
,
i_n
]
=
TilePartitioner
{}();
const
auto
i_batch
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
);
const
auto
i_batch
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
/
kargs
.
KBatch
);
const
auto
i_k
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
-
i_batch
*
kargs
.
KBatch
);
const
typename
Base
::
SplitKBatchOffset
splitk_batch_offset
(
kargs
,
i_k
);
// options
const
auto
batch_stride_A
=
__builtin_amdgcn_readfirstlane
(
kargs
.
batch_stride_A
);
const
auto
batch_offset_A
=
__builtin_amdgcn_readfirstlane
(
i_batch
*
batch_stride_A
);
const
ADataType
*
a_start
=
static_cast
<
const
ADataType
*>
(
kargs
.
a_ptr
);
const
ADataType
*
a_ptr
=
static_cast
<
const
ADataType
*>
(
kargs
.
a_ptr
)
+
batch_offset_A
+
splitk_batch_offset
.
a_k_split_offset
;
const
auto
batch_stride_B
=
__builtin_amdgcn_readfirstlane
(
kargs
.
batch_stride_B
);
const
auto
batch_offset_B
=
__builtin_amdgcn_readfirstlane
(
i_batch
*
batch_stride_B
);
const
BDataType
*
b_start
=
static_cast
<
const
BDataType
*>
(
kargs
.
b_ptr
);
// Convert pointers to tensor views
auto
a_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
a_start
+
batch_offset_A
,
make_tuple
(
kargs
.
M
,
kargs
.
K
),
make_tuple
(
kargs
.
stride_A
,
1
),
number
<
GemmPipeline
::
VectorSizeA
>
{},
number
<
1
>
{});
}
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
a_start
+
batch_offset_A
,
make_tuple
(
kargs
.
M
,
kargs
.
K
),
make_tuple
(
1
,
kargs
.
stride_A
),
number
<
1
>
{},
number
<
1
>
{});
}
}();
auto
b_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
b_start
+
batch_offset_B
,
make_tuple
(
kargs
.
N
,
kargs
.
K
),
make_tuple
(
1
,
kargs
.
stride_B
),
number
<
1
>
{},
number
<
1
>
{});
}
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
b_start
+
batch_offset_B
,
make_tuple
(
kargs
.
N
,
kargs
.
K
),
make_tuple
(
kargs
.
stride_B
,
1
),
number
<
GemmPipeline
::
VectorSizeB
>
{},
number
<
1
>
{});
}
}();
auto
a_pad_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
pad_tensor_view
(
a_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kK
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadK
>
{});
}
else
{
return
pad_tensor_view
(
a_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kK
>
{}),
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
}
}();
// clang-format on
auto
a_block_window
=
make_tile_window
(
a_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kK
>
{}),
{
i_m
,
0
});
auto
b_pad_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
)
{
return
pad_tensor_view
(
b_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kN
>
{},
number
<
TilePartitioner
::
kK
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadK
>
{});
}
else
{
return
pad_tensor_view
(
b_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kN
>
{},
number
<
TilePartitioner
::
kK
>
{}),
sequence
<
GemmPipeline
::
kPadN
,
false
>
{});
}
}();
// clang-format on
auto
b_block_window
=
make_tile_window
(
b_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
kN
>
{},
number
<
TilePartitioner
::
kK
>
{}),
{
i_n
,
0
});
// allocate LDS
__shared__
char
smem_ptr
[
GetSmemSize
()];
const
index_t
num_loop
=
TilePartitioner
::
GetLoopNum
(
kargs
.
K
);
// Run GEMM cooperatively by whole wokrgroup.
auto
c_block_tile
=
GemmPipeline
{}.
template
operator
()(
a_block_window
,
b_block_window
,
num_loop
,
smem_ptr
);
const
BDataType
*
b_ptr
=
static_cast
<
const
BDataType
*>
(
kargs
.
b_ptr
)
+
batch_offset_B
+
splitk_batch_offset
.
b_k_split_offset
;
const
auto
batch_stride_C
=
__builtin_amdgcn_readfirstlane
(
kargs
.
batch_stride_C
);
const
auto
batch_offset_C
=
__builtin_amdgcn_readfirstlane
(
i_batch
*
batch_stride_C
);
CDataType
*
c_start
=
static_cast
<
CDataType
*>
(
kargs
.
c_ptr
);
auto
c_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
c_start
+
batch_offset_C
,
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
kargs
.
stride_C
,
1
),
number
<
GemmPipeline
::
VectorSizeC
>
{},
number
<
1
>
{});
}
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
c_start
+
batch_offset_C
,
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
1
,
kargs
.
stride_C
),
number
<
1
>
{},
number
<
1
>
{});
}
}();
CDataType
*
c_ptr
=
static_cast
<
CDataType
*>
(
kargs
.
c_ptr
)
+
batch_offset_C
;
auto
c_pad_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
pad_tensor_view
(
c_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kN
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadN
>
{});
}
else
{
return
pad_tensor_view
(
c_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kN
>
{}),
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
}
}();
auto
c_block_window
=
make_tile_window
(
c_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kN
>
{}),
{
i_m
,
i_n
});
// allocate LDS
__shared__
char
smem_ptr
[
GetSmemSize
()];
EpiloguePipeline
{}(
c_block_window
,
c_block_tile
);
if
(
kargs
.
KBatch
==
1
)
{
this
->
RunGemm
(
a_ptr
,
b_ptr
,
c_ptr
,
smem_ptr
,
kargs
,
splitk_batch_offset
,
i_m
,
i_n
);
}
else
{
this
->
template
RunGemm
<
memory_operation_enum
::
atomic_add
>(
a_ptr
,
b_ptr
,
c_ptr
,
smem_ptr
,
kargs
,
splitk_batch_offset
,
i_m
,
i_n
);
}
}
};
...
...
include/ck_tile/ops/gemm/kernel/gemm_kernel.hpp
View file @
efab74a3
...
...
@@ -12,6 +12,50 @@
namespace
ck_tile
{
struct
GemmProblem
{
CK_TILE_HOST
GemmProblem
()
=
default
;
CK_TILE_HOST
GemmProblem
(
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
stride_A_
,
index_t
stride_B_
,
index_t
stride_C_
)
:
M
(
M_
),
N
(
N_
),
K
(
K_
),
stride_A
(
stride_A_
),
stride_B
(
stride_B_
),
stride_C
(
stride_C_
)
{
}
index_t
M
;
index_t
N
;
index_t
K
;
index_t
stride_A
;
index_t
stride_B
;
index_t
stride_C
;
};
struct
GemmHostArgs
:
public
GemmProblem
{
CK_TILE_HOST
GemmHostArgs
()
=
default
;
CK_TILE_HOST
GemmHostArgs
(
const
void
*
a_ptr_
,
const
void
*
b_ptr_
,
void
*
c_ptr_
,
index_t
k_batch_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
stride_A_
,
index_t
stride_B_
,
index_t
stride_C_
)
:
GemmProblem
(
M_
,
N_
,
K_
,
stride_A_
,
stride_B_
,
stride_C_
),
a_ptr
(
a_ptr_
),
b_ptr
(
b_ptr_
),
c_ptr
(
c_ptr_
),
k_batch
(
k_batch_
)
{
}
const
void
*
a_ptr
;
const
void
*
b_ptr
;
void
*
c_ptr
;
index_t
k_batch
;
};
template
<
typename
TilePartitioner_
,
typename
GemmPipeline_
,
typename
EpiloguePipeline_
>
struct
GemmKernel
{
...
...
@@ -25,9 +69,12 @@ struct GemmKernel
using
ADataType
=
remove_cvref_t
<
typename
GemmPipeline
::
ADataType
>
;
using
BDataType
=
remove_cvref_t
<
typename
GemmPipeline
::
BDataType
>
;
// using CAccDataType = remove_cvref_t<typename GemmPipeline::CDataType>;
using
CDataType
=
remove_cvref_t
<
typename
EpiloguePipeline
::
ODataType
>
;
static
constexpr
auto
I0
=
number
<
0
>
();
static
constexpr
auto
I1
=
number
<
1
>
();
static
constexpr
auto
I2
=
number
<
2
>
();
__host__
static
constexpr
auto
GridSize
(
index_t
M
,
index_t
N
,
index_t
KBatch
)
{
return
TilePartitioner
::
GridSize
(
M
,
N
,
KBatch
);
...
...
@@ -35,7 +82,7 @@ struct GemmKernel
__host__
static
constexpr
auto
BlockSize
()
{
return
dim3
(
KernelBlockSize
);
}
struct
Gemm
CommonKa
rgs
struct
Gemm
KernelA
rgs
{
const
void
*
a_ptr
;
const
void
*
b_ptr
;
...
...
@@ -46,19 +93,21 @@ struct GemmKernel
index_t
stride_A
;
index_t
stride_B
;
index_t
stride_C
;
index_t
KBatch
;
};
CK_TILE_HOST
static
constexpr
GemmCommonKargs
MakeKargs
(
const
void
*
a_ptr
,
const
void
*
b_ptr
,
void
*
c_ptr
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
stride_A
,
index_t
stride_B
,
index_t
stride_C
)
CK_TILE_HOST
static
constexpr
GemmKernelArgs
MakeKernelArgs
(
const
GemmHostArgs
&
hostArgs
)
{
return
GemmCommonKargs
{
a_ptr
,
b_ptr
,
c_ptr
,
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
};
return
GemmKernelArgs
{
hostArgs
.
a_ptr
,
hostArgs
.
b_ptr
,
hostArgs
.
c_ptr
,
hostArgs
.
M
,
hostArgs
.
N
,
hostArgs
.
K
,
hostArgs
.
stride_A
,
hostArgs
.
stride_B
,
hostArgs
.
stride_C
,
hostArgs
.
k_batch
};
}
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
...
...
@@ -66,8 +115,63 @@ struct GemmKernel
return
max
(
GemmPipeline
::
GetSmemSize
(),
EpiloguePipeline
::
GetSmemSize
());
}
CK_TILE_HOST
static
bool
IsSupportedArgument
(
const
GemmCommonKargs
&
kargs
)
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
const
GemmKernelArgs
&
kargs
,
const
std
::
size_t
k_id
=
blockIdx
.
z
)
{
constexpr
auto
K1
=
TilePartitioner
::
BlockGemmShape
::
WarpTile
::
at
(
number
<
2
>
{});
const
index_t
K_t
=
kargs
.
KBatch
*
K1
;
const
index_t
KRead
=
(
kargs
.
K
+
K_t
-
1
)
/
K_t
*
K1
;
if
constexpr
(
std
::
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
KRead
;
}
else
if
constexpr
(
std
::
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
KRead
*
kargs
.
stride_A
;
}
if
constexpr
(
std
::
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
k_id
*
KRead
*
kargs
.
stride_B
;
}
else
if
constexpr
(
std
::
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
b_k_split_offset
=
k_id
*
KRead
;
}
if
(
k_id
<
static_cast
<
uint32_t
>
(
kargs
.
KBatch
-
1
))
{
splitted_k
=
KRead
;
}
else
{
splitted_k
=
kargs
.
K
-
KRead
*
(
kargs
.
KBatch
-
1
);
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
index_t
splitted_k
;
};
CK_TILE_HOST
static
bool
IsSupportedArgument
(
const
GemmKernelArgs
&
kargs
)
{
constexpr
bool
is_output_c_reg_transposed
=
EpiloguePipeline
::
IsOutputTransposed
()
!=
GemmPipeline
::
IsTransposeC
();
if
constexpr
(
!
((
GemmPipeline
::
VectorSizeC
%
2
==
0
&&
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_output_c_reg_transposed
)
||
!
(
std
::
is_same_v
<
CDataType
,
fp16_t
>
||
std
::
is_same_v
<
CDataType
,
bf16_t
>
)))
{
if
(
kargs
.
KBatch
!=
1
)
{
return
false
;
}
}
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
if
(
kargs
.
K
%
TilePartitioner
::
kK
!=
0
&&
GemmPipeline
::
kPadK
==
false
)
...
...
@@ -139,19 +243,19 @@ struct GemmKernel
return
true
;
}
CK_TILE_DEVICE
void
operator
()(
GemmCommonKargs
kargs
)
const
template
<
memory_operation_enum
DstInMemOp
=
memory_operation_enum
::
set
>
CK_TILE_DEVICE
static
auto
MakeGemmTensorViews
(
const
ADataType
*
a_ptr
,
const
BDataType
*
b_ptr
,
CDataType
*
c_ptr
,
const
GemmKernelArgs
&
kargs
,
const
SplitKBatchOffset
&
splitk_batch_offset
)
{
const
auto
[
i_m
,
i_n
]
=
TilePartitioner
{}();
// options
const
ADataType
*
a_start
=
static_cast
<
const
ADataType
*>
(
kargs
.
a_ptr
);
const
BDataType
*
b_start
=
static_cast
<
const
BDataType
*>
(
kargs
.
b_ptr
);
// Convert pointers to tensor views
auto
a_tensor_view
=
[
&
]()
{
const
auto
&
a_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
a_
start
,
make_tuple
(
kargs
.
M
,
kargs
.
K
),
a_
ptr
,
make_tuple
(
kargs
.
M
,
splitk_batch_offset
.
splitted_k
),
make_tuple
(
kargs
.
stride_A
,
1
),
number
<
GemmPipeline
::
VectorSizeA
>
{},
number
<
1
>
{});
...
...
@@ -159,20 +263,20 @@ struct GemmKernel
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
a_
start
,
make_tuple
(
kargs
.
M
,
kargs
.
K
),
a_
ptr
,
make_tuple
(
kargs
.
M
,
splitk_batch_offset
.
splitted_k
),
make_tuple
(
1
,
kargs
.
stride_A
),
number
<
1
>
{},
number
<
1
>
{});
}
}();
auto
b_tensor_view
=
[
&
]()
{
const
auto
&
b_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
b_
start
,
make_tuple
(
kargs
.
N
,
kargs
.
K
),
b_
ptr
,
make_tuple
(
kargs
.
N
,
splitk_batch_offset
.
splitted_k
),
make_tuple
(
1
,
kargs
.
stride_B
),
number
<
1
>
{},
number
<
1
>
{});
...
...
@@ -180,15 +284,43 @@ struct GemmKernel
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
b_
start
,
make_tuple
(
kargs
.
N
,
kargs
.
K
),
b_
ptr
,
make_tuple
(
kargs
.
N
,
splitk_batch_offset
.
splitted_k
),
make_tuple
(
kargs
.
stride_B
,
1
),
number
<
GemmPipeline
::
VectorSizeB
>
{},
number
<
1
>
{});
}
}();
auto
a_pad_view
=
[
&
]()
{
const
auto
&
c_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
,
DstInMemOp
>
(
c_ptr
,
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
kargs
.
stride_C
,
1
),
number
<
GemmPipeline
::
VectorSizeC
>
{},
number
<
1
>
{});
}
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
,
DstInMemOp
>
(
c_ptr
,
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
1
,
kargs
.
stride_C
),
number
<
1
>
{},
number
<
1
>
{});
}
}();
return
make_tuple
(
a_tensor_view
,
b_tensor_view
,
c_tensor_view
);
}
template
<
typename
TensorView
>
CK_TILE_DEVICE
static
auto
MakeGemmPadViews
(
const
TensorView
&
views
)
{
const
auto
&
a_pad_view
=
[
&
]()
{
const
auto
&
a_tensor_view
=
views
.
at
(
I0
);
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
pad_tensor_view
(
...
...
@@ -204,14 +336,9 @@ struct GemmKernel
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
}
}();
// clang-format on
auto
a_block_window
=
make_tile_window
(
a_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kK
>
{}),
{
i_m
,
0
});
auto
b_pad_view
=
[
&
]()
{
const
auto
&
b_pad_view
=
[
&
]()
{
const
auto
&
b_tensor_view
=
views
.
at
(
I1
);
if
constexpr
(
std
::
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
)
{
return
pad_tensor_view
(
...
...
@@ -228,43 +355,8 @@ struct GemmKernel
}
}();
auto
b_block_window
=
make_tile_window
(
b_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
kN
>
{},
number
<
TilePartitioner
::
kK
>
{}),
{
i_n
,
0
});
// allocate LDS
__shared__
char
smem_ptr
[
GetSmemSize
()];
const
index_t
num_loop
=
TilePartitioner
::
GetLoopNum
(
kargs
.
K
);
// Run GEMM cooperatively by whole wokrgroup.
auto
c_block_tile
=
GemmPipeline
{}.
template
operator
()(
a_block_window
,
b_block_window
,
num_loop
,
smem_ptr
);
CDataType
*
c_start
=
static_cast
<
CDataType
*>
(
kargs
.
c_ptr
);
auto
c_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
c_start
,
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
kargs
.
stride_C
,
1
),
number
<
GemmPipeline
::
VectorSizeC
>
{},
number
<
1
>
{});
}
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
c_start
,
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
1
,
kargs
.
stride_C
),
number
<
1
>
{},
number
<
1
>
{});
}
}();
auto
c_pad_view
=
[
&
]()
{
const
auto
&
c_pad_view
=
[
&
]()
{
const
auto
&
c_tensor_view
=
views
.
at
(
I2
);
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
pad_tensor_view
(
...
...
@@ -280,12 +372,111 @@ struct GemmKernel
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
}
}();
auto
CBlockWindow_pad
=
make_tile_window
(
return
make_tuple
(
a_pad_view
,
b_pad_view
,
c_pad_view
);
}
template
<
typename
PadView
>
CK_TILE_DEVICE
static
auto
MakeGemmTileWindows
(
const
PadView
&
views
,
const
index_t
i_m
,
const
index_t
i_n
)
{
const
auto
&
a_pad_view
=
views
.
at
(
I0
);
const
auto
&
a_block_window
=
make_tile_window
(
a_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kK
>
{}),
{
i_m
,
0
});
const
auto
&
b_pad_view
=
views
.
at
(
I1
);
const
auto
&
b_block_window
=
make_tile_window
(
b_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
kN
>
{},
number
<
TilePartitioner
::
kK
>
{}),
{
i_n
,
0
});
const
auto
&
c_pad_view
=
views
.
at
(
I2
);
auto
c_block_window
=
make_tile_window
(
c_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kN
>
{}),
{
i_m
,
i_n
});
EpiloguePipeline
{}(
CBlockWindow_pad
,
c_block_tile
);
return
make_tuple
(
a_block_window
,
b_block_window
,
c_block_window
);
}
/**
* @brief Runs single GEMM problem cooperatively by whole workgroup.
*
* @param a_ptr input A pointer
* @param b_ptr input B pointer
* @param c_ptr output C pointer
* @param kargs GEMM kernel arguments
* @param block_idx_m The GEMM's output M dimension tile index processed by this workgroup.
* @param block_idx_n The GEMM's output N dimension tile index processed by this workgroup.
*
* @tparam DstInMemOp Destination memory operation (default: set).
*/
template
<
memory_operation_enum
DstInMemOp
=
memory_operation_enum
::
set
>
CK_TILE_DEVICE
static
void
RunGemm
(
const
ADataType
*
a_ptr
,
const
BDataType
*
b_ptr
,
CDataType
*
c_ptr
,
void
*
smem_ptr
,
const
GemmKernelArgs
&
kargs
,
const
SplitKBatchOffset
&
splitk_batch_offset
,
const
index_t
block_idx_m
,
const
index_t
block_idx_n
)
{
// Create Gemm tensor views, pad views and tile windows
const
auto
&
gemm_tensor_views_tuple
=
MakeGemmTensorViews
<
DstInMemOp
>
(
a_ptr
,
b_ptr
,
c_ptr
,
kargs
,
splitk_batch_offset
);
;
const
auto
&
gemm_pad_views
=
MakeGemmPadViews
(
gemm_tensor_views_tuple
);
auto
gemm_tile_windows
=
MakeGemmTileWindows
(
gemm_pad_views
,
block_idx_m
,
block_idx_n
);
const
index_t
num_loop
=
TilePartitioner
::
GetLoopNum
(
splitk_batch_offset
.
splitted_k
);
// Run GEMM cooperatively by whole workgroup.
const
auto
&
a_block_window
=
gemm_tile_windows
.
at
(
I0
);
const
auto
&
b_block_window
=
gemm_tile_windows
.
at
(
I1
);
const
auto
&
c_block_tile
=
GemmPipeline
{}.
template
operator
()(
a_block_window
,
b_block_window
,
num_loop
,
smem_ptr
);
// Run Epilogue Pipeline
auto
&
c_block_window
=
gemm_tile_windows
.
at
(
I2
);
constexpr
bool
is_output_c_reg_transposed
=
EpiloguePipeline
::
IsOutputTransposed
()
!=
GemmPipeline
::
IsTransposeC
();
if
constexpr
((
DstInMemOp
==
memory_operation_enum
::
set
)
||
(
sizeof
(
CDataType
)
>
2
)
||
(
GemmPipeline
::
VectorSizeC
%
2
==
0
&&
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_output_c_reg_transposed
))
{
EpiloguePipeline
{}
.
template
operator
()
<
decltype
(
c_block_window
),
decltype
(
c_block_tile
),
DstInMemOp
>(
c_block_window
,
c_block_tile
);
}
}
CK_TILE_DEVICE
void
operator
()(
GemmKernelArgs
kargs
)
const
{
const
auto
[
i_m
,
i_n
]
=
TilePartitioner
{}();
const
SplitKBatchOffset
splitk_batch_offset
(
kargs
);
// options
const
ADataType
*
a_ptr
=
static_cast
<
const
ADataType
*>
(
kargs
.
a_ptr
)
+
splitk_batch_offset
.
a_k_split_offset
;
const
BDataType
*
b_ptr
=
static_cast
<
const
BDataType
*>
(
kargs
.
b_ptr
)
+
splitk_batch_offset
.
b_k_split_offset
;
CDataType
*
c_ptr
=
static_cast
<
CDataType
*>
(
kargs
.
c_ptr
);
// allocate LDS
__shared__
char
smem_ptr
[
GetSmemSize
()];
if
(
kargs
.
KBatch
==
1
)
{
RunGemm
(
a_ptr
,
b_ptr
,
c_ptr
,
smem_ptr
,
kargs
,
splitk_batch_offset
,
i_m
,
i_n
);
}
else
{
RunGemm
<
memory_operation_enum
::
atomic_add
>
(
a_ptr
,
b_ptr
,
c_ptr
,
smem_ptr
,
kargs
,
splitk_batch_offset
,
i_m
,
i_n
);
}
}
};
...
...
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_comp_v3.hpp
View file @
efab74a3
...
...
@@ -82,6 +82,8 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
IsTransposeC
()
{
return
Policy
::
IsTransposeC
();
}
template
<
GemmPipelineScheduler
Scheduler
>
struct
PipelineImpl
:
public
PipelineImplBase
{
...
...
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_mem.hpp
View file @
efab74a3
...
...
@@ -104,9 +104,10 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
using
CLayout
=
remove_cvref_t
<
typename
Problem
::
CLayout
>
;
using
BlockGemm
=
remove_cvref_t
<
decltype
(
Policy
::
template
GetBlockGemm
<
Problem
>())
>
;
using
I0
=
number
<
0
>
;
using
I1
=
number
<
1
>
;
using
I2
=
number
<
2
>
;
using
I0
=
number
<
0
>
;
using
I1
=
number
<
1
>
;
using
I2
=
number
<
2
>
;
static
constexpr
index_t
MPerBlock
=
BlockGemmShape
::
kM
;
static
constexpr
index_t
NPerBlock
=
BlockGemmShape
::
kN
;
...
...
@@ -132,6 +133,8 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
IsTransposeC
()
{
return
Policy
::
IsTransposeC
();
}
template
<
GemmPipelineScheduler
Scheduler
>
struct
PipelineImpl
:
public
PipelineImplBase
{
...
...
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1.hpp
View file @
efab74a3
...
...
@@ -23,6 +23,8 @@ struct GemmPipelineAGmemBGmemCRegV1
using
BLayout
=
remove_cvref_t
<
typename
Problem
::
BLayout
>
;
using
CLayout
=
remove_cvref_t
<
typename
Problem
::
CLayout
>
;
using
BlockGemm
=
remove_cvref_t
<
decltype
(
Policy
::
template
GetBlockGemm
<
Problem
>())
>
;
static
constexpr
index_t
BlockSize
=
Problem
::
kBlockSize
;
static
constexpr
index_t
kMPerBlock
=
BlockGemmShape
::
kM
;
...
...
@@ -53,6 +55,8 @@ struct GemmPipelineAGmemBGmemCRegV1
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
IsTransposeC
()
{
return
Policy
::
IsTransposeC
();
}
template
<
typename
ADramBlockWindowTmp
,
typename
BDramBlockWindowTmp
,
typename
AElementFunction
,
...
...
@@ -124,7 +128,7 @@ struct GemmPipelineAGmemBGmemCRegV1
b_lds_block
,
make_tuple
(
number
<
kNPerBlock
>
{},
number
<
kKPerBlock
>
{}),
{
0
,
0
});
// Block GEMM
auto
block_gemm
=
Policy
::
template
GetBlockGemm
<
Problem
>
();
auto
block_gemm
=
BlockGemm
();
// Acc register tile
auto
c_block_tile
=
decltype
(
block_gemm
(
a_lds_gemm_window
,
b_lds_gemm_window
)){};
...
...
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1_default_policy.hpp
View file @
efab74a3
...
...
@@ -12,6 +12,11 @@ namespace ck_tile {
// Default policy class should not be templated, put template on member functions instead
struct
GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{
static
constexpr
auto
I0
=
number
<
0
>
{};
static
constexpr
auto
I1
=
number
<
1
>
{};
static
constexpr
auto
I2
=
number
<
2
>
{};
static
constexpr
bool
TransposeC
=
true
;
#if 0
// 2d
...
...
@@ -114,8 +119,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{
constexpr
index_t
smem_size_a
=
GetSmemSizeA
<
Problem
>
();
constexpr
index_t
smem_size_b
=
GetSmemSizeB
<
Problem
>
();
index_t
smem_size
=
0
;
smem_size
+=
smem_size_a
+
smem_size_b
;
constexpr
index_t
smem_size
=
smem_size_a
+
smem_size_b
;
return
smem_size
;
}
...
...
@@ -485,14 +489,11 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
}
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
IsTransposeC
()
{
return
TransposeC
;
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockGemm
()
{
constexpr
bool
TransposeC
=
false
;
constexpr
auto
I0
=
number
<
0
>
{};
constexpr
auto
I1
=
number
<
1
>
{};
constexpr
auto
I2
=
number
<
2
>
{};
using
AccDataType
=
float
;
using
BlockWarps
=
typename
Problem
::
BlockGemmShape
::
BlockWarps
;
using
WarpTile
=
typename
Problem
::
BlockGemmShape
::
WarpTile
;
...
...
include/ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v2.hpp
View file @
efab74a3
...
...
@@ -36,6 +36,8 @@ struct GemmPipelineAGmemBGmemCRegV2
Policy
::
template
MakeBLdsBlockDescriptor
<
Problem
>().
get_element_space_size
();
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
IsTransposeC
()
{
return
Policy
::
IsTransposeC
();
}
template
<
typename
ADramBlockWindowTmp
,
typename
BDramBlockWindowTmp
,
typename
AElementFunction
,
...
...
Prev
1
…
6
7
8
9
10
11
12
13
14
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment