Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ef326c73
Commit
ef326c73
authored
Nov 19, 2024
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migraphx-update
parents
b7775add
e4dfe4d8
Changes
511
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3848 additions
and
0 deletions
+3848
-0
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
...ple/23_elementwise_transpose/elementwise_transpose_3d.cpp
+140
-0
client_example/24_grouped_conv_activation/CMakeLists.txt
client_example/24_grouped_conv_activation/CMakeLists.txt
+102
-0
client_example/24_grouped_conv_activation/grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
...bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
+217
-0
client_example/24_grouped_conv_activation/grouped_convnd_bwd_data_scale/grouped_conv_bwd_data_scale_fp16.cpp
...onvnd_bwd_data_scale/grouped_conv_bwd_data_scale_fp16.cpp
+216
-0
client_example/24_grouped_conv_activation/grouped_convnd_bwd_weight_bilinear/grouped_conv_bwd_weight_bilinear_residual_fp16.cpp
...linear/grouped_conv_bwd_weight_bilinear_residual_fp16.cpp
+226
-0
client_example/24_grouped_conv_activation/grouped_convnd_bwd_weight_scale/grouped_conv_bwd_weight_scale_fp16.cpp
...d_bwd_weight_scale/grouped_conv_bwd_weight_scale_fp16.cpp
+226
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
..._fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
+221
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convinvscale/common.hpp
...onv_activation/grouped_convnd_fwd_convinvscale/common.hpp
+316
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
...d_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
+50
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/common.hpp
...d_conv_activation/grouped_convnd_fwd_convscale/common.hpp
+316
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8.cpp
...grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8.cpp
+50
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8_fp8.cpp
...ped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8_fp8.cpp
+50
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
...grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
+50
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
...ped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
+50
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_add/common.hpp
...nv_activation/grouped_convnd_fwd_convscale_add/common.hpp
+302
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_add/conv3d_fwd_convscale_add_fp8.cpp
...convnd_fwd_convscale_add/conv3d_fwd_convscale_add_fp8.cpp
+50
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/common.hpp
...activation/grouped_convnd_fwd_convscale_reduce/common.hpp
+834
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp
...nd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp
+58
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp
...d_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp
+58
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_relu/common.hpp
...v_activation/grouped_convnd_fwd_convscale_relu/common.hpp
+316
-0
No files found.
Too many changes to show.
To preserve performance only
511 of 511+
files are displayed.
Plain diff
Email patch
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose_3d.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
const
int
N
=
16
;
const
int
C
=
8
;
const
int
D
=
8
;
const
int
H
=
8
;
const
int
W
=
8
;
std
::
vector
<
std
::
size_t
>
ncdhw
=
{
N
,
C
,
D
,
H
,
W
};
std
::
vector
<
std
::
size_t
>
nchwd
=
{
N
,
C
,
H
,
W
,
D
};
auto
size
=
N
*
C
*
D
*
H
*
W
;
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
{
N
,
C
,
H
,
W
,
D
};
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
C
*
D
*
H
*
W
,
H
*
W
,
W
,
1
,
D
*
H
*
W
};
// N, C, D, H, W
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
// N, C, H, W, D
SimpleDeviceMem
a_dev_buf
(
sizeof
(
ADataType
)
*
size
);
SimpleDeviceMem
b_dev_buf
(
sizeof
(
BDataType
)
*
size
);
std
::
array
<
const
void
*
,
1
>
input
=
{
a_dev_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_dev_buf
.
GetDeviceBuffer
()};
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
PassThrough
,
5
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceElementwisePermuteInstance
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])
+
sizeof
(
BDataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]);
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
found
)
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/24_grouped_conv_activation/CMakeLists.txt
0 → 100644
View file @
ef326c73
if
(
GPU_TARGETS MATCHES
"gfx9"
)
# Fwd scaleadd scaleadd relu
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd scaleadd AB
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp32
grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp16
grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_bf16
grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_int8
grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd bilinear
add_executable
(
client_grouped_convnd_fwd_bilinear_residual_fp16
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convinvscale
add_executable
(
client_conv3d_fwd_convinvscale_fp8
grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convinvscale_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convscale + Bias
add_executable
(
client_conv3d_fwd_convscale_add_fp8
grouped_convnd_fwd_convscale_add/conv3d_fwd_convscale_add_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_add_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convscale + ReLU
add_executable
(
client_conv3d_fwd_convscale_relu_fp8
grouped_convnd_fwd_convscale_relu/conv3d_fwd_convscale_relu_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_relu_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convscale + ReLU + AMAX
add_executable
(
client_conv3d_fwd_convscale_relu_amax_fp8
grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_relu_amax_fp8
PRIVATE composable_kernel::device_conv_operations
composable_kernel::device_other_operations
composable_kernel::device_reduction_operations
utility
)
# Fwd convscale + AMAX
add_executable
(
client_conv3d_fwd_convscale_amax_fp8
grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_amax_fp8
PRIVATE composable_kernel::device_conv_operations
composable_kernel::device_other_operations
composable_kernel::device_reduction_operations
utility
)
# Fwd convscale
add_executable
(
client_conv3d_fwd_convscale_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_fp8 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_conv3d_fwd_convscale_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_bf8 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_conv3d_fwd_convscale_fp8_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_fp8_bf8 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_conv3d_fwd_convscale_bf8_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_bf8_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Bwd data bilinear
add_executable
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Bwd weight bilinear
add_executable
(
client_grouped_convnd_bwd_weight_bilinear_residual_fp16
grouped_convnd_bwd_weight_bilinear/grouped_conv_bwd_weight_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_bwd_weight_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Fwd scale
add_executable
(
client_grouped_convnd_fwd_scale_fp16
grouped_convnd_fwd_scale/grouped_conv_fwd_scale_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scale_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Bwd data scale
add_executable
(
client_grouped_convnd_bwd_data_scale_fp16
grouped_convnd_bwd_data_scale/grouped_conv_bwd_data_scale_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_bwd_data_scale_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Bwd weight scale
add_executable
(
client_grouped_convnd_bwd_weight_scale_fp16
grouped_convnd_bwd_weight_scale/grouped_conv_bwd_weight_scale_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_bwd_weight_scale_fp16 PRIVATE composable_kernel::device_conv_operations
)
endif
()
client_example/24_grouped_conv_activation/grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data_bilinear.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
half_t
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_bwd_data_bilinear
()
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<
InLayout
>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<
InDataType
>
,
InDataType
,
PassThrough
,
PassThrough
,
Bilinear
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
in
.
GetDeviceBuffer
()},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{
in_lengths
},
{
in_strides
},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Y
*
X
+
3
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
;
std
::
size_t
num_bytes
=
2
*
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
in
.
GetDeviceBuffer
()},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{
in_lengths
},
{
in_strides
},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
int
main
()
{
return
execute_conv_bwd_data_bilinear
();
}
client_example/24_grouped_conv_activation/grouped_convnd_bwd_data_scale/grouped_conv_bwd_data_scale_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data_scale.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
half_t
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_bwd_data_scale
()
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
InDataType
,
PassThrough
,
PassThrough
,
Scale
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Scale
{
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Y
*
X
+
3
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
;
std
::
size_t
num_bytes
=
2
*
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Scale
{
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
int
main
()
{
return
execute_conv_bwd_data_scale
();
}
client_example/24_grouped_conv_activation/grouped_convnd_bwd_weight_bilinear/grouped_conv_bwd_weight_bilinear_residual_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight_bilinear.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
32
;
// batch size
static
constexpr
ck
::
index_t
K
=
32
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_bwd_weight_bilinear
()
{
constexpr
ck
::
index_t
split_k
=
2
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeightMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
ck
::
Tuple
<
WeiLayout
>
,
InDataType
,
WeiDataType
,
OutDataType
,
ck
::
Tuple
<
WeiDataType
>
,
PassThrough
,
Bilinear
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out
.
GetDeviceBuffer
()),
{
wei
.
GetDeviceBuffer
()},
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
out_lengths
,
out_strides
,
{
wei_lengths
},
{
wei_strides
},
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
},
PassThrough
{},
split_k
);
SimpleDeviceMem
workspace_buf
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_buf
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Y
*
X
+
3
*
G
*
K
*
Z
*
Y
*
X
*
C
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
+
2
*
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out
.
GetDeviceBuffer
()),
{
wei
.
GetDeviceBuffer
()},
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
out_lengths
,
out_strides
,
{
wei_lengths
},
{
wei_strides
},
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
},
PassThrough
{},
split_k
);
SimpleDeviceMem
workspace_buf
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_buf
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
int
main
()
{
return
execute_conv_bwd_weight_bilinear
();
}
client_example/24_grouped_conv_activation/grouped_convnd_bwd_weight_scale/grouped_conv_bwd_weight_scale_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight_scale.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
32
;
// batch size
static
constexpr
ck
::
index_t
K
=
32
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_bwd_weight_scale
()
{
constexpr
ck
::
index_t
split_k
=
2
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeightMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
ck
::
Tuple
<>
,
InDataType
,
WeiDataType
,
OutDataType
,
ck
::
Tuple
<>
,
PassThrough
,
Scale
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out
.
GetDeviceBuffer
()),
{},
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
out_lengths
,
out_strides
,
{},
{},
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
Scale
{
2.
f
},
PassThrough
{},
split_k
);
SimpleDeviceMem
workspace_buf
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_buf
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Y
*
X
+
G
*
K
*
Z
*
Y
*
X
*
C
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out
.
GetDeviceBuffer
()),
{},
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
out_lengths
,
out_strides
,
{},
{},
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
Scale
{
2.
f
},
PassThrough
{},
split_k
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
SimpleDeviceMem
workspace_buf
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_buf
.
GetDeviceBuffer
());
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
int
main
()
{
return
execute_conv_bwd_weight_scale
();
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_bilinear.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
half_t
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_fwd_bilinear
()
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std
::
array
<
ck
::
index_t
,
6
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
6
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
6
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
6
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
// Logical broadcast bias (we have to pass bias lengths in the same format as output - GNKDHW)
std
::
array
<
ck
::
index_t
,
6
>
bias_lengths
{
G
,
1
,
K
,
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
6
>
bias_strides
{
K
,
0
,
1
,
0
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
OutDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
Bilinear
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
out
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{
out_lengths
},
{
out_strides
},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
+
3
*
N
*
Ho
*
Wo
*
G
*
K
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
2
*
N
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
out
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{
out_lengths
},
{
out_strides
},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
int
main
()
{
return
execute_conv_fwd_bilinear
();
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convinvscale/common.hpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convinvscale.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvInvscale
=
ck
::
tensor_operation
::
element_wise
::
ConvInvscale
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convinvscale
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_strides
;
in_strides
.
fill
(
0
);
wei_strides
.
fill
(
0
);
out_strides
.
fill
(
0
);
in_strides
.
back
()
=
1
;
wei_strides
.
back
()
=
1
;
out_strides
.
back
()
=
1
;
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std
::
rotate
(
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
2
),
rend
(
in_lengths
));
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
2
),
rend
(
in_strides
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
2
),
rend
(
out_lengths
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
2
),
rend
(
out_strides
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
;
conv_filter_strides
.
fill
(
1
);
conv_filter_dilations
.
fill
(
1
);
input_left_pads
.
fill
(
1
);
input_right_pads
.
fill
(
1
);
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvInvscale
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvInvscale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvInvscale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convinvscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/common.hpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ConvScale
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convscale
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_strides
;
in_strides
.
fill
(
0
);
wei_strides
.
fill
(
0
);
out_strides
.
fill
(
0
);
in_strides
.
back
()
=
1
;
wei_strides
.
back
()
=
1
;
out_strides
.
back
()
=
1
;
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std
::
rotate
(
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
2
),
rend
(
in_lengths
));
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
2
),
rend
(
in_strides
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
2
),
rend
(
out_lengths
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
2
),
rend
(
out_strides
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
;
conv_filter_strides
.
fill
(
1
);
conv_filter_dilations
.
fill
(
1
);
input_left_pads
.
fill
(
1
);
input_right_pads
.
fill
(
1
);
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvScale
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
bf8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
InDataType
;
using
BComputeDataType
=
AComputeDataType
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
bf8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
bf8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
bf8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_add/common.hpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/utility/type.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale_add.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ConvScaleAdd
;
using
F32
=
float
;
using
BiasDataType
=
F32
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convscale_add
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
static_assert
(
NumDimSpatial
==
3
&&
ck
::
is_same_v
<
InLayout
,
ctc
::
NDHWGC
>
&&
ck
::
is_same_v
<
WeiLayout
,
ctc
::
GKZYXC
>
&&
ck
::
is_same_v
<
OutLayout
,
ctc
::
NDHWGK
>
,
"Unsupported configuration"
);
const
ck
::
index_t
G
=
in_lengths
[
4
];
const
ck
::
index_t
N
=
in_lengths
[
0
];
const
ck
::
index_t
K
=
wei_lengths
[
1
];
const
ck
::
index_t
C
=
in_lengths
[
5
];
const
ck
::
index_t
Z
=
wei_lengths
[
2
];
const
ck
::
index_t
Y
=
wei_lengths
[
3
];
const
ck
::
index_t
X
=
wei_lengths
[
4
];
const
ck
::
index_t
Di
=
in_lengths
[
1
];
const
ck
::
index_t
Hi
=
in_lengths
[
2
];
const
ck
::
index_t
Wi
=
in_lengths
[
3
];
const
ck
::
index_t
Do
=
out_lengths
[
1
];
const
ck
::
index_t
Ho
=
out_lengths
[
2
];
const
ck
::
index_t
Wo
=
out_lengths
[
3
];
const
std
::
size_t
in_mem_size
=
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
;
const
std
::
size_t
wei_mem_size
=
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
;
const
std
::
size_t
out_mem_size
=
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
const
std
::
size_t
bias_mem_size
=
sizeof
(
BiasDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
SimpleDeviceMem
bias
(
bias_mem_size
);
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
// We have NDHWGC/GKZYXC/NDHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
input_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
input_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
weights_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
weights_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
output_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
output_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
bias_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
bias_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
std
::
size_t
ds_size
=
3
+
1
;
// 3 element-wise scale multipliers + 1 elementwise Bias
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
output_lengths
,
weights_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
+
bias_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvScaleAdd
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
input_lengths
,
input_strides
,
weights_lengths
,
weights_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
1
>
{
{
bias_lengths
}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
1
>
{
{
bias_strides
}},
output_lengths
,
output_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScaleAdd
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
input_lengths
,
input_strides
,
weights_lengths
,
weights_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
1
>
{
{
bias_lengths
}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
1
>
{
{
bias_strides
}},
output_lengths
,
output_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScaleAdd
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_add/conv3d_fwd_convscale_add_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale_add
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/common.hpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/type.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale_relu.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/permute_scale.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/reduce.hpp"
#include "ck/library/utility/host_tensor.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScaleRelu
=
ck
::
tensor_operation
::
element_wise
::
ScaleScaleRelu
;
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ScaleScalePass
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product> +
// + ds_size * <output tensor size> =>
// => <output tensor size> * ( 2 * C * <filter spatial lengths product> + ds_size) =>
// => G * N * K * <output spatial lengths product> * (2 * C * <filter spatial lengths product> +
// ds_size)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
ds_size
+
static_cast
<
std
::
size_t
>
(
2
)
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
()));
}
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetTensorSize
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
)
{
return
std
::
accumulate
(
std
::
begin
(
lengths
),
std
::
end
(
lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
GetTensorSize
<
NumDimSpatial
>
(
input_lengths
);
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
GetTensorSize
<
NumDimSpatial
>
(
weights_lengths
);
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
GetTensorSize
<
NumDimSpatial
>
(
output_lengths
);
}
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
ConvElementOp
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
ConvolutionScale
(
SimpleDeviceMem
&
in
,
SimpleDeviceMem
&
wei
,
SimpleDeviceMem
&
out
,
ConvElementOp
elementwise_op
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
in_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
in_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
wei_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
wei_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
out_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
out_strides
);
template
<
typename
InDataType
,
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
bool
TensorScaleConvert
(
SimpleDeviceMem
&
in
,
SimpleDeviceMem
&
out
,
float
scale_out
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
strides
);
template
<
typename
InDataType
,
typename
OutDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
bool
TensorFullReduction
(
SimpleDeviceMem
&
tensor
,
SimpleDeviceMem
&
out_amax
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
strides
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
ConvOutDataType
,
typename
OutDataType
,
typename
ConvElementOp
,
ck
::
ReduceTensorOp
ReduceOp
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convscale_reduce
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
static_assert
(
NumDimSpatial
==
3
&&
ck
::
is_same_v
<
InLayout
,
ctc
::
NDHWGC
>
&&
ck
::
is_same_v
<
WeiLayout
,
ctc
::
GKZYXC
>
&&
ck
::
is_same_v
<
OutLayout
,
ctc
::
NDHWGK
>
,
"Unsupported configuration"
);
const
ck
::
index_t
G
=
in_lengths
[
4
];
const
ck
::
index_t
N
=
in_lengths
[
0
];
const
ck
::
index_t
K
=
wei_lengths
[
1
];
const
ck
::
index_t
C
=
in_lengths
[
5
];
const
ck
::
index_t
Z
=
wei_lengths
[
2
];
const
ck
::
index_t
Y
=
wei_lengths
[
3
];
const
ck
::
index_t
X
=
wei_lengths
[
4
];
const
ck
::
index_t
Di
=
in_lengths
[
1
];
const
ck
::
index_t
Hi
=
in_lengths
[
2
];
const
ck
::
index_t
Wi
=
in_lengths
[
3
];
const
ck
::
index_t
Do
=
out_lengths
[
1
];
const
ck
::
index_t
Ho
=
out_lengths
[
2
];
const
ck
::
index_t
Wo
=
out_lengths
[
3
];
const
std
::
size_t
in_mem_size
=
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
;
const
std
::
size_t
wei_mem_size
=
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
;
const
std
::
size_t
conv_out_mem_size
=
sizeof
(
ConvOutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
const
std
::
size_t
out_mem_size
=
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
conv_out
(
conv_out_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
// We have NDHWGC/GKZYXC/NDHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
input_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
input_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
weights_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
weights_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
output_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
output_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
/*
* FP8 Convolution with Scaling
*/
std
::
cout
<<
"
\n\n
Convolution with scale Benchmarking:"
<<
std
::
endl
;
auto
elementwise_op
=
ConvElementOp
{
ck
::
tensor_operation
::
element_wise
::
Scale
{
scale_in
},
ck
::
tensor_operation
::
element_wise
::
Scale
{
scale_wei
},
{}};
auto
conv_ok
=
ConvolutionScale
<
InDataType
,
WeiDataType
,
ConvOutDataType
,
ConvElementOp
,
InLayout
,
WeiLayout
,
OutLayout
,
NumDimSpatial
>
(
in
,
wei
,
conv_out
,
elementwise_op
,
input_lengths
,
input_strides
,
weights_lengths
,
weights_strides
,
output_lengths
,
output_strides
);
if
(
!
conv_ok
)
return
false
;
/*
* Scale with output weight and convert to FP8
*/
std
::
cout
<<
"
\n\n
Element-wise scale + convert Benchmarking:"
<<
std
::
endl
;
auto
elem_wise_ok
=
TensorScaleConvert
<
ConvOutDataType
,
OutDataType
,
NumDimSpatial
>
(
conv_out
,
out
,
scale_out
,
output_lengths
,
output_strides
);
if
(
!
elem_wise_ok
)
return
false
;
/*
* Compute AMAX
*/
std
::
cout
<<
"
\n\n
AMAX Benchmarking:"
<<
std
::
endl
;
SimpleDeviceMem
amax_device
(
sizeof
(
ConvOutDataType
));
auto
reduction_ok
=
TensorFullReduction
<
ConvOutDataType
,
ConvOutDataType
,
ck
::
ReduceTensorOp
::
AMAX
,
NumDimSpatial
>
(
conv_out
,
amax_device
,
output_lengths
,
output_strides
);
if
(
!
reduction_ok
)
return
false
;
return
true
;
}
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
ConvElementOp
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
,
typename
AComputeType
,
typename
BComputeType
>
bool
ConvolutionScale
(
SimpleDeviceMem
&
in
,
SimpleDeviceMem
&
wei
,
SimpleDeviceMem
&
out
,
ConvElementOp
elementwise_op
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
in_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
in_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
wei_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
wei_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
out_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
out_strides
)
{
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
const
auto
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
const
auto
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
const
auto
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
std
::
size_t
ds_size
=
2
;
// 2 element-wise scale multipliers
if
constexpr
(
ck
::
is_same_v
<
ConvElementOp
,
ConvScaleRelu
>
)
{
ds_size
+=
1
;
// +1 element-wise relu
}
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
;
using
ConvDeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvElementOp
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
conv_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
ConvDeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
conv_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
conv_best_op_name
;
int
conv_best_op_id
=
-
1
;
float
conv_best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
conv_best_gb_per_sec
=
0
;
float
conv_best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all convolution instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
conv_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
conv_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
elementwise_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
conv_best_tflops
)
{
conv_best_op_id
=
i
;
conv_best_op_name
=
op_name
;
conv_best_avg_time
=
avg_time
;
conv_best_gb_per_sec
=
gb_per_sec
;
conv_best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
conv_best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
conv_best_avg_time
<<
" ms, "
<<
conv_best_tflops
<<
" TFlops, "
<<
conv_best_gb_per_sec
<<
" GB/s, "
<<
conv_best_op_name
<<
std
::
endl
;
// run the best instance
{
auto
&
op_ptr
=
conv_ptrs
[
conv_best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
elementwise_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
template
<
typename
InDataType
,
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
>
bool
TensorScaleConvert
(
SimpleDeviceMem
&
in
,
SimpleDeviceMem
&
out
,
float
scale_out
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
strides
)
{
const
auto
tensor_size
=
GetTensorSize
<
NumDimSpatial
>
(
lengths
);
const
std
::
size_t
in_mem_size
=
sizeof
(
InDataType
)
*
tensor_size
;
const
std
::
size_t
out_mem_size
=
sizeof
(
OutDataType
)
*
tensor_size
;
std
::
size_t
flop
=
2
*
tensor_size
;
// element-wise scale + convert
std
::
size_t
bytes
=
in_mem_size
+
sizeof
(
float
)
+
out_mem_size
;
// read from in, scale, write to out
using
DeviceScaleConvert
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
InDataType
>
,
ck
::
Tuple
<
OutDataType
>
,
ck
::
tensor_operation
::
element_wise
::
Scale
,
NumDimSpatial
+
NumNonSpatialDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceScaleConvert
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all DeviceScaleConvert instances and do timing"
<<
std
::
endl
;
auto
scale_convert
=
ck
::
tensor_operation
::
element_wise
::
Scale
{
scale_out
};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
lengths
,
{
strides
},
{
strides
},
{
in
.
GetDeviceBuffer
()},
{
out
.
GetDeviceBuffer
()},
scale_convert
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance found."
<<
std
::
endl
;
return
false
;
}
else
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
lengths
,
{
strides
},
{
strides
},
{
in
.
GetDeviceBuffer
()},
{
out
.
GetDeviceBuffer
()},
scale_convert
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
template
<
typename
InDataType
,
typename
OutDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
>
bool
TensorFullReduction
(
SimpleDeviceMem
&
tensor
,
SimpleDeviceMem
&
out_amax
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
strides
)
{
const
auto
spatial_dim_size
=
std
::
accumulate
(
std
::
next
(
std
::
begin
(
lengths
),
NumNonSpatialDim
),
std
::
end
(
lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
const
auto
tensor_size
=
GetTensorSize
<
NumDimSpatial
>
(
lengths
);
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
// Get the reduction operation
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
tensor_size
));
std
::
array
<
ck
::
index_t
,
1
>
reduce_out_lengths
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
reduce_out_strides
{
1
};
SimpleDeviceMem
partial_reduce_tensor
(
sizeof
(
OutDataType
)
*
spatial_dim_size
);
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
reduce_part_lengths
;
std
::
copy
(
std
::
next
(
std
::
begin
(
lengths
),
NumNonSpatialDim
),
std
::
end
(
lengths
),
std
::
begin
(
reduce_part_lengths
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
reduce_part_strides
;
copy
(
HostTensorDescriptor
(
reduce_part_lengths
).
GetStrides
(),
reduce_part_strides
);
{
std
::
cout
<<
"
\n
Reduction of nonspatial dimensions:"
<<
std
::
endl
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceReduce
<
InDataType
,
OutDataType
,
OutDataType
,
NumDimSpatial
+
NumNonSpatialDim
,
NumNonSpatialDim
,
ReduceOperation
,
InElementwiseOperation
,
PassThrough
,
true
,
// PropagateNan
false
>
;
// OutputIndex
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
std
::
array
<
int
,
NumNonSpatialDim
>
reduce_dims
;
std
::
iota
(
reduce_dims
.
begin
(),
reduce_dims
.
end
(),
0
);
// 0,..., NumNonSpatialDim-1
ck
::
index_t
num_in_elements
=
tensor_size
;
ck
::
index_t
num_out_elements
=
spatial_dim_size
;
// profile device operation instances
std
::
cout
<<
"Run partial reduction and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
lengths
,
strides
,
reduce_part_lengths
,
reduce_part_strides
,
reduce_dims
,
1.0
,
0.0
,
tensor
.
GetDeviceBuffer
(),
nullptr
,
partial_reduce_tensor
.
GetDeviceBuffer
(),
nullptr
,
in_elementwise_op
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
num_in_elements
*
sizeof
(
InDataType
)
+
num_out_elements
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance found."
<<
std
::
endl
;
return
false
;
}
else
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best instance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
lengths
,
strides
,
reduce_part_lengths
,
reduce_part_strides
,
reduce_dims
,
1.0
,
0.0
,
tensor
.
GetDeviceBuffer
(),
nullptr
,
partial_reduce_tensor
.
GetDeviceBuffer
(),
nullptr
,
in_elementwise_op
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
{
std
::
cout
<<
"
\n
Reduction of spatial dimensions:"
<<
std
::
endl
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceReduce
<
OutDataType
,
OutDataType
,
OutDataType
,
NumDimSpatial
,
NumDimSpatial
,
ReduceOperation
,
PassThrough
,
AccElementwiseOperation
,
true
,
// PropagateNan
false
>
;
// OutputIndex
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
std
::
array
<
int
,
NumDimSpatial
>
reduce_dims
;
std
::
iota
(
reduce_dims
.
begin
(),
reduce_dims
.
end
(),
0
);
// 0,..., NumDimSpatial-1
ck
::
index_t
num_in_elements
=
spatial_dim_size
;
ck
::
index_t
num_out_elements
=
1
;
// profile device operation instances
std
::
cout
<<
"Run final reduction and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
reduce_part_lengths
,
reduce_part_strides
,
reduce_out_lengths
,
reduce_out_strides
,
reduce_dims
,
1.0
,
0.0
,
partial_reduce_tensor
.
GetDeviceBuffer
(),
nullptr
,
out_amax
.
GetDeviceBuffer
(),
nullptr
,
PassThrough
{},
acc_elementwise_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
num_in_elements
*
sizeof
(
OutDataType
)
+
num_out_elements
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance found."
<<
std
::
endl
;
return
false
;
}
else
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best instance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
reduce_part_lengths
,
reduce_part_strides
,
reduce_out_lengths
,
reduce_out_strides
,
reduce_dims
,
1.0
,
0.0
,
partial_reduce_tensor
.
GetDeviceBuffer
(),
nullptr
,
out_amax
.
GetDeviceBuffer
(),
nullptr
,
PassThrough
{},
acc_elementwise_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
return
true
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
ConvOutDataType
=
float
;
// data type of convolution result
using
OutDataType
=
ck
::
f8_t
;
// data type of final result
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
ConvElementOp
=
ConvScale
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AMAX
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale_reduce
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
ConvOutDataType
,
OutDataType
,
ConvElementOp
,
ReduceOpId
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
ConvOutDataType
=
float
;
// data type of convolution result
using
OutDataType
=
ck
::
f8_t
;
// data type of final result
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
ConvElementOp
=
ConvScaleRelu
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AMAX
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale_reduce
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
ConvOutDataType
,
OutDataType
,
ConvElementOp
,
ReduceOpId
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale_relu/common.hpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale_relu.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScaleRelu
=
ck
::
tensor_operation
::
element_wise
::
ConvScaleRelu
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convscale_relu
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_strides
;
in_strides
.
fill
(
0
);
wei_strides
.
fill
(
0
);
out_strides
.
fill
(
0
);
in_strides
.
back
()
=
1
;
wei_strides
.
back
()
=
1
;
out_strides
.
back
()
=
1
;
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std
::
rotate
(
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
2
),
rend
(
in_lengths
));
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
2
),
rend
(
in_strides
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
2
),
rend
(
out_lengths
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
2
),
rend
(
out_strides
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
;
conv_filter_strides
.
fill
(
1
);
conv_filter_dilations
.
fill
(
1
);
input_left_pads
.
fill
(
1
);
input_right_pads
.
fill
(
1
);
std
::
size_t
ds_size
=
3
+
1
;
// 3 element-wise scale multipliers + 1 elementwise Relu
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvScaleRelu
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScaleRelu
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScaleRelu
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
Prev
1
…
3
4
5
6
7
8
9
10
11
…
26
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment